
1. INTRODUCTION

Liquid material controlled dosing and spraying has differ-
ent applications – from medicine to agriculture.1,2 Specific in-
terest exists for elastic catheter pipe type dosing equipment.
Complex dynamic processes that take place in such systems
are analysed in references3,4. A method to study the dynamic
characteristics of a tube under the influence of an internal
flow is presented in reference3. Galerkin’s method in con-
junction with the method of multiple scales is employed for
obtaining the stability of the tube vibration. According to the
results, instability can occur under certain conditions of reso-
nance. It is shown in reference4 that fluid-elastic effects
which are responsible for fluid-elastic instabilities may be di-
rectly measured through the analysis of the vibrating motion
of a system under flow. Piezoelectric actuators are used to in-
crease the vibratory level when buffeting forces which excite
tube vibration are low, and to improve the measurement of
fluid-elastic forces.

Application of piezoelectric actuators for the generation
of standing waves in the outlet pipe can produce effects
which can be used for the control of the dosing process. The
motion of fluid-suspended particles and fibres in a standing
wave field is analysed in references5,6. The dynamics of mi-
cron aerosol particles and their agglomeration under standing
wave conditions is analysed in reference7. Coupling of the
dynamic properties of a vibrating tube with the dynamic be-
haviour of a steel ball inside the tube can help producing a
new type of smart doser of liquid material which can be ef-
fectively controlled by piezoelectric actuators. The unique
feature of the tubular vibratory valve consists in the fact that
the sealing surface of the seat is faces towards the intake duct
and is located at the node of the second natural mode of
transverse vibration of the elastic pipe. The vibratory valve
for controlling liquid flow (Fig. 1) operates in the following
fashion.

The liquid that is fed into the intake duct (4) by the force
of the flow which depends on the pressure in the system
brings the locking ball (6) into sealing contact with the seat
(7). The valve closes and the flow of liquid through the outlet
duct is interrupted. When the driving generator (6) sends
control signals (the frequency of which corresponds to the
second natural frequency of transverse vibration of the pipe)

to the vibrator (2), the latter excites transverse vibrations in
the pipe. Since the frequency of the exciting oscillations of
the vibrator (2) corresponds to the second natural frequency
of transverse vibration of the pipe, it initiates transverse vi-
bration of the second natural mode at the resonance fre-
quency. As a result, the locking element (6) overcomes the
force of the flow and shifts to the point where the transverse
vibration of the pipe reaches its maximum amplitude: the seat
valve (7) opens and the liquid flows through the outlet duct
(5). Figure 1 presents a design diagram of a vibrator valve for
controlling liquid flow. It also shows the second natural
mode of transverse vibration of the pipe and the location of
the locking element with respect to the seat when the valve is
open.

2. DYNAMICS OF A STEEL BALL INSIDE A VIBRATING
TUBE

Motion of a small ball inside a tube performing transverse
vibrations may be approximated by the non-dimensional dif-
ferential equation of motion describing the dynamics of a
mass particle on an oscillating profile with an obligatory con-
dition of contact with the surface:3,4
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where  is the mode shape of the tube;  are pro-= (x, t) x, x., ..x
jections of the displacement, velocity and acceleration of the
ball on the horizontal axis; t is the time; m is the mass of the
ball; h is the coefficient of viscous friction between the ball
and the surface of the profile; g is the acceleration of gravity;
and F is the pressure force of the liquid.

Naturally, Eq. (1) is based on the assumption that the area
of the cross section of the tube is small, the fluid flow is
laminar, and the amplitude of the pressure of the liquid in the
tube is not aligned with the amplitude of the elastic trans-
verse vibrations. Also it is assumed that the mass of the lock-
ing ball is sufficient enough to perform the vibration-induced
motion in the liquid, but not big enough to alter the shape of
the tube’s vibration due to its relocation.
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Such a mathematical model of the system enables effec-
tive separation of the motion of the ball into relatively fast
and slow motions. Co-ordinate x represents the horizontal
displacement of the ball (slow motion), while the motion of
the ball in the vertical direction is defined by the function 

.= (x, t)
When the tube performs steady oscillations of a standing

wave type, the form of the tube displacement becomes:

                      (2)(x, t) = bcos(kx)cos( t) ,

where b is the amplitude of oscillations, k and  are the
wavenumber and frequency of the standing wave.

2.1. Existence of Steady State Solutions
When the vibrations take place in the horizontal plane x0y

(Fig. 1) and no external force is applied to the mass particle,
the following conditions are satisfied:

                         (3)g = 0; Fx = 0; x. =..x= 0.

Figure 1. Structural scheme of a tubular vibratory valve in an open
and closed states: 1 - the elastic pipe; 2 - the vibrator; 3 - the driving
signal generator; 4 - intake; 5 - outlet; 6 - the locking element; 7 -
seat.

Then, the condition of existence of the steady state solu-
tions is found from Eq. (1):

                                   (4)Ø2

Øt2
Ø
Øx = 0 ,

and applying Eq. (2) to Eq. (4) :

                                   (5)x = k s, s c Z ,
and

                              (6)x = 2k + k s, s c Z .

Similarly, if the vibrations take place in the vertical plane
x0z (Fig. 1), and no external force is applied to the mass par-
ticle, the condition of existence of the steady state solutions
becomes:

                          (7)Ø2

Øt2
Ø
Øx +

Ø
Øx g = 0 ,

or
                               (8)x = k s, s c Z .

If the external force is non-zero, there are no steady state
solutions which satisfy the condition .x. =..x= 0

2.2. Stability of Steady State Solutions
Stability of solutions when the vibrations take place in the

horizontal plane. The stability of the solution described by

Eq. (5) can be checked by constructing the variational equa-
tion around  using the following assumption:x = k s

                                 (9)x = k s + dx ,

where dx is a small variation about the steady state solution.
After the assumption of approximations

 (10)
sin k k s + dx l sin( s) + cos( s) kdx = (−1)skdx ;

cos k k s + dx l cos( s) − sin( s) kdx = (−1)s,

and the elimination of terms with  and , the follow-(dx)2 (dx.)2

ing variational equation is produced from Eq. (1):

              (11)md ..x +hdx. + (bk cos( t))2dx = 0 .

Since all coefficients of this ordinary differential equation
are positive in the vicinity of t, the real parts of both roots of
the characteristic equation will be negative. Thus the solution
of the variational equation is stable and the position 

 is also stable. The value of the discriminant of thex = k + dx
characteristic equation of Eq. (11) will define the type of the
stable attractor. Averaging in time produces the following
equation:

                 (12)d ..x + h
m dx. +

(bk )2

2m dx = 0 .

Therefore, the stable attractor will be of a saddle type and
the roots of the characteristic equation of Eq. (12) will be
real, i.e. the discriminant is positive, and an attractor of the
focus type when the roots are complex (the discriminant is
negative). This produces the following relations:

a) the attractor of the saddle type at ;b [ h
m k

b) the attractor of the focus type at .b > h
m k

These conclusions agree well with the results of the nu-
merical analysis (Figs. 2 and 3). When the parameter b is
large, the absolute value of the discriminant is also large. In
that case the velocities are much too larger to be linearly ap-
proximated as small values. So the attractor then turns out to
be more complicated than just a point in the phase plane

.(x − x.)
The stability of the solution described by Eq. (6) can be

checked in a similar manner:

                        (13)x = 2k + k s + dx ,

where dx is a small variation. Elimination of the non-linear
terms and the following approximations

          (14)
sin k 2k + k s + dx l (−1)s;

cos k 2k + k s + dx l −(−1)skdx ,

in Eq. (1) lead to:

       1 + k2b2(cos t)2 md ..x + −m2b2 sin 2 t

 (15)+h 1 + k2b2(cos t)2 dx. − 2b2k(cos t)2mdx = 0 .
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Figure 2. The attractor of the focus type at m = 0.4; h = 0.1; k = 1;
.= 1; b = 0.5

Figure 3. The attractor of the knot type at m = 0.4; h = 0.1; k = 1;
.= 1; b = 0.2

The coefficient of this ordinary differential equation at dx
is negative in the vicinity of the local time t. Thus, at least
one of the roots of the characteristic equation Eq. (15) will be
positive, and the solution in Eq. (13) will be unstable. Thus,
the positions of the ball at the nodal points of the vibrating
profile are unstable. Alternatively, the positions at the peaks
of the profile, i.e. at the points which vibrate with the maxi-
mum amplitude, are stable. Of course, that is true when the
ball cannot jump off the surface of the profile (it is placed in-
side a vibrating tube).

Stability of solutions when the vibrations of the tube take
place in the vertical plane. In this case the stability of the so-
lution Eq. (8) is analysed by constructing the variational line-
arised equation around the steady state regime by assuming
the same kind of approximations as before. The variational
equation in that case is almost the same as in Eq. (11) with
the exception that the coefficient at  becomes:dx

           (16)(bk cos( t))2 − (−1)sbk2mg cos( t) .

Averaging over time in Eq. (16) shows that this coeffi-
cient is positive, thus the solution is stable. This agrees well

with the data from the numerical simulations. Nevertheless,
when the values of the velocity of the ball are quite large, the
linearised equation cannot describe the dynamics with suffi-
cient accuracy. Figures 4-6 show how the stable attractor
turns from a point to an orbit, and consequently to a strange
(chaotic) attractor.

Figure 4. The attractor of the focus type at m = 0.4; h = 0.1; k = 1;
.= 1; b = 0.5; g = 0.9

Figure 5. Stable attractor at m = 0.4; h = 0.1; k = 1; = 1; b = 0.8;
.g = 0.9

Figure 6. Stochastic attractor around the condition of open state at
.m = 0.4; h = 0.1; k = 1; = 1; b = 0.8; g = 0.9; F = 0.5
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If an external force is applied, the steady state stable re-
gimes of motion will not exist. Anyway, the stable attractor
will exist, but it will form an orbit in a phase plane  in-(x, x.)
stead of a single point. The vibrations of the ball will take
place around the peak displacements of the tube until the
force F will be high enough to transport the ball along the
tube.

3. EXPERIMENTAL ANALYSIS OF A TUBULAR
VIBRATORY VALVE

A number of experimental studies are needed in order to
ensure high dynamic accuracy of operation of the vibrator
valves for controlling the flow of liquid substances. In most
cases the exciting frequencies of the working tube are quite
high, and the amplitudes which correspond to them are meas-
ured in micrometers. Therefore the holographic method can
be effectively applied for the visual representation of wave
processes taking place in the tubular vibratory valve.1,2 The
most effective method for studying the standing wave proc-
esses is the method of holographic interferometry with time
averaging.5,6 It should be noted that the most clearly visible
bands in the holographic interferograms are those recorded at
the positions of minimum amplitudes.7 It is important to ob-
tain the distribution of the vibration amplitudes not only in
the middle of the dark interference bands, but also in arbi-
trary positions on the surface of the tube. That enables the
determination of the location of the steel ball inside the tubu-
lar valve.

Figure 7. The structural diagram of the holography stand: 1 - the tu-
bular working tube of a vibratory valve; 2 - the high frequency sig-
nal generator; 3 - the amplifier; 4 - the frequency meter; 5 - the volt-
meter; 6 - the source of coherent radiation; 7 - the beam splitter;
8 and 9 - mirrors; 10 and 11- lens; 12 - the photographic plate; 13 -
the camera.

The amplitudes of vibration of the structure were deter-
mined using the methodology presented in references8,9. Fig-
ure 7 presents the schematic diagram of a stand for the ex-
perimental analysis of the tubular vibratory valve. The stand
contains a vibratory valve for controlling the flow of the liq-
uid which consists of a working tube which is harmonically
excited by the high-frequency signal generator (2) and the
amplifier (3). The signal frequency is monitored by the fre-

quency meter (4), the voltage amplitude of the power supply
is monitored by the voltmeter (5). The optical circuit of the
stand includes a holographic installation with a helium-neon
laser which serves as a source of coherent radiation. The
beam from the laser (6) splits into two mutually coherent
beams passing through the beam splitter (7). The object
beam, reflected from the mirror (8), is split by the lens (10)
and illuminates the surface of the tubular working tube 1
and, after reflecting from it, impinges on the photographic
plate (12). The reference beam, reflected by the mirror (9),
and expanded by the lens (11), illuminates the holographic
plate (12) where the interference structure is recorded.

Holographic interferograms of the transverse vibrations
of a tubular vibratory valve are presented in Figs. 8(a), 8(b)
and 9(a). Figures 8(a) and 8(b) make it possible to conclude
that the transverse vibration of the tube is sufficiently uni-
form (Fig. 8(c)). Therefore, the seat of the vibratory valve
can be located at a nodal point, regardless of how it is dis-
placed lengthwise in the upper or the lower nodal point of the
tube. It should be noted that the frequency of excitation must
be selected with care, as the best performance of the vibra-
tory valve takes place at resonance frequencies. If the fre-
quency of excitation of the transverse vibrations is far away
from the resonance frequencies of the tube, the operation of
the tubular valve turns out to be hardly controlled at all.

Figure 8. (a) The hologram of the transverse vibrations of the tube
at  kHz. Illumination angle of the laser beam . (b) The= 1.3 /4
hologram of the tube at the illumination angle . (c) The interpre-/2
tation scheme of the transverse vibrations.

Figure 9. (a) The hologram of the tube at  kHz; the illumina-= 2.1
tion angle of the laser beam . (b) The interpretation scheme of/4
the transverse vibrations. Circle denotes the location of the steel ball
inside the tube.
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The holographic interferogram presented in Fig. 9(a) cor-
responds to a higher frequency mode of the transverse vibra-
tions (Fig. 9(b)). It can be seen that the modes of the trans-
verse vibrations are shifted lengthwise as a result of the non-
uniformity of the exciting oscillations of the vibrator. That
influences the accuracy of locating the seat of the vibratory
valve at a nodal point as well as the amplitude of oscillations
(they decrease). The utilisation of those modes of motion
with the corresponding characteristics makes it possible to in-
crease the speed of action of the vibratory valves and to im-
prove the opening capacity when the pressure forces of the
liquid are increased.

The results obtained enable one to optimise the design of
vibratory valves for controlling and dosing liquid flow. The
following parameters of the system were analysed and opti-
mised: a) selection of the material of the working tube; b) se-
lection of the area of the transverse cross section of the tube;
c) location of the transverse vibration nodes in the tube;
d) determination of the transverse vibration amplitudes along
the tube. Maximum uniformity of the transverse vibrations of
the vibratory valve was achieved due to this optimisation
which led to more stable operation of the whole system.

4. CONCLUSIONS

A new model of a tubular vibratory valve has been de-
signed by using the stabilisation effect of a steel ball in the
vibrating tube. The methodology of identification of the vi-
bration peaks enabled experimental optimisation of the work-
ing regimes of the system. Such a type of analysis could be
applied successfully in the design stage of different precise
vibratory systems.
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