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Presented here is the analysis of thermally induced vibration of an inflatable space structure using the homoge-

nization method. It is shown that this technique can effectively be used to quantify the thermal oscillations in such

structures.
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1. INTRODUCTION

The successful operation of any system requires a precise

understanding of the disturbances and its design criteria. For

most space structures, the critical loads that the satellites en-

counter during launch are more important; the smaller loads

Figure 1. Schematic view of the Earth shadow on the Satellite (full and partial

shadows).

during the operation are of secondary importance. For inflat-

able structures, however, which are stowed during launch and

deployed upon reaching the destination orbit, the critical loads

in the space environment become of particular importance. A

complete list of different kinds of disturbances in space envi-

ronment is given by Davis and Agnes.1

One of the most important environmental disturbances is

thermal loading. There are three known sources of radiation

in space environment: (1) direct solar, (2) earth solar reflec-

tion (albedo), and (3) direct earth (infrared). The effects of

the last two are less significant for orbits higher than the LEO

orbit.2 When a satellite goes through an eclipse, rapid temper-

ature changes due to direct solar radiation are induced to the

system. According to Thornton et. al.3, the solar heating ex-

perienced by a satellite can change up to 95%, dependent upon

how long the transitions through the penumbra (partial Earth

shadow) and umbra (full Earth shadow) takes (see Fig. 1). As

a result, the torques and moments induced in the system can in-

crease the jitter, corrupt the pointing accuracy of the spacecraft,

and can cause spacecraft attitude problems, quasi-static defor-

mations, unexpected thermal oscillations, and in some cases

even thermal flutter or instability. Figure 2 shows the Solar

Array Flight Experiment (SAFE) that had unexpected deflec-

tions after its transition thorough the Earth shadow. Some of

the problems with solar radiation in space, such as thermally

induced vibrations, thermal buckling, surface degradation, and

thermal stress, are discussed by Graham, Kraus, and Schmit

and Hanawaly.4–6

The following literature reveals the previous research and
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