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Frequency resonances in the scattering amplitude of acoustic waves from submerged elastic objects can be iso-
lated by subtracting an underlying nonresonant background amplitude that is due to backscattered specular re-
flection. The resonances are caused by the phase matching of circumferential (surface) waves, and thus deter-
mine the phase-velocity dispersion curves of such waves. These are obtained here for the case of a spherical
steel shell in water. If the shell is evacuated, Lamb-type waves Ao and Sp (analogous to those on a plate with
one-sided water loading) are found, as well as the Scholte-Stoneley (4) wave that propagates in the loading
fluid. If the shell is filled with water, new circumferential waves propagating in the filler fluid appear and carry
out a motion coupled with each other, causing drastic repulsion phenomena among their dispersion curves.

1. INTRODUCTION

Acoustic waves incident on an elastic shell cause the ex-
citation of propagating waves on the shell, which may, in
their totality, be referred to as “surface waves.” If propagat-
ing over the curved portion of the shell, they may return to
their point of origin and thus be referred to as “circumferen-
tial waves.” If at a certain frequency, depending on the dis-
persion of these waves, they arrive at the point of origin with
the same phase as that with which they left, their subsequent
multiple circumnavigations lead to a resonant build-up of
their amplitude. The corresponding resonances can be ob-
served experimentally,’ as well as calculated from elasticity
theory,? the corresponding resonance frequencies are identi-
cal to the eigenfrequencies of the target.

Studies of the surface waves have previously been carried
out for spherical shells®® that were immersed in a fluid as the
acoustic medium, but that were evacuated (or air-filled; both
in practice amounting to the same). For infinite cylindrical
shells, however, the case of an internal fluid filling has been
considered.*® It was found in this case that in the low-
frequency region, where one has the circumferential waves
which are the analogues of the lowest-order Lamb waves on
a plate (4o, S0), one also has the fluid-borne Scholte-Stoneley
wave (A4) resulting from the presence of the immersion fluid.
In addition, there now exists a large variety of internal waves
propagating circumferentially (or as breathing-type modes) in
the filler fluid. Due to the fluid-elastic shell coupling, the
fluid-borne and the shell-borne waves interact closely, caus-
ing what appears to be repulsion phenomena in the dispersion
curves of these waves.

In the present investigation, the waves propagating inter-
nally in the filler fluid of a spherical steel shell are studied
with regard to their resonances and their phase velocity dis-
persion curves, which follow one from the other; this study
also obtains again the dispersion curves of the previously
known waves on an evacuated, water-immersed shell.>* Simi-
lar extensive curve repulsion effects are found for the cylin-
drical shell, but with some differences. The analytic-numerical
approach used here considers the individual partial wave am-
plitudes in the Rayleigh series of the backscattering ampli-

tude. This permits a unique characterisation of the mode
numbers and hence of the individual resonance values on the
dispersion curves, as will be described below.

2. CALCULATION OF PARTIAL-WAVE RESONANCES

Phase matching of circumferential waves determines the
relation between the resonance frequencies and the phase-
velocity dispersion curves (the latter at the discrete resonance
frequency points) for a spherical object as®

cple = (ka)*/(n+1/2), (1)

(note that for circumferential waves on cylindrical objects,
the term 1/2 would be absent because of this being a two-
dimensional problem). Here, ¢, is the phase velocity of the
surface wave, ¢ and k are the sound speed and the wave num-
ber in the ambient fluid, respectively, with the asterisk denot-
ing the value of £ at the resonance frequency, a is the (outer)
radius of the spherical object, and # is the number of waves
spanning the closed circumferential path, equivalent also to
the partial wave number. There may exist a variety of surface
waves that differ in their respective dispersion curves of ¢,
plotted vs. the nondimensionalised frequency variable ka.
Equation (1) makes it clear that in order to determine the
curves of ¢, /c from the resonances one must know the value
of n at a given (measured or calculated) resonance point (ka)*.
Although special approaches have been employed towards
this end,* in the case of a calculational approach to the prob-
lem, it is straightforward to perform an individual evaluation
of the partial-wave amplitudes corresponding to a given
value of », into which the total acoustic scattering amplitude
is expanded in the form of a Rayleigh-type series. In this
way, the resonances can be directly associated with the corre-
sponding » values. An illustration of the power of such an
approach can be found in reference 2, where the resonances
appearing at the coincidence frequency region of the evacu-
ated-shell scattering amplitude could be identified uniquely,
leading to the clarification of pseudo-Stoneley, or 4 wave,
resonances superimposed with the onset of the 4o resonances.
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