
1. INTRODUCTION

Structural elements such as ropes and cables are among

the oldest tools used by humanity in its quest for technologi-

cal advancement. For example, a copper wire rope was found

in the ruins of Nemeveh near Babylon which originate from

about 700 B.C.,1 and in Pompeii bronze ropes estimated to be

2400 years old have been excavated.2 These elements are

known to have the ability to withstand relatively large axial

loads in comparison to bending and torsional loads, and have

played an indispensable role in towing operations, in sup-

porting structures, in conducting signals and in systems de-

signed to carry payloads in vertical and inclined transport in-

stallations. In this latter application cables are of time-

varying length. However, the rate of change is small and the

length may be assumed to vary slowly. Consequently, the dy-

namic characteristics of the system vary slowly during its op-

eration, rendering the system non-stationary.

The responses of systems with non-stationary parameters

and excitations are qualitatively different from the responses

of stationary systems, especially in the neighbourhood of

some critical values of the parameters, when transitions

through resonance regions occur. The non-stationary reso-

nance phenomena are often delayed, and frequently accom-

panied by beat phenomena. Hence, specialised treatment is

required in order to analyse the responses of these systems. A

number of studies have been carried out in this area.

Kevorkian3 has considered the passage through resonance in

a harmonically excited single-degree-of-freedom system with

a slowly varying natural frequency. In this study the solution

was constructed by matching two asymptotic expansions: the

outer expansion away from resonance, and the inner expan-

sion near resonance. Agrawal and Evan-Iwanowski,4 and

Evan-Iwanowski5 have extended the asymptotic method de-

veloped by Mitropolskii6 for determining resonant responses

of non-stationary, non-linear multi-degree-of-freedom sys-

tems. The theory and methodology to describe the behaviour

of a system evolving slowly through internal resonance has

been presented by Ablowitz, Funk and Newell,7 and also by

Kevorkian.8

More recently Kevorkian,9 Bosley and Kevorkian10 and

Bosley11 have proposed that in order to generate an approxi-

mate solution, the slowly varying oscillatory second-order

system of N equations can be transformed into a Hamiltonian

standard form of  first-order differential equations using2N
action and angle variables together with the concept of adia-

batic invariance. Later perturbation techniques, namely the

method of averaging or the method of multiple scales, can be

applied to determine the solution.

Alternatively, the perturbation techniques can be applied

directly to the second-order model so that a first-order system

can be obtained to compute the slowly varying amplitudes

and phases for the first approximation of the response. Nay-

feh and Asfar,12 and Neal and Nayfeh13 used this methodol-

ogy to study single-degree-of-freedom systems with non-

stationary parametric excitations. This technique was also

implemented by Tran and Evan-Iwanowski14 to study the re-

sponse of the Van der Pol oscillator with non-stationary ex-

ternal excitation, and by Cveticanin15 in the analysis of non-

stationary oscillations of a textile machine rotor.

In this study the longitudinal response to an external exci-

tation of a deep mine hoisting cable with slowly varying

length and carrying concentrated inertial elements is investi-

gated. The winding cycle in this hoisting installation consists

of three main phases: the acceleration phase, the constant ve-
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locity phase, and the deceleration phase. The overall re-

sponse due to the cycle acceleration/deceleration load and a

boundary periodic excitation is determined by direct numeri-

cal integration of the discretised model. A single-mode ap-

proximation is then used to describe the response near to the

primary resonance region, and the method of multiple scales

is applied to predict and to analyse the response during the

passage through the resonance.

2. EQUATIONS OF MOTION

A typical mine hoist system comprises a driving winding

drum, a steel wire cable, a sheave mounted in headgear and a

conveyance. The cable passes from the drum over the sheave,

forming a horizontal or inclined catenary, to the conveyance

constrained to move in a vertical shaft, and forms the vertical

rope of time-varying length. A cable storage mechanism on

the winder drum is applied in order to facilitate a uniform

coiling pattern. A simplified longitudinal model of this ar-

rangement is shown in Fig. 1. In this model the section

 represents a slowly varying length of this part of thel  O1O
cable that is already coiled onto the winder drum, and the

catenary section  is represented by a massless springOC  Lc

of constant . Furthermore, the sheave inertial effects arekc

typified by its effective mass , and the end mass M repre-MS

sents the conveyance. The position of an arbitrary section of

the cable in the dynamically undeformed (reference) configu-

ration, when the cable total length is given as , is deter-L0

mined by the Lagrangian co-ordinate s measured from .O1

Also, it is assumed that the cable has a constant effective

cross-sectional area A, a constant mass per unit length m, and

effective Young’s modulus E.

Figure 1. Longitudinal model of a hoisting cable.

The equations governing the dynamic response of the sys-

tem can be derived by applying the variational approach of

analytical mechanics. In this approach Hamilton’s principle

can be used which yields

               (1) 
t1

t2

! E "  !e "  !g #  Wnc$dt  0,

where  denote the system kinetic energy, the cableE, !e, !g

elastic strain energy, and the system gravitational potential

energy, respectively, and  represents the virtual work of Wnc

the damping forces. Consequently, the longitudinal dynamic

displacement u of the rope is described by the partial differ-

ential equation16

"u ,tt " #1EAu ,sst # #2"u ,t " EAu ,ss  

                (2)f!s, t$ # kcu l!t$ " MSu ,stl
.
 !s " L1$,

with the boundary conditions given as

                    (3)kcu!L1
", t$ " EAu ,s!L1

", t$  0,

                           (4)EAu ,s!L0
#, t$  0,

where  denotes partial differentiation with respect to s,! $ ,s ! $ ,t

designates partial differentiation with respect to time, and the

overdot indicates total differentiation with respect to time.

The mass distribution function of the system is given as 

, where . Also,"  m#MS !s"L1$ #M !s "L0$ L1  l #Lc

 denotes the point immediately to the left of C,s  L1
" s  L0

#

indicates the point immediately to the right of M, and  is the 
Dirac delta function. The system is subjected to boundary ex-

citation at , represented by a prescribed periodic func-s  l
tion , and to the inertial load due to an overall transportul(t)

motion, given by . It should be noted also, that thef(s, t)  "l̈

term  appears in the equation of motion. This compo-MSu,stl
.

nent represents the sheave inertial effects, and can be de-

duced from the sheave kinetic energy, given as Es  
1
2 MSq

.
S
2,

where . Consequently, Hamilton’s procedureq
.
S  u,t!L1, t$ " l

.

leads to the derivative , so that the sheave inertial
d
dt

!Es

!q
.
S

load is introduced into Eq. (2).

Damping in the system is represented by a viscous pro-

portional damping model, with the internal and external

damping effects accommodated in the coefficients  and ,#1 #2

respectively. Moreover, upon assuming that the modulus E

of the cable material is high, the strain of the cable

wound around the drum can be neglected, and the length of

the cable coiled onto the winder drum is then given as

, where V is a prescribed winding veloc-l!t$  l!0$   0
t

V!$$d$
ity, and signs  and  correspond to ascending and de-” # ” ” " ”
scending respectively, and  is the initial length.l!0$

3. APPROXIMATE SOLUTION

3.1. Overall Response

In order to determine the longitudinal response during the

entire winding cycle an approximate solution to the equations

of motion can be sought using the Rayleigh-Ritz method.

Thus, the motion is assumed in the form of the series

                         (5)u  %
n 1

Nlong

Yn!s, l$zn!t$,

where  are generalised co-ordinates, and  are free-zn!t$ Yn

oscillation modes of the system with the parameter l consid-

ered to be instantaneously frozen. These modes are given by

the following equation

   (6)Yn!s, l$  cos &ny!s, l$ # 1
Lc&n

" &n
MS
m sin &ny!s, l$,

where , with , and  represents the&n  'n!l$/c c  EA/m 'n

longitudinal natural frequency, and . The eigenval-y  s " L1

ues  are determined from the frequency equation&n

1
Lc

"
MS
m &n

2 cos &nLv "
M
m &n sin &nLv "

                (7)&n
M
m &n cos &nLv # sin &nLv  0,

where .Lv  L0 "L1
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Substituting the expansion Eq. (5) into Eq. (2), multiply-

ing the result by , by integrating from  to , accountingYr L1
" L0

#

for the boundary conditions Eqs. (3)-(4), and using the or-

thogonality properties of the eigenfunctions , yields a setYn

of equations of the form

z̈r # #2z
.
r #'r

2zr  

"
1

mr %
n 1

Nlong

2l
.
Crn " EA(rn #MSl

.
1
Lc
"

MS
m &n

2 z
.
n "

1
mr %

n 1

Nlong

l
.
2Drn # l̈Crn " EAl

.
Brn # #2l

.
Crn #MSl

.
2)n zn #

                   (8)gr(t) # Zr(t), r  1, 2, ", Nlong,

where

                      (9)

mr   
L1
"

L0
#

"!s$Yr
2ds,

Brn   
L1
"

L0
#

#1Yr

!Yn,ss

!l
ds,

Crn   
L1
"

L0
#

"!s$Yr
!Yn

!l
ds,

Drn   
L1
"

L0
#

"!s$Yr
!2Yn

!l2 ds,

)n  &n!&n " 2
Ms
m

d&n

dl
$,

(rn   
L1
"

L0
#

#1YrYn,ssds,

gr(t)  
1

mr
kcu l!t$,

Zr  
1

mr
 

L1
"

L0
#

f!s, t$Yrds.

Furthermore, in this formulation the boundary excitation

is given as , where the amplitude  is de-ul!t$  u0 cos*t u0

fined by the geometry of the cable storage mechanism on the

winder drum, and the frequency , where n is an inte-*  n'd

ger and  denotes the drum frequency.'d

The model represented by Eq. (8) forms a system of sec-

ond order ordinary differential equations with time-varying

coefficients. These coefficients depend on the eigenvalues &n

that must be determined from the transcendental frequency

equation given by Eq. (7). In general, it is not feasible to ob-

tain an exact closed-form solution to time-varying coupled

systems of ordinary differential equations. In the problem un-

der consideration, the most convenient approach to solving

the system is by direct numerical integration.

3.2. Response at the Resonance Region

When a single term is taken in the expansion Eq. (5) the

result is referred to as a single-mode approximation, and the

system is reduced to a single-degree-of-freedom model. This

simple model has been used extensively and successfully in

the analysis of free and forced vibrations of structures.17 The

dynamic behaviour of the cable system near the resonance re-

gion is of particular interest. Since the resonant mode is

dominant in the system response during the passage through

the primary resonance, the single-mode approximation given

as

                             (10)u  Yr!s, l$zr!t$,

where  denotes the resonant mode shape function, can beYr

applied to investigate the response at the resonance. Substi-

tuting this form into Eq. (2) and applying the Rayleigh-Ritz

procedure yields

z̈r #'r
2!l$zr  

"
1

mr!l$
2l

.
Crr!l$ " EA(rr!l$ #MSl

. 1
Lc

"
MS

m &r
2!l$ #mr!l$#2 z

.
r "

1
mr!l$

l
.
2Drr!l$ # l̈Crr!l$ " EAl

.
Brr!l$ # #2l

.
Crr!l$ #MSl

.
2)r!l$ zr #

                       (11)Kr!l$cos*t #Zr!t$,

where .Kr  kcu0/mr

The natural frequency and coefficients in Eq. (11) are ex-

pressed in terms of the slowly varying length parameter l,

and can be determined using Eq. (9). Two time scales are

defined in order to seek an approximate solution to the prob-

lem. The first one, a fast non-dimensional scale, is deter-

mined as , where . The second scale is aT  '0t '0  'r!l!0$$
slow scale defined as , and a variation of l is observed+  ,T
on this scale. During the ascending constant velocity winding

phase this length is given as , where  denotesl  l!0$ #Vct Vc

the nominal winding velocity. Assuming , andl!0$  0
defining the small parameter as , where,  Vc/('0Lv0)

, yields . Assuming that damping isLv0  Lv(l(0)) l  Lv0+
small, so that one may set , and , the follow-#1  ,#1

! #2  ,#2
!

ing equation, valid for the constant velocity phase, is ob-

tained

  (12)
d2zr

dT2 # '̃r
2!+$zr  ,fr!+,

dzr

dT
$ # K̃r!+$ cos *̃T #O!,2$,

where , , , and'̃r  'r/'0 *̃  */'0 K̃r  Kr/'0
2

fr!+,
dzr

dT
$  

1
mr!+$

EA
Lv0

Vc
(rr!+$ " 2l #Crr!+$ "

         (13)MSl# 1
Lc

"
MS
m &r

2!+$
dzr

dT
"

Lv0

Vc
#2

dzr

dT
.

The method of multiple scales is applied to seek an ap-

proximate solution to Eq. (12). Thus, the solution is assumed

to be of the form18

               (14)zr  zr0!-r,+$ # ,zr1!-r,+$ #O!,2$,

where  represents a new fast scale, defined as -r

. Since near the resonance values  are-r   0
T
'̃r!,$$d$ '̃r!+$

near , a slowly varying detuning parameter  is intro-*̃ .r(+)

duced to quantify this nearness, so that one can write 

. Setting , and implementing the*̃" '̃r!+$  ,.r!+$ K̃r  2,k̃r

procedure of multiple scales results, in the first approxima-

tion, in the solution given as

                   (15)zr  ar cos!*̃T"/r$ #O!,$,

where the amplitude  and phase  are determined by aar /r

system of first order differential equations with slowly vary-

ing coefficients of the form
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ar
#  "

1
2

'̃r
#

'̃r
"

1
mr!+$

EA
Lv0

Vc
(rr!+$ " 2l #Crr!+$ "

MSl #
1
Lc

"
MS
m &r

2!+$ "
Lv0

Vc
#2 ar #

kr

'̃r
sin/r;

                   (16)/r
#  .r!+$ #

kr

'̃rar
cos/r,

where the prime denotes the derivative with respect to .+
Eqs. (16) do not easily lend themselves to an analytical solu-

tion. However, both  and  are slowly varying functions,ar /r

and the system Eqs. (16) can be solved numerically without

difficulty using standard integration methods.

4. NUMERICAL EXAMPLE AND DISCUSSION

4.1. The Deep Mine Winder and Rope Parameters

The parameters of the double drum rock winder at

Elandsrand Gold Mine are used to carry out numerical calcu-

lations. These parameters are shown in Table 1, and represent

a typical deep mine hoisting system operating in South Af-

rica. The Elandsrand Mine winder drum is equipped with a 

 Lebus arrangement to achieve a repetitive coil-1800 " 1800

ing pattern during a winding cycle. In this mechanism, the

winder drum surface is covered by parallel circular grooves

with two diametrically opposed cross-over zones per drum

circumference. Each zone offsets the grooves by half a cable

diameter and when the cable passes through a cross-over an

additional axial displacement relative to the nominal trans-

port motion occurs. The magnitude of this displacement can

be calculated as approximately equal to the difference be-

tween the arc length transversed through the cross-over and

the corresponding diametrical arc. This gives the amplitude 

, where  is the drum radius, du0  !Rd0$2 # d2/4 " Rd0 Rd

represents the cable diameter, and  is the angle defining the0
diametrical arc corresponding to the cross-over region.16 As

the cross-over occurs twice per drum revolution the fre-

quency of the excitation is equal to twice that of the drum

frequency, that is .*  2Vc/Rd

Table 1. Elandsrand simulation parameters.

2,204Maximum depth of winding  [m]Lv max

73Catenary length  [m]Lc

1.25 " 1011Cable effective Young’s Modulus E [N/m2]
1.053 " 10"3Cable effective steel area A [m2 ]
9.75Cable linear density m [kg/m]

48 " 10"3Cable diameter d [m]

0.1Coil cross-over arc  [rad]0

2.77Sheave wheel radius R [m]

2.77Winder drum radus  [m]Rd

25,690Sheave wheel moment of inertia I [kgm2 ]
23,649Total hoisted mass M [kg]

16Nominal hoisting velocity  [m/s]Vc

26Acceleration/deceleration time [s]

163Total winding cycle time [s]

The longitudinal damping coefficient  is assumed to#1

be a function of the vertical rope mean tension given as

, where g, denotes the acceleration ofTv
i (s)  %M # m!L0 " s$&g

gravity, and . Namely,  decreases with increas-L1 # s # L0 #1

ing mean tension. This is consistent with the results of the

experimental investigations,19-21 and it can be argued that

when the tension is increased, the wire strands are more read-

ily locked, and the inter-strand relative motion is constrained,

resulting in the coefficient  being decreased. Following the#1

experimental data reported by Goroshko and Savin,20 this co-

efficient is determined as #1=!0.5+
23000

3500#0.75"10"5 Tv
i /A
$ " 10"4s.

The value of the second longitudinal damping coefficient is

assumed to be , as established by tests per-#2  0.159s"1

formed by Constancon.22 Also, the effective sheave mass is

determined as .MS  I /R2

4.2. Overall Dynamic Response

The total longitudinal dynamic behaviour of the system is

described by the set of linear ordinary differential Eqs. (8),

and the solution of these equations, combined with the ex-

pansion Eq. (5), gives the overall longitudinal response. The

coefficients in Eqs. (8) are slowly time-varying, and the sys-

tem is referred to as a linear time-varying system.23 In

general, it is not feasible to obtain an exact closed-form solu-

tion to time-varying coupled systems of ordinary differential

equations. Approximate analytical studies to predict the re-

sponse  of  such  systems could be carried out by perturbation

Figure 2. Longitudinal frequency curves for the Elandsrand Mine

winder, with horizontal lines denoting the frequency of excitation 

 corresponding to various nominal winding velocities   , Vc  12

, 14 , 16 , and 18  m/s.( ) (!  !) (! !) (___ )

methods.4 However, the algebra in these techniques is quite

involved. An alternative method was presented by Shahruz

and Tan,24 who found an approximate closed-form solution to

the response of linear slowly varying systems under external
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excitations using the technique of freezing slowly varying

parameters. This technique, however, is not suitable for the

general case when the eigenvalues of the frozen system can-

not be obtained explicitly in terms of the frozen time parame-

ter. Thus, the most convenient approach to solving the sys-

tem of Eqs. (8) is by direct numerical integration.

Since the highest dynamic forces in hoisting cables occur

during the up-wind, the simulation is carried out for the as-

cending cycle, when a fully loaded conveyance is being

raised from the bottom of the shaft. The natural frequencies

of the system vary slowly during the entire wind due to the

slowly varying length of the vertical rope. This is illustrated

in Fig. 2, where the first four up-wind longitudinal natural

frequencies, determined from the transcendental Eq. (7), are

plotted against the vertical cable length. Frequencies of the

excitation , corresponding to various winding velocities , Vc

are also shown in this diagram. As one can observe, the natu-

ral frequencies increase with the shortening length of the ver-

tical rope. It can be noted that for the nominal winding veloc-

ity of 16 m/s, a transition through resonance occurs twice: at

the beginning of the cycle when the excitation frequency co-

incides with the third natural frequency at approximately 

, and later during the wind when a passageLv  1950m
through the second natural frequency takes place at approxi-

mately .Lv  950m

Figure 3. Longitudinal modal co-ordinates for the Elandsrand Mine

winder simulation at the nominal winding velocity  m/s.Vc  16

It is evident that the system eigenvalues are widely

spread, especially at the end of the wind, and therefore the

complete solution to the problem will consist of slow and fast

components. Thus, the dynamics of the deep mine winder

system represents a stiff problem,25 and if the numerical solu-

tion is to return the entire transient response of the system

over a long time interval, integration must be performed us-

ing a relatively large time step to cover the slow components.

However, the time step must be also small enough to capture

the fast components, and to keep the numerical solution

within acceptable bounds. Thus, due to these requirements

integration methods not designed for stiff problems are inef-

fective, and lead to unstable results when applied to stiff

equations.

The problem of numerical integration of systems of stiff

ordinary differential equations has attracted considerable at-

tention, and a number of efficient integration algorithms that

allow relatively large time steps, and that guarantee stability

and bounded numerical error are available.26,27 Multistep

methods based on backward differentiation formulas (BDF’s,

also known as Gear’s method), have been the most promi-

nent and most widely used for solving stiff problems. Re-

cently, a new family of formulas called the numerical differ-

entiation formulas (NDF’s) have been developed and imple-

mented in the MATLAB ODE suite.28 They are more effi-

cient than the BDF’s, though the higher order formulas in

this family are somewhat less stable. Both BDF’s and NDF’s

codes are available from the ode15s MATLAB solver.

Figure 4. Longitudinal response of the Elandsrand cable system at

the nominal winding velocity  m/s: (a) at the sheave; (b) atVc  16

the conveyance.

The non-stationary modal Eqs. (8), with the number of

modes , have been integrated numerically in theNlong  4

MATLAB 5 computing environment using the ode15s

solver, with the default numerical differentiation formulas,

and with the default relative accuracy tolerance and absolute

error tolerances of  and of , respectively. The simu-10!3 10!6

lation results for the nominal winding cycle are shown in
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Figs. 3-6. The generalised modal co-ordinates ,zn, n  1,!, 4
are plotted against the vertical rope length  in Fig. 3. TheLv

displacements at the sheave and at the conveyance, given as

                       (17)uS  !
n 1

4

Yn(L1, l) zn(t),

                      (18)uM  !
n 1

4

Yn(L0, l) zn(t),

respectively, are shown in Fig. 4. The plots of the total cate-

nary tension , and of the total vertical rope tension  atTc TS

the sheave and  at the conveyance, together with the ten-TM

sion ratio across the sheave, versus  are presented in Fig. 5.Lv

Figure 5. Total cable tensions for the Elandsrand Mine winder at

the nominal velocity  m/s: (a) the catenary tension ; (b)Vc  16 Tc

the vertical rope tension  at the sheave; (c) the vertical ropeTS

tension  at the conveyance; (d) the tension ratio across the sheaveTM

Tc/TS.

In these plots the tensions are determined as follows. The to-

tal catenary tension is calculated as

                       (19)Tc(t)  Tc
i (t) "Tcd(t),

where the slowly varying mean catenary tension is repre-

sented by , and the catenary dynamic tension isTc
i
 Tv

i (L1)

defined as

                   (20)Tcd  kc !
n 1

4

zn(t) ! u l(t) .

Subsequently, the total vertical rope tension is defined as

                   (21)Tv(s, t)  Tv
i (s) "Tvd(s, t),

where the dynamic component  is expressed using theTvd

Kelvin-Voigt viscoelastic model, whereby the normal stress

is related to the strain and strain rate, namely

              (22)Tvd(s, t)  EA[uv,s ""1(s)uv,ts].

Hence, the rope tensions at the sheave and at the convey-

ance are given as , and , respec-TS  Tv(L1, t) TM  Tv(L0, t)

tively. The vertical rope dynamic tensions are given as

 at the sheave and  at the con-TSd  Tvd(L1, t) TMd  Tvd(L0, t)

veyance. Subsequently, the catenary and vertical rope dy-

namic tensions are plotted against  in Fig. 6.Lv

Figure 6. Dynamic cable tensions for the Elandsrand Mine winder

at the nominal velocity  m/s: (a) the catenary dynamic ten-Vc  16

sion ; (b) the vertical rope dynamic tension  at the sheave;Tcd TSd

(c) the vertical rope dynamic tension  at the conveyance.TMd

The results demonstrate various transient vibration phe-

nomena that occur during the wind. A significant response

due to the initial acceleration/final deceleration inertial loads

at the beginning, and at the end of the cycle, respectively, is

predicted. This response is prominent both at the sheave and

at the conveyance. Referring to the modal co-ordinate plots,

it is evident that the fundamental mode dominates in the re-

sulting transient oscillations, as recorded in the co-ordinate 

 plot. As anticipated earlier from the frequency diagram,z1

passages through resonance are manifested in the response

plots. The co-ordinate  displays resonance behaviour in thez2
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region , and the co-ordinate  demonstrates transition  #2 z3

through the resonance condition . These resonance  #3

phenomena affect especially the sheave response, which can

be seen in Fig. 4.

The total cable tensions reflect the system dynamics dur-

ing the wind. The dynamic components oscillate about the

corresponding mean values, that for the catenary and at the

sheave increase with the vertical length. The tension ratio

across the sheave is close to unity over the entire cycle, dem-

onstrating a small increase at the end of the wind, but remain-

ing in the limits of approximately . The influence0.94! 1.05
of acceleration/deceleration, and of transitions through reso-

nance on the cable tensile forces is better illustrated in Fig. 6.

It can be seen, that significant oscillations in the dynamic

tensions are predicted during the initial and final stages of

winding due to the acceleration/deceleration inertial loads.

Also, at a depth of approximately , the reso-700! 1000m
nance condition  produces substantial tension oscilla-  #2

tions. The effect of this main resonance on the system dy-

namics is discussed in more detail in the following.

4.3. Response at the Resonance Region

The single-mode response of the system near the reso-

nance is given by Eqs. (10) and (15), with the slowly varying

amplitude and the phase determined by the system of first or-

der differential Eqs. (16). These autonomous ordinary differ-

ential equations with variable coefficients do not easily lend

themselves to an analytical solution. Analytical methods for

analysis of problems of this type are very few and tend to be

either difficult to apply or limited in application to a small

class of systems. For example, Raman, Bajaj and Davies29

treated analytically classical non-linear vibratory systems in

the presence of non-stationary excitation. They discussed

passage through primary resonance in the forced Duffing’s

oscillator, described by the averaged first order equations for

the amplitude and phase. An analytical study of the response

was presented using matched asymptotic expansions. This

technique is however applicable only within a small neigh-

bourhood of the instability region, and various beating phe-

nomena associated with the passage cannot be predicted by

this approach. As shown by Nayfeh and Mook,18 direct nu-

merical integration of non-stationary amplitude-phase equa-

tions is perhaps the most convenient approach. The ampli-

tude  and phase  governed by Eqs. (16) are slowly vary-ar $r

ing functions, and the system can be solved numerically

without difficulty using standard integration methods. In this

study the MATLAB ode23 solver based on an explicit

Runge-Kutta (Eqs. (2) and (3)) pair of Bogacki and Shampi-

ne27 has been used to determine the solution in this study.

The accuracy of this solution and of the first approxima-

tion given by Eq. (15) can be verified by comparison with the

overall response obtained earlier from the system of Eq. (8).

This comparison is shown in Fig. 7, where the passage

through the resonance region  (that is for ) in the  #2 r  2
Elandsrand system operating at the nominal hoisting velocity 

 is illustrated. In Fig. 7(a) the response envelope,Vc  16 m/s
determined as , is superimposed on theaS  Y2(L1, l)a2

sheave response obtained from Eq. (17). The rope dynamic

tensions  at the sheave and  at the conveyance, calcu-TSd TMd

lated using the expansion Eq. (5) and Eq. (22), with superim-

posed tension envelopes are shown in Fig. 7(b) and Fig. 7(c),

respectively. The tension envelopes are determined from

Eq. (22) using the single-mode representation Eq. (10) to-

gether with the approximation Eq. (15), and are given by

                    (23)Evd(s, %)  EA Ar
2
" Br

2 ,

where

    (24)Ar(s, %)  
"Yr

"s
" "1
"2Yr

"s"l
Vc ar " "1&#0

"Yr

"s
ar
# ;

             (25)Br(s, %)  "1(&#0$r
#
! )

"Yr

"s
ar.

Figure 7. Overall response and dynamic cable tensions for the

Elandsrand Mine winder at the nominal velocity  m/s withVc  16

superimposed envelope curves obtained from the multiple scales

model at the resonance region: (a) the sheave response; (b) the rope

tension at the sheave; (c) the rope tension at the conveyance.

It can be seen that in the resonance region the single-

mode solution approximates well the overall response and

tension curves.

Transition through the resonance region  is further  #2

illustrated in Fig. 8. In Fig. 8(a) the non-stationary fre-

quency-response curves are shown, with the amplitudes a2

plotted against the detuning parameter , and in Fig. 8(b)'2

these amplitudes are shown against the vertical length (depth)

, for four winding velocities, namely  andLv Vc  12, 14, 16,
18 m/s. It should be noted, that these amplitudes represent di-

rectly the maximum sheave motions, as the resonant modes 

 in Eq. (10) are normalised to the unity at the sheave end. ItYr

can be seen that the resonance region is reached at higher

depths for lower values of the winding velocities, while the

detuning parameter  decreases when making a single pas-'2

sage through zero. This is consistent with the frequency dia-
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Figure 8. Non-stationary amplitude response during passage

through resonance in the Elandsrand Mine system: (a) the

frequency-response curves; (b) amplitudes against the vertical

length, for the winding velocities  , 14 , 16 ,Vc  12 ( ) (!  !) (! !)

and 18  m/s.(___ )

Figure 10. Catenary dynamic tension envelopes during passage

through resonance in the Elandsrand Mine system shown (a) against

the frequency detuning parameter; (b) against the vertical length,

for the winding velocities  , 14 , 16 , andVc  12 ( ) (!  !) (! !)

 m/s.18 (___ )

Figure 9. Conveyance amplitude response during passage through

resonance in the Elandsrand Mine system: (a) the non-stationary

frequency-response curves; (b) amplitudes against the vertical

length, for the winding velocities  , 14 , 16 ,Vc  12 ( ) (!  !) (! !)

and 18  m/s.(___ )

Figure 11. Sheave dynamic tension envelopes during passage

through resonance in the Elandsrand Mine system shown (a) against

the frequency detuning parameter; (b) against the vertical length,

for the winding velocities  , 14 , 16 , andVc  12 ( ) (!  !) (! !)

 m/s.18 (___ )



gram shown in Fig. 2, where the resonance regions for the

corresponding velocities can be identified against the depth.

The amplitudes start growing when the resonance region is

approached, and near the resonance ( ) they increase'r ! 0
rapidly, and decline afterwards due to damping, developing

damped beat phenomena. The period of the beats decreases

with time. It can be observed that the higher the winding ve-

locity, the higher the maximum value of the corresponding

amplitude. A different pattern of behaviour can be identified

at the conveyance end, which is illustrated in Figs. 9(a) and

9(b), where the conveyance amplitude envelope curves, de-

termined as , are represented against the fre-aM  Yr(L0, l)a2

quency detuning parameter and against the depth, respec-

tively. As one can see, in this case higher maximum values of

amplitudes are recorded for lower winding velocities.

Figure 12. Conveyance dynamic tension envelopes during passage

through resonance in the Elandsrand Mine system shown (a) against

the frequency detuning parameter; (b) against the vertical length, for

the winding velocities  , 14 , 16 , and 18 Vc  12 ( ) (!  !) (! !) (___ )

m/s.

The upper envelopes of the dynamic tensions, namely Ecd

of the catenary cable,  of the rope at the sheave and ESd EMd

at the conveyance, are plotted against the detuning parame-

ter and the vertical length in Figs. 10, 11 and 12, respec-

tively. The catenary tension envelopes are determined using

Eq. (20) where the single-mode solution Eq. (15) is applied,

so that

          (26)Ecd  kc (ar cos$r ! u0 )2
" (ar sin$r ) .

The rope tension envelopes are found from Eq. (23). It is

evident from the tension envelope plots that the tension am-

plitudes increase rapidly during the passage through reso-

nance, declining slowly afterwards. Both in the catenary and

in the vertical rope the tension amplitudes demonstrate the

tendency to reach higher values for higher velocities.

5. SUMMARY AND CONCLUSIONS

The overall longitudinal dynamic behaviour of a deep

mine hoisting cable system is demonstrated in the numerical

simulation of the double drum winder system at the Elands-

rand Gold Mine. The simulation results illustrate a transient

response due to the acceleration/deceleration inertial load and

passages through primary longitudinal resonances, when the

frequency of the excitation due to a coiling mechanism at the

winding drum coincides with the natural frequencies during

the motion cycle. Also, significant dynamic fluctuations in

the cable tensions are predicted. The tension ratio across the

sheave is close to the unity which indicates that frictional slip

will not occur.

The effect of transitions through the primary resonances

is investigated using a combined perturbation and numerical

technique. A single-mode model is applied to represent the

system during a passage through resonance. It accommodates

the fundamental feature of the system, namely its non-

stationary nature, and adequately represents the main type of

vibration occurring in the system. The multiple scales method

is used which leads to a system of first order ordinary differ-

ential equations for the amplitude and phase of the response.

These are slowly varying functions and the system can be

solved numerically without difficulty. The accuracy of this

solution is verified against the overall response obtained

from a numerical simulation of the original second order or-

dinary differential equations of motion. It is shown that the

single-mode model approximates well the system in the main

resonance region.

 The analysis demonstrates that the main resonance is

reached at higher depths for lower values of hoisting veloci-

ties. The amplitude plots reveal that the more rapid the pas-

sage through resonance, the smaller the maxima of the con-

veyance response, and the higher the maxima of the response

at the sheave. The amplitudes decline after the passage due to

damping developing beat phenomena. The dynamic cable

tensions also grow rapidly during the passage, and reach

higher levels for higher hoisting velocities.

The proposed model and the computational algorithm

form an efficient method to assess and to analyse the dy-

namic behaviour of deep mine hoisting cables.
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