Transverse Plane-Wave Analysis of Short Elliptical End-Chamber and Expansion-Chamber Mufflers

A. Mimani and M. L. Munjal

Facility for Research in Technical Acoustics, Department of Mechanical Engineering, Indian Institute of Science, Bangalore-560 012, India

(Received 30 April 2009; revised 23 December 2009; accepted 21 January 2010)

The flow-reversal end chambers are used quite often in commercial automotive mufflers. The conventional axial plane-wave theory is not able to predict their acoustic performance because of the fact that the length of the end chambers is not enough for the evanescent three-dimensional modes generated at the junctions to decay sufficiently for frequencies below the cut-off frequency. Also, due to the large expansion ratio at the inlet, the first few higher-order modes get cut on even in the low-frequency regime. This necessitates a finite element or boundary element analysis, which is cumbersome and time-consuming. Therefore, an ingenious one-dimensional method has been developed. It models plane-wave propagation in the transverse direction between the incoming pipe and the return pipe, with the lateral-end cavities being modeled as variable-area quarter-wave resonators. Making use of this novel approach, the transfer matrices have been derived for elliptical and circular cross-section mufflers, which enable these elements to be analyzed along with the rest of the muffler elements by means of the transfer matrix-based muffler program. Through a comparison with a full, three-dimensional analysis on commercial software, it is shown that the one-dimensional approach presented in this paper is able to predict the transmission loss quite accurately up to about 1000 Hz for typical automotive mufflers.

NOMENCLATURE

_	sound speed in the medium
_	diameters of the inlet and outlet pipes
-	diameter of the pass tube in the flow-
	reversal muffler
_	major axis and minor axis of the el-
	liptical muffler
_	diameter of the circular expansion
	chamber
_	$(-1)^{1/2}$
_	the wave number, ω/c_0
_	stagnation pressure-loss coefficients
	at the inlet junction
_	stagnation pressure-loss coefficients
	at the outlet junction
_	axial length of the muffler
_	Mach number at the outlet (U_o/c_0)
	and inlet (U_i/c_0) , respectively
-	mean-flow Mach number at the muf-
	fler inlet (U_1/c_0) and outlet (U_2/c_0) ,
	respectively, perpendicular to the as-
	sumed plane-wave path
-	total number of small parts over
	which the region of interest is divided
-	acoustic pressure field at any generic
	point in the muffler system
-	acoustic pressure at the upstream in-
	let pipe and point in the downstream
	outlet pipe, respectively
-	acoustic pressure at the inlet and out-
	let junctions of the quarter-wave res-
	onators, respectively
-	acoustic pressure at the inlet and out-
	let junctions in the muffler at the

beginning and end of the transverse plane path, respectively, for a short-length muffler with a staggered configuration

- S(x) cross-sectional area of muffler as a function of distance x, measured along the plane-wave propagation path
- S_u , cross-section area of the inlet and outlet pipe, S_d respectively
- S_1 , cross-section area of the muffler at the inlet S_2 and outlet, respectively, perpendicular to the assumed plane-wave path
- *u*(*x*) acoustic particle velocity along the direction of the plane-wave propagation at any generic point in the muffler system
- U_i, U_o mean-flow velocity at the inlet and outlet pipe, respectively
- U_1, U_2 mean-flow velocity at the muffler inlet and outlet, respectively
- v_u, v_d acoustic-mass velocity at the upstream point and downstream point, respectively
- v_{r1} , acoustic-mass velocity at the quarter-wave res v_{r2} onators at inlet and outlet junctions, respectively
- v_1, v_2 acoustic-mass velocity at the inlet and outlet junctions in the muffler at the beginning and end of the transverse plane path, respectively, for a short-length muffler with a staggered configuration
- Y_d characteristic impedance at downstream point in the outlet pipe, c_0/S_d
- Y_u characteristic impedance at the upstream point in the inlet pipe, c_0/S_u
- Y_1, Y_2 characteristic impedance at the muffler inlet (c_0/S_1) and outlet (c_0/S_2) , respectively, perpendicular to the assumed plane-wave path