
NOMENCLATURE

  — Unit direction vector for applied force “j” and resul-b j

tant moments: .b j  
I

G j
e j

c.g. — Center of gravity.

 — Effective system damping matrix. This matrix[Deff]

represents a viscous damping model of the system

losses. It is a real, symmetric,  matrix.6! 6

 — Unit direction vector for applied force “j”.e j
 — Fourier transform of the magnitude of applied forceF̃j( )

“j”.

 — Matrix whose elements are components of the[Gi]

distance vector . This matrix is used to representri
cross-products, e.g.,  in matrix multiplica-ri ! F
tion form.

 — Matrix whose columns are the values of the transferH̃
j

functions between measured accelerations and the

“j”th applied force; each column corresponds to a

single frequency.

 — Matrix of transfer functions between measured accel-[H̃]

erations and all of the applied forces, a  matrix12 ! 3N
(12 accelerations, 3 applied forces, N frequencies).

See Eq. (13).

 — Vector of the transfer functions between theH̃c( k )

rigid-body accelerations and the applied forces, a 

 vector.6 ! 1
 — Matrix of the transfer functions between the rigid-[H̃c ]

body accelerations and all of the applied forces, a 

 matrix (3 applied forces, N frequencies). See6 ! 3N
Eq. (14b).

 — The real and imaginary parts of vector HR , H l
 See Eq. (19).H̃c( k ) .

 — Matrix of the transfer functions between the[H̃F ]

reaction forces at the mounts and all of the applied

forces, a  matrix (3 mounts, 3 applied forces, N9 ! 3N
frequencies). See Eq. (15b).

 — Column “n” of . See Eq. (15c).H̃F(", n) [H̃F ]

 — Identity matrix, here a  matrix.[I] 3! 3
 — Elements of the  symmetric, i.e. , massJ ij 3! 3 J ij  J ji

moment of inertia matrix.

 — Principal moment of inertia, .Jk k  1! 3
 — Rigid-body mass moment of inertia matrix, a [J] 3! 3

matrix.

 — System stiffness and equivalent inertia[Keff], [M]

matrices, respectively. Both are real symmetric 6! 6
matrices.

 — Orthogonal matrix whose columns are the principal[Q]

direction vectors corresponding to the principal

moments of inertia, a  matrix.3! 3
 — Principal direction vector corresponding to , a qk Jk

 vector.3! 1
 — Location of accelerometer in the body-fixed coordi-ra

nate system, a  vector. Four locations, denoted by3! 1
subscripts  and  are assumed.a,b,c d,

 — Location of mounting point “i” (  to 3) in body-ri i  1
fixed coordinate system, a  vector.3 ! 1

 — Vector of the translational and rotational displace-Rc
ments of the rigid-body relative to the inertial coordi-

nate system, a  vector.6 ! 1
 — Moments generated by forces on the rigid-body.T

 — Diagonal  matrices whose elements are [!], [!2 ] N !N
 and , respectively. k  k

2

1. INTRODUCTION

Commonly used experimental methods for determining

mass moments of inertia involve suspension of the body and

measurement of its period of oscillation about an axis

through its centroid.1-5 The Air Force uses a torsional pendu-

lum to measure human body mass moments of inertia about

three orthogonal axes, for use in the design of military

aircraft ejection seats.6 Automotive manufacturers require

principal moments of inertia for motor-gearbox assemblies,

and their direction vectors, in order to analyze the dynamic

behavior of their vehicles.

The principal moments of inertia  and  and theirJ1, J2 J3

direction vectors  and  are determined fromq1 , q2 q3 ,
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Two procedures that have the potential to reduce the time required to measure rigid-body mass moments of

inertia by a factor of five, are presented. These procedures estimate the mass moments of inertia of a rigid-body

from multiple-input, multiple-output (or multiple sets of single-input, multiple-output) vibration test data. The

procedures are alternatives to the trifilar pendulum method of measuring the mass moments of inertia of a rigid-

body. The first procedure described is the most direct, but requires that the forces on the test specimen at each of

the mount attach points be directly measured using dynamic force gauges. The least squares method is then

applied to an over determined set of equations involving only the six unique elements of the moment of inertia

matrix. The second procedure, which does not require measurement of mount forces, is based on a sum of scalar

equations (consisting of weighted vector norms) that eliminates the system damping matrix from consideration.

The least squares method is then applied to an over determined set of equations for the six unique elements of

the inertia matrix and the twenty-one unique elements of the system stiffness matrix.


