
1. INTRODUCTION

A century ago, students of Acoustics and Vibration

depended above all on Rayleigh’s superb treatise ‘The

Theory of Sound’ which had just appeared in an expanded

second edition 2. Yet in section 253 of this great work

Rayleigh brilliantly showed how consideration of just the

simplest problem in the nonlinear theory of sound posed an

enigma which it was quite impossible to resolve with the

knowledge then available. Existing suggestions for a resolu-

tion, incorporating those discontinuous waves or shock

waves which Mach 3 had photographed around bullets in

flight, appeared on Rayleigh’s analysis to contradict funda-

mental physical principles; in short, the ‘century of shock

wave dynamics’ had not yet begun.

In surveying the dynamics (rather than the whole physics)

of shock waves, space may be saved by concentrating on

waves propagated through a perfect gas with constant

specific heats in a ratio ; for which scientists since Laplace 4 
had appreciated how, in any sound wave, those changes of

pressure p and density  whose ratio is the square of the!
sound speed c must satisfy the adiabatic relationship
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(Here, subscript zero denotes undisturbed values.) On linear

theory sound is propagated at speed , whereas on nonlinearc0

theory higher pressures travel at an increased sound speed c,

amounting on a first approximation to
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where u, the gas velocity in the direction of propagation,

assumes on a linear approximation the familiar bracketed

form. But this propagation speed Eq. (2), relative to a fluid

which itself moves at velocity u, implies an absolute velocity

                            (3)c " u  c0 "
 "1

2 u

of wave travel. (For air, with  the excess wave speed  1.4,
is 1.2u, out of which just one-sixth arises from the increase

Eq. (2) in c while five-sixths is due to convection of sound at

the air velocity u.)

Although  expression  (3)  for  the  wave  speed  is  intro-

duced above by crude approximate arguments, Riemann’s

subtle mathematical analysis of 1859 had already proved it to

be absolutely accurate 5 for plane sound waves of any ampli-

tude propagated one-dimensionally into undisturbed fluid

under adiabatic conditions. Briefly, the relationship 

 is exact; the expressions for pressure andc  c0 "
1
2 # ! 1$u

density may be derived from c by Eqs. (1); and, most impor-

tant of all, each value of u is propagated at precisely the

speed Eq. (3).

These conclusions were well known to Rayleigh, who

recognised also their sensational implications. Figure 1

shows these in the case of a single pulse of positive excess

pressure, represented as an initial graph (solid line) of fluid

velocity u against distance. On a linear theory of

one-dimensional sound waves, each value of u would be

propagated at speed , so that the shape of the pulse wouldc0

remain unchanged when plotted (as here) against . Onx ! c0t
the exact nonlinear theory, however, each value of u is

propagated at speed  accordingly, after time t,c0 "
1
2 # " 1$u;

that value when plotted against  as in Fig. 1 has beenx ! c0t
shifted a distance  to the right. Small values of u

1
2 # " 1$ut

have hardly moved at all, while large values have moved

much more — allowing them, remarkably, to ‘catch up’ with

smaller values.

These distorted pulse shapes are shown in Fig. 1 (broken

lines) for a sequence of values of t until a time has been

reached when the pulse shape has a vertical tangent. Pulse
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The recent three-volume history ‘Twentieth Century Physics’ 1 includes my 118 page ‘Chapter 10. Fluid Dynam-

ics’ about a field where the 20th century’s first decade saw big breakthroughs in the analysis of nonlinear

problems for which the physicist’s standard perturbation methods break down — and which would later be

named singular perturbation problems. Besides the 1904 elucidation of boundary-layer structure by Prandtl,

these included the 1910 elucidation of shock-wave structure in complementary investigations by Rayleigh and

by Taylor. Subsequent advances in shock wave dynamics brought crucial new discoveries on the structure and

propagation of weak shocks, and also on shock-wave/boundary-layer interaction, both with major aeronautical

implications; along with still harder investigations into the structure and propagation of strong shock waves such

as appear in explosions and implosions and also around spacecraft re-entering the earth’s atmosphere. It may,

perhaps, be worth noting that questions which remain relatively simple for weak waves, like the nature of reflex-

ion and diffraction by a solid body, raise formidable and intriguing difficulties for strong shock waves.

In this introductory paper looking back over a century of shock wave dynamics, I highlight (i) key analytical

approaches for both weak and strong shock waves, (ii) beautiful and effective optical methods for use in wind

tunnels and shock tubes and (iii) powerful techniques for accurate shock capturing in computational fluid

dynamics.


