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Local faults can be produced in ball bearings during their manufacturing process. An efficient, fast and accurate
local fault detection method can help improve the quality of ball bearings. To overcome this problem, an intelligent
detection system for a ball bearing with the local faults is developed based on the NI LabVIEW software. This
system includes the determination of bearing fault parameters, signal acquisition, envelope analysis, time-domain
parameter analysis and bearing fault status modules. In this system, the frequency-domain feature method is based
on the envelope demodulation analysis, the effective statistical indexes, and the Pearson correlation coefficient.
The frequency-domain feature method is used to determine the threshold range for each fault level in the system.
This system can in turn be used to determine the fault location and sizes for the ball bearings. A case study for the
calculation and analysis for the frequency and time-domain acceleration is presented to predict the location and
size of the local faults in a ball bearing. The test data from the Case Western Reserve University Bearing Data
Center is used to verify the developed intelligent detection system for local faults in the ball bearing. The results
show that the proposed detection system can be used to detect the local fault in the ball bearings.

1. INTRODUCTION

Ball bearings are the key components of rotating machin-
ery systems. Ball bearings can ensure the stable operation
conditions of the system. However, different faults, includ-
ing local and distribution faults, may be produced during the
manufacturing process.1 Thus, an accurate and efficient detec-
tion method is very useful for detecting the faults in the ball
bearings. This work is given to present an intelligent detection
system for detecting the local faults in the ball bearings.

Many works were reported to study different detection
methods for the local faults in rolling element bearings. Song
et al., Cui et al., Guo et al., Liu et al., Wang et al., Dong et
al., and Moosavian et al. proposed the frequency-domain and
time-domain features to determine the operational status of the
bearing systems.2–8 Song et al., Wang et al., and Cui et al.
proposed some useful methods for diagnosing and analyzing
the local faults in the bearing systems.9–13 Zhao et al. pro-
posed some new methods for predicting the location and sizes
of the weak faults in the bearing systems.14, 15 Liu et al. pro-
posed some new dynamic modelling methods for the vibration
analysis of bearing systems with localized faults.16–18 Mishta
et al. used the envelope analysis and threshold wavelet de-
noising methods to detect the faults of rolling bearings.19, 20

This method can extract fault-related symptoms for the low
speed conditions. Ali et al. presented the artifcial Neural

Network bearing defects system based on the health index to
classify the bearing defects.21 Hoang et al. developed the au-
tomatic bearing fault detect system combining with convolu-
tional Neural Network and vibration image.22 This method did
not require any feature extraction techniques. Fan, Xie, and He
used LabVIEW, MATLAB and VC++ to develop the detection
systems for the local faults in the ball bearings. The systems
developed by Fan, Xie, and He are based on frequency and
time-domain vibration features.23–25 This detection systems
includes data collection, signal analysis, signal transmission,
and fault detection modules. Although the above system can
detect fault generation, they cannot detect the fault size range.
In practice, both the generation and size range should be de-
tected in order to classify the different faults that are generated
in the bearing system. The purpose of this work is to introduce
a system that can detect both the generation and size rang of
the local faults.

In this paper, an intelligent detection system for a ball bear-
ing with local faults is developed based on the NI LabVIEW
software. NI LabVIEW software includes bearing fault pa-
rameter determination, signal acquisition, envelope analysis,
time-domain parameter analysis and bearing fault status mod-
ules. The frequency-domain feature method is based on the en-
velope demodulation analysis, the effective statistical indexes,
and the Pearson correlation coefficient. The frequency-domain
feature is used to determine the threshold range for each fault
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Figure 1. A functional framework of the defect detection system software for
ball bearings.

level in the system. This system can be used to determine the
fault location and sizes. The input bearing geometrics can be
memorized in the system. A case study for the calculation and
analysis for the frequency- and time-domain accelerations is
presented to predict the location and size of the local fault in
the ball bearing. The test data from the Case Western Reserve
University Bearing Data Center is used to verify the developed
intelligent detection system for local faults in a rolling bearing.

2. AN INTELLIGENT DETECTION SYSTEM
FOR LOCAL FAULTS IN THE BALL
BEARINGS

The developed intelligent detection system for the local
faults in ball bearings included fault parameter determination,
signal acquisition, envelope analysis, time-domain parameter
analysis and bearing fault status. The functional framework of
the detection system is given in Fig. 1.

In the envelope analysis module, the characteristic frequen-
cies of the stable vibration signal of the tested bearing were
used to compare with those from the theoretical method.26 The
compared results were used to determine the inner race fault,
outer race fault, and ball fault. In the time-domain parameter
analysis module, the time-domain parameters, such as max-
imum value, peak-to-peak value, mean value, kurtosis, and
RMS value, were used to determine the fault size range based
on the defined threshold value in the detection system. More
details for the parameters used for different bearing fault cases
are listed in Table 1. If 60% of the listed parameters were lo-
cated in the defined threshold range, the fault size range was
determined. The main interface of the defect detection system
software for ball bearings is shown in Fig. 2.

2.1. Geometrics and Operational
Parameters of the Ball Bearing

The detection system was used to detect the faults in differ-
ent bearing types. Thus, the geometrics and operational param-
eters of the tested bearing types was entered into the detection
system. The rotational speed of the bearing was entered into
the detection system as well. When the geometrics and oper-
ational parameters of a new bearing type was entered into the
detection system, all of the parameters that had been entered
were stored in the system. The block diagram and front panel

Figure 2. The main interface of the defect detection system software for ball
bearings.

Figure 3. A block diagram for setting bearing information.

for setting bearing information are shown in Figs. 3 and 4, re-
spectively.

2.2. Signal Acquisition Module

In the signal acquisition module, the acceleration signal
from the tested bearing was collected. An accelerometer lo-
cated on the outer race of the tested bearing was used to obtain
the acceleration signal. The acceleration signal was orderly
processed by the amplification, anti-aliasing filtering, sampling
retention, and A/D conversion. Then, the processed signal was
entered into the detection system. The sampling clock was 1 s
in this system. The collected acceleration signal was then used
in the following modules. The front panel of the signal acqui-
sition module is shown in Fig. 5.

Figure 4. A front panel for setting bearing information.
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Figure 5. Front panel of signal acquisition module.

2.3. Envelope Analysis Module
The envelope analysis method was the main technique used

in the detection of faults in ball bearings. For a vibration signal
x(t), the equation processed by the Hilbert transfer method
was used.26

H[x(t)] =
1

π

∫
x(t− τ)

τ
dτ = x(t) · 1

πτ
. (1)

Then, the envelope signal of x(t) was determined by

A(t) =
√
x2(t) +H2[x(t)]. (2)

The bearing characteristic frequencies were obtained from the
envelope signal in Eq. (2). The characteristic frequencies in-
cluded the ball passing frequencies BPFO (for the outer race),
BPFI (for the inner race), and BSF (for the balls). More details
for the calculation method for the ball passing frequencies are
given by Smith, et al.26 The BFPO was determined by

BFPO =
nfr
2

(
1 − DW

Db
cosφ

)
, (3)

where fr was the speed of shaft, n was the number of balls, φ
was the contact angle, Dw was the ball diameter, and Db was
the pitch diameter. The BPFI was determined by

BFPI =
nfr
2

(
1 +

DW

Db
cosφ

)
. (4)

The BSF was determined by

BSF =
Dbfr
DW

[
1 −

(
DW

Db
cosφ

)2
]
. (5)

Since the skidding in the bearing and unstable input speed ap-
peared during the testing process, the characteristic frequen-
cies differed from the theoretical method.26 To overcome this
problem, the permissible frequency error (fw) around the fault
frequency (fd) was defined. This means that the maximum am-
plitude of the peak frequencies in the permissible frequency er-
ror range were defined as the amplitude of the fault frequency.
It was defined as

Adi(f) = max(A(f)),

ifd − 0.5fw ≤ f ≤ ifd + 0.5fw, (6)

whereAd(f) was the amplitudes of the fault frequency and the
harmonics in the envelope spectrum; A(f) was the amplitude
of the envelope spectrum; and i was 1, 2, 3,. . . Moreover, the

Figure 6. A front panel of frequency domain fault analysis module.

Figure 7. A front panel of frequency domain fault analysis module.

amplitude of the peak frequency in the envelope spectrum was
affected by the noise in the vibration signal, which may pro-
duce some misjudgment.27, 28 To obtain a more accurate result,
a parameter was used to improve the signal noise ratio, which
was determined by

s =
1
M

∑M
i=1Adi(f)√

1
N

∑N
j=1A

2
j (f)

, (7)

where M was the maximum factor of the fault frequency.
Since the amplitude at the multiplier was attenuated faster, M
generally took 2∼4; and N was the sample number.25

Based on the analysis results of the vibration signal of the
healthy and defective bearings, the threshold of the inner race
fault, outer race fault, and ball fault were determined. When
the parameter s was larger than the relative threshold, the cor-
responding fault case was determined. The front panel of
the frequency domain feature analysis module and the block
diagram of frequency-domain feature analysis are shown in
Figs. 6 and 7, respectively.

2.4. Time-Domain Parameter Analysis
Module

The characteristics of the vibration signals for different fault
sizes cases were different, which was used to determine the
fault size range.29, 30 The Pearson correlation coefficient (PCC)
was used to determine the effective time-domain statistical in-
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(a)

(b)

(c)

Figure 8. A block diagram of time-domain analysis module. (a) Inner race
fault detection system, (b) ball fault detection system, and (c) outer race fault
detection system.

dexes. It was defined by Liu, et al. as29, 30

ρ =

∑Nh

i=1(xi − x̄)(yi − ȳ)√∑Nh

i=1(xi − x̄)2
√∑Nh

i=1(yi − ȳ)2
, (8)

where xi and yi were the feature and label values.
The values x̄ and ȳ were the mean values for x and
y. In this case, x = [x1, x2, . . . , xNh

]T and y =
[0, 0.0248, 0.0497, 0.0745, 0.0993]T . The value y represented
the healthy, slight, moderate, severe, and very severe faults,
whose values were obtained by using the PCC.30 This method
was based on the testing data from the Case Western Reserve
University data.31 As discussed by Liu, et al., 5 or 6 statistical
indexes were used to determine the fault size range.30 Accord-
ing to the different fault size ranges including healthy, slight,
moderate, severe, and very severe cases, different threshold
values were used. In this detection system, different statisti-
cal indexes were used for different fault cases. The effective
statistical indexes used in the detection system are listed in Ta-
ble 1.

According to the fault location, different effective statisti-
cal indexes were used to determine the fault size range. The

Table 1. Effective statistical indexes for different defect location cases

Fault location Effective statistical indexes

Inner race

Maximum value, peak-to-peak value
(PTP), median absolute deviation,
standard deviation, mean absolute

deviation, RMS, Peak/RMS;

Ball

Maximum value, PTP value,
standard deviation, median absolute
deviation, mean absolute deviation,

RMS, Peak/RMS;

Outer race
Maximum value, PTP value,

impulse factor, crest factor, kurtosis.

Figure 9. Diagnostic results.

block diagram of time-domain analysis module for the inner
race fault detection system, ball fault detection system, and
outer race detection system are shown in Fig. 8. The interface
for the diagnostic results are shown in Fig. 9. In the detection
system, the thresholds of the effective statistics used in the de-
tection system changed with each bearing type. This means
that the thresholds of the effective statistics for each bearing
type were calculated in the detection system. Moreover, the
system was used to detect the fault location and sizes for roller
bearings since the relative methods for the ball bearings and
roller bearings were similar.

3. RESULTS ANALYSIS

3.1. Fault Location Detection
To validate the detection system, the testing data in

Loparo under different operational conditions are used here.31

The sample frequency is 12 K. The load and speed are
735 W/1772 r/min and 1470 W/1772 r/min, respectively.
For the case of 735 W/1772 r/min, the healthy, inner race
fault and outer race fault cases are used. For the case of
1470 W/1772 r/min, the ball fault case is used. The studied
accelerations and their envelope spectra are shown in Fig. 10.
In Fig. 10, β represents the ratio of the fault size to the track
width in order to indicate the degree of fault. Note, the rela-
tive bearing fault frequencies (BPFO for outer race fault, BPFI
for inner race fault, and BSF for ball fault) for the three fault
cases are clearly observed in the envelope spectra. When the
fault location is determined, the threshold of the parameter s
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10. Time and frequency-domain vibration signals used for different
cases of defect location.

is used to determine the fault size range. Here, based on the
testing date in Loparo, the thresholds of s for the inner race
fault, ball fault, and outer race fault are defined as 12, 6.5, and
12, respectively.31

For Fig. 10, (a) shows the acceleration of the healthy bear-
ing, (b) shows the envelope spectrum for the healthy bearing,
(c) show the acceleration of the inner race fault, (d) shows the
envelope spectrum for the inner race fault, (e) shows the accel-
eration of the ball fault, (f) shows the envelope spectrum for
the ball fault, (g) shows the acceleration of the outer race fault,
and (h) shows envelope spectrum for the outer race fault.

As shown in Fig. 10, the RMS value of the ball fault case
is slightly larger than that of the healthy case. The reason for
the fault case having a slightly larger value is that the ball fault
region may be not located in the contact zone due to its spin-
ning. Thus, it is difficult to determine the ball fault when only
the RMS value is used. The RMS value of the inner and outer
race fault cases are larger than that of the healthy case. Thus,
the amplitude of peak frequencies and the relative harmonics
in their envelope spectra are larger than those of the healthy
case. Moreover, there are some clear peak frequencies in the
envelope spectrum of the healthy case. If the amplitudes of the
peak frequencies in the envelope spectrum are only used to de-

(a)

(b)

(c)

Figure 11. Vibration signals for three bearing defect cases. (a) Inner race
fault, (b) ball fault, and (c) outer race fault.

termine the fault case, some misjudgments may be produced.
The detection results of the cases in Fig. 10 are shown in

Table 2. Note that the value of s for the healthy case is smaller
than the above defined threshold. The variable s can be defined
as the healthy bearing. The values of s for the inner and outer
race fault cases are larger than the above defined threshold.
They can be defined as the bearings with inner and outer race
faults, respectively. For the ball fault case, the value of s is
larger than the above defined threshold and that of the healthy
case. However, they are smaller than those of the inner and
outer race fault cases. Thus, it can be defined as a bearing with
a ball fault, a slight inner or outer race fault case.

Moreover, 17 cases from31 are used to show the detection
results, as shown in Table 3. Here, four bearing fault types
with different loads, including healthy bearing (cases 1 to 4),
inner race fault (cases 5 to 8), ball fault (cases 9 to 12), and
outer race fault (cases 13 to 17) have been listed. Normal is
the healthy bearing, I-Defect is the bearing with the inner race
fault, B-Defect is the bearing with the ball fault, and O-Defect
is the outer race fault. Note that all cases can be detected by
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Table 2. Recognition results of bearing defect positions

Fault
location

Fault frequency(Hz)
RMS
/dB

Fault size range parameter
Theoretical

results
Test

results
Inner race

si

Ball
sb

Outer race
so

Healthy - - 0.0664 2.66 1.71 3.16
Inner race 159.9 159.8 0.4418 19.93 3.32 2.57

Ball 137.5 138.2 0.1291 8.47 9.05 10.76
Outer race 105.8 106.0 0.5614 0.77 0.75 13.74

Table 3. Detection results of the defect positions of bearing 6025.

Case Fault status SI SB SO
Detection

results
W/r/min

1 Healthy bearing 4.74 2.88 5.07 Normal 2205/1730
2 Healthy bearing 4.44 4.35 5.29 Normal 1470/175
3 Healthy bearing 2.30 5.86 5.10 Normal 735/1772
4 Healthy bearing 2.66 1.71 3.16 Normal 0/1797
5 Inner race fault 20.08 2.06 1.29 I-Defect 2205/1730
6 Inner race fault 19.93 3.32 2.75 I-Defect 1470/175
7 Inner race fault 17.58 1.61 1.21 I-Defect 735/1772
8 Inner race fault 16.87 1.33 2.27 I-Defect 0/1797
9 Ball fault 11.01 12.45 6.38 B-Defect 2205/1730
10 Ball fault 3.99 9.29 6.27 B-Defect 1470/175
11 Ball fault 8.47 9.05 10.76 B-Defect 735/1772
12 Ball fault 4.50 7.30 6.29 B-Defect 0/1797
13 Outer race fault 1.97 1.68 16.08 O-Defect 735/1772
14 Outer race fault 6.17 1.54 23.82 O-Defect 2205/1730
15 Outer race fault 0.77 0.75 13.74 O-Defect 0/1772
16 Outer race fault 5.25 1.78 22.81 O-Defect 1470/175
17 Outer race fault 1.80 1.30 16.10 O-Defect 735/1772

Table 4. Range of statistical indexes of inner defects for each defect level.

Fault
location

Statistical
indexes

Healthy Slight Moderate Severe
Very

severe

Inner race

Maximum value <0.40 0.40—1.80 1.80—2.20 2.20—3.80 ≥3.80
PTP value <0.80 0.80—3.30 3.30—4.20 4.20—7.20 ≥7.20

Standard deviation <0.08 0.20—0.35 0.08—0.20 0.35—0.6 ≥0.6
Median absolute deviation <0.06 0.15—0.30 0.06—0.15 0.30—0.50 ≥0.50
Mean absolute deviation <0.06 0.15—0.30 0.06—0.15 0.30—0.50 ≥0.50

Peak/RMS <0.08 0.20—0.35 0.08—0.20 0.35—0.60 ≥0.60

Inner race

Maximum value <0.36 0.36—0.75 0.75—2.30 2.30—3.50 ≥3.50
PTP value <0.70 0.70—1.50 1.50—5.00 5.00—7.00 ≥7.00

Standard deviation <0.08 0.08—0.15 0.15—0.18 0.18—0.40 ≥0.40
Median absolute deviation <0.06 0.11—0.12 0.06—0.11 0.12—0.30 ≥0.30
Mean absolute deviation <0.06 0.11—0.12 0.06—0.11 0.12—0.30 ≥0.30

Peak/RMS <0.08 0.08—0.15 0.15—0.18 0.18—0.50 ≥0.50

Outer race

Maximum value <0.35 1.00—3.70 0.35—1.00 3.70—6.70 ≥6.70
PTP value <0.70 1.40—7.50 0.70—1.40 7.5—13.5 ≥13.5
Kurtosis <3.00 3.80—8.00 3.00—3.80 8.00—24.00 ≥24.00

Crest factor <5.20 5.20—5.60 5.60—7.10 7.10—12.00 ≥12.00
Impulse factor <7.00 8.40—9.20 7.00—8.40 9.20—25.00 ≥25.00

Table 5. Statistical indexes of vibration signals of the severe defect in the inner ring.

Statistical
indexes

Maximum
value

PTP
value

Standard
deviation

Median
absolute
deviation

Mean
absolute
deviation

Peak/RMS

si 3.68 6.97 0.44 0.30 0.30 0.44
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Table 6. Statistical indexes of vibration signals of the very severe defect in the ball.

Statistical
indexes

Maximum
value

PTP
value

Standard
deviation

Median
absolute
deviation

Mean
absolute
deviation

Peak/RMS

sb 11.67 21.77 2.03 1.53 1.53 2.03

Table 7. Statistical indexes of vibration signal of the slight defect in the outer ring.

Statistical
indexes

Maximum
value

PTP
value

Kurtosis
Crest
factor

Impulse
factor

so 3.11 6.12 7.85 5.43 8.86

the proposed detection system. SI indicates the degree of inner
ring defect, SB indicates the degree of ball defect, and SO indi-
cates the degree of outer ring defect. The thresholds for differ-
ent systems are human-designed. The accuracy of the detec-
tion system is determined by the designed calculated method.
Thus, the accuracy of detection does not depend on the human
factor.

3.2. Fault Size Range Detection

According to the 17 studied fault cases from,31 the thresh-
olds of the effective statistical indexes used in the proposed
detection system are listed in Table 4. The details of the calcu-
lation method are given in.30

Three fault cases, including inner race, ball, and outer race
faults in Fig. 11 are used to validate the fault size range de-
tections module. The detection results are listed in Tables 5 to
7, respectively. As shown in Table 5, the 6 statistical indexes
are larger than the above defined threshold for the severe inner
race faults; it can be defined as the bearing with the severe in-
ner race fault. As shown in Table 6, the 6 statistical indexes are
larger than the above defined threshold for the severe ball fault;
it can be defined as the bearing with the severe ball fault. As
shown in Table 7, the 5 statistical indexes are larger than the
above defined threshold for the slight outer race fault; it can
be defined as the bearing with the slight outer race fault. The
above results can provide validation for the proposed detection
system.

4. CONCLUSIONS

In this paper, an intelligent detection system for a ball bear-
ing with local faults is developed based on NI LabVIEW
software. This system includes the bearing fault parameters
for determination, signal acquisition, envelope analysis, time-
domain parameter analysis and bearing fault status modules.
A case study for the calculation and analysis for the frequency
and time-domain accelerations is presented to predict the lo-
cation and size of the local fault in the ball bearing. The test
data from the Case Western Reserve University Bearing Data
Center is used to verify the developed intelligent detection sys-
tem for local faults in a ball bearing. The results show that the
proposed detection system can be used to detect the local fault
in ball bearings. This study can provide some guidance for
developing an efficient, fast and accurate local fault detection
system for the quality of ball bearings.

ACKNOWLEDGEMENTS

The authors are grateful for the National Natural Science
Foundation of China (No. 51605051), Chongqing Research
Program of Basic Research and Frontier Technology (No.
cstc2017jcyjAX0202).

REFERENCES
1 J. Liu, Y. Shao. Overview of dynamic modelling

and analysis of rolling element bearings with localized
and distributed faults, Nonlinear Dynamics. 2018, 93(4):
1765–1798. https://dx.doi.org/10.1007/s11071-018-4314-y

2 L. Y. Song, H. Q. Wang, P. Chen. Vibration based
intelligent fault diagnosis for roller bearings in low-
speed rotating machinery, IEEE Transactions on Instru-
mentation and Measurement, 2018, 67(8): 1887-1899.
https://dx.doi.org/10.1109/TIM.2018.2806984

3 L. L. Cui, Y. Zhang, F. B. Zhang, J. Y. Zhang, S.
C. Lee. Vibration response mechanism of faulty outer
race rolling element bearings for quantitative analysis,
Journal of Sound and Vibration, 2016, 364: 67-76.
https://dx.doi.org/10.1016/j.jsv.2015.10.015

4 L. Guo, N. P. LI, F. Jia, Y. G. Lei, J. Lin. A recurrent
neural network based health indicator for remaining use-
ful life prediction of bearings, Neurocomputing, 2017, 240:
98-109. https://dx.doi.org/10.1016/j.neucom.2017.02.045

5 J. Liu, Y. Shao. Dynamic modeling for rigid ro-
tor bearing systems with a localized defect consider-
ing additional deformations at the sharp edges, Jour-
nal of Sound and Vibration, 2017, 398(23):84-102.
https://dx.doi.org/10.1016/j.jsv.2017.03.007

6 Y. Wang, T. W. Peter, B. P. Tang, Y. Qin, D.
Lei, T. Huang. Kurtogram manifold learning
and its application to rolling bearing weak sig-
nal detection, Measurement, 2018, 127: 533-545.
https://dx.doi.org/10.1016/j.measurement.2018.06.026

7 S. Dong, X. Xu, J. Luo. Mechanical fault diagnosis method
based on LMD Shannon entropy and improved fuzzy C-
means clustering, International Journal of Acoustics and Vi-
bration, 2017, 22(2): 211-217.

8 A. Moosavian, S. M. Jafari, M. Khazaee, H. Ahmadi. A
comparison between ann, svm and least squares svm: ap-
plication in multi-fault diagnosis of rolling element bear-
ing, International Journal of Acoustics and Vibration, 2018,
23(4): 432-440.

International Journal of Acoustics and Vibration, Vol. 24, No. 2, 2019 371

http://dx.doi.org/10.1007/s11071-018-4314-y
http://dx.doi.org/10.1109/TIM.2018.2806984
http://dx.doi.org/10.1016/j.jsv.2015.10.015
http://dx.doi.org/10.1016/j.neucom.2017.02.045
http://dx.doi.org/10.1016/j.jsv.2017.03.007
http://dx.doi.org/10.1016/j.measurement.2018.06.026


J. Liu, et al.: AN INTELLIGENT DETECTION SYSTEM DEVELOPMENT FOR LOCAL FAULTS IN A BALL BEARING

9 L. Y. Song, H. Q. Wang , P. Chen. Step-by-step Fuzzy
Diagnosis Method for Equipment Based on Symptom
Extraction and Trivalent Logic Fuzzy Diagnosis Theory,
IEEE Transactions on Fuzzy Systems, 2018, 3467 - 3478.
https://dx.doi.org/10.1109/TFUZZ.2018.2833820

10 H. Q. Wang, S. Li, L.Y. Song, L. L. Cui. A
novel convolutional neural network based fault recog-
nition method via image fusion of multi-vibration-
signals, Computers in Industry, 2019, 105: 182-190.
https://dx.doi.org/10.1016/j.compind.2018.12.013

11 L. L. Cui, J. F. Huang, F. B. Zhang, F. L. Chu. HVS-
RMS localization formula and localization law: Localiza-
tion diagnosis of a ball bearing outer ring fault, Mechani-
cal Systems and Signal Processing, 2019, 120(1): 608-629.
https://dx.doi.org/10.1016/j.ymssp.2018.09.043

12 L. L. Cui, X. Wang, Y. G. Xu, H. Jiang, J. P.
Zhou. A novel Switching Unscented Kalman Fil-
ter method for remaining useful life prediction of
rolling bearing, Measurement, 2019, 135: 678-684.
https://dx.doi.org/10.1016/j.measurement.2018.12.028

13 L. L. Cui, X. Wang, H. Q. Wang, N. Wu. Improved
Fault Size Estimation Method for Rolling Element Bearings
Based on Concatenation Dictionary, IEEE Access, 2019,
https://dx.doi.org/10.1109/ACCESS.2019.2899036

14 M. Zhao, J. Lin, Y. Miao, X. Xu. Detection and re-
covery of fault impulses via improved harmonic prod-
uct spectrum and its application in defect size estima-
tion of train bearings, Measurement, 2016, 91: 421-439.
https://dx.doi.org/10.1016/j.measurement.2016.05.068

15 M. Zhao, X. Jia. A novel strategy for signal denois-
ing using reweighted SVD and its applications to weak
fault feature enhancement of rotating machinery, Mechan-
ical Systems and Signal Processing, 2017, 94: 129-147.
https://dx.doi.org/10.1016/j.ymssp.2017.02.036

16 J. Liu, Y. Shao, T. C. Lim. Vibration anal-
ysis of ball bearings with a localized defect
applying piecewise response function, Mecha-
nism and Machine Theory, 2012, 56: 156-169.
https://dx.doi.org/10.1016/j.mechmachtheory.2012.05.008

17 J. Liu, C. Tang, Y. Shao. An innovative dynamic
model for vibration analysis of a flexible roller bear-
ing, Mechanism and Machine Theory, 2019, 135: 27-39.
https://dx.doi.org/10.1016/j.mechmachtheory.2019.01.027

18 J. Liu, Y. Shao. An improved analytical model
for a lubricated roller bearing including a local-
ized defect with different edge shapes, Journal of
Vibration and Control, 2018, 24(17): 3894-3907.
https://dx.doi.org/10.1177/1077546317716315

19 C. Mishra, A. K. Samantaray, G. Chakraborty. Rolling el-
ement bearing fault diagnosis under slow speed operation
using wavelet de-noising, Measurement, 2017, 103:77-86.
https://dx.doi.org/10.1016/j.measurement.2017.02.033

20 C. Mishra, A. K. Samantaray, G. Chakraborty. Rolling
element bearing defect diagnosis under variable
speed operation through angle synchronous aver-
aging of wavelet de-noised estimate, Mechanical
Systems & Signal Processing, 2016, 72-73:206-222.
https://dx.doi.org/10.1016/j.ymssp.2015.10.019

21 J. B. Ali, N. Fnaiech, L. Saidi, et al. Application of
empirical mode decomposition and artificial neural net-
work for automatic bearing fault diagnosis based on vi-
bration signals, Applied Acoustics, 2015, 89(3):16–27.
https://dx.doi.org/10.1016/j.apacoust.2014.08.016

22 D. T. Hoang, H. J. Kang. Rolling Element Bear-
ing Fault Diagnosis using Convolutional Neural Network
and Vibration Image, Cognitive Systems Research, 2018.
https://dx.doi.org/10.1016/j.cogsys.2018.03.002

23 B. An. Research and development of bearing vibration mea-
suring instrument, Master thesis, Dalian University of Tech-
nology, Dalian, 2013.

24 T. W. Xie. Research on ball bearing vibration experiment
and its analysis, Master thesis, Dalian University of Tech-
nology, Dalian, 2013.

25 Z. Z. He, Y. X. Chen, M. H. Shao, X. D. Xu. On-line de-
tection system for defect of rolling element bearings based
on LabView, Instrument Technique and Sensor, 2017, 7:
72—75.

26 W. A. Smith, R. B. Randall. Rolling element bear-
ing diagnostics using the Case Western Reserve
University data: A benchmark study, Mechani-
cal Systems and Signal Processing, 2015, 64—65.
https://dx.doi.org/10.1016/j.ymssp.2015.04.021

27 Z. Z. He, Y. X. Chen, M. H. Shao. On-line detection method
for scoring defects on rolling surface of ball bearings, Bear-
ing, 2018, 3: 55—60.

28 X. H. Liang, Z. L. Liu, J. Pan, M. J. Zuo. Spur gear tooth
pitting propagation assessment using model-based analysis,
Chinese Journal of Mechanical Engineering, 2017, 30(6):
1369—1382. https://dx.doi.org/10.1007/s10033-017-0196-
z

29 Z. L. Liu, M. J. Zuo, H. B. Xu. Fault diagnosis for plan-
etary gearboxes using multi-criterion fusion feature selec-
tion framework, Journal of Mechanical Engineering Sci-
ence, 2013, 227(9): 2064-2076.

30 J. Liu, Z. Xu, L. Zhou, W. Yu, Y. Shao. A sta-
tistical feature investigation of the spalling prop-
agation assessment for a ball bearing, Mecha-
nism and Machine Theory, 2019, 131: 336-350.
https://dx.doi.org/10.1016/j.mechmachtheory.2018.10.007

31 K. A. Loparo. Bearings Vibration Data Set, [EB/OL], Case
Western Reserve University, 2008.

372 International Journal of Acoustics and Vibration, Vol. 24, No. 2, 2019

http://dx.doi.org/10.1109/TFUZZ.2018.2833820
http://dx.doi.org/10.1016/j.compind.2018.12.013
http://dx.doi.org/10.1016/j.ymssp.2018.09.043
http://dx.doi.org/10.1016/j.measurement.2018.12.028
http://dx.doi.org/10.1109/ACCESS.2019.2899036
http://dx.doi.org/10.1016/j.measurement.2016.05.068
http://dx.doi.org/10.1016/j.ymssp.2017.02.036
http://dx.doi.org/10.1016/j.mechmachtheory.2012.05.008
http://dx.doi.org/10.1016/j.mechmachtheory.2019.01.027
http://dx.doi.org/10.1177/1077546317716315
http://dx.doi.org/10.1016/j.measurement.2017.02.033
http://dx.doi.org/10.1016/j.ymssp.2015.10.019
http://dx.doi.org/10.1016/j.apacoust.2014.08.016
http://dx.doi.org/10.1016/j.cogsys.2018.03.002
http://dx.doi.org/10.1016/j.ymssp.2015.04.021
http://dx.doi.org/10.1007/s10033-017-0196-z
http://dx.doi.org/10.1007/s10033-017-0196-z
http://dx.doi.org/10.1016/j.mechmachtheory.2018.10.007

	Introduction
	An intelligent detection system for local faults in the ball bearings
	Geometrics and Operational Parameters of the Ball Bearing
	Signal Acquisition Module
	Envelope Analysis Module
	Time-Domain Parameter Analysis Module

	Results analysis
	Fault Location Detection
	Fault Size Range Detection

	Conclusions
	REFERENCES

