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Adding a “transition layer” could further improve the dissipation ability of the original constrained damping struc-
ture to the external vibration. At the same time, the addition of the transition layer brings many difficulties in
establishing the model and acquiring the relevant characteristics of the• structure. Based on the shear dissipating
energy assumption and the Hamilton principle, the finite element model of the transition constrained damping
beam is established. On the basis of this reasonable assumption, the whole derivation process is simplified and
easy to read by regularizing the element stiffness and mass matrix, and the expression of loss factor and natural
frequency of damping beam is obtained. In order to verify the correctness of the model, the computed results are
compared with the analytical solution, and both are found to be in good agreement. Taking the cantilever damping
beam as an example, the influence of the material choice of the transition layer and the structural parameters on
the natural frequency and the loss factor of the structure are discussed. The results of this paper would lay a good
foundation for further optimization and practical engineering application.

1. INTRODUCTION

The traditional three-layer constrained damping beam
mainly depends on the longitudinal shear and transverse ten-
sile deformation of viscoelastic damping material to dissipate
the external vibration energy.1 However, its damping effect in
practical engineering applications is often limited to a certain
extent. To solve this problem, researchers from all over the
world have presented some methods from different aspects.
For example, Lepoittevin et al. designed the outermost con-
strained layer with some segments, and the segment numbers
and distribution were analysed.2 Kumar et al. used the piezo-
electric material to replace the traditional metal materials of
constrained layer, so the active control was applied into the
sandwich structure plate to improve of the energy dissipation
effect of the whole structure.3 In addition, a transition con-
strained damping structure was presented, in which the ”tran-
sition layer” was added between the base and viscoelastic lay-
ers, the related results showed that the longitudinal shear de-
formation of the viscoelastic layer could be further increased
by adding the transition layer, and thus the desired damping
characteristics was achieved.4 Figure 1 shows the structure of
transition constrained damping beam (TCDB).

At present, there are two hypotheses about the energy dis-
sipation of damping structure: one is shear deformation and
the other is tensile deformation. However, which occupies
dominant position is still controversial. According to the re-
lated literature, most of the studies employed the shear de-
formation hypothesis. For shear deformation, the analytical
method and finite element method are usually used as the main
analysis means.5 For example, Kerwin established the the-
oretical model of a three-layer beam based on the complex
modulus method for the first time; Ditaranto considered the
shear effect of a viscoelastic layer and established the sixth-

order differential equation of a passive constrained damping
beam (PCLD).6, 7 Thereafter, Rao analysed the natural fre-
quency and the loss factor of the PCLD beam under different
boundary conditions.8 The semi-analytical solution of a three-
layer damping structure was obtained by Tang et al., using the
strip transfer function method.9 Although the exact solution of
a damping structure can be obtained theoretically, the general
solution of high-order differential equation is rather difficult,
and its solution depends on simple structure and special bound-
ary conditions, which leads to some limitations in engineering
application.10 To overcome these shortcomings, the finite el-
ement method is used to analyse the related characteristics of
damping structures. For example, a finite element model of
three-layer sandwich structure was established for the dynamic
analysis by Johnson et al.; Sainsbury et al. constructed a PCLD
beam finite element model through the Galerkin orthogonal
function to reduce the amount of calculation and improve the
calculation efficiency.11, 12 In addition, Deng et al. made the
dynamic analysis of PCLD plate by using the GHM model.13

However, it is easy to find that the above-mentioned studies
mainly focus on the three-layer constrained damping structure.
For the transition constrained damping structure, Zhang et al.
used the complex stiffness method to obtain the structure loss
factor and discussed the influence of transition layer laying po-
sition.14 However, the solution of this method must be repeated
many times, so it will increase the computational complex-
ity of the whole calculation process. At the same time, this
method can only get the loss factor of the structure, but the
natural frequency of the structure cannot be obtained. In ad-
dition, that research gave the dynamic response of TCDB, but
the results were effective only when the boundary conditions
of TCDB was that the one end of the base layer was fixed, and
the remaining layers remained free.4 And the research only
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Figure 1. Schematic drawing of TCDB.

discussed the influence of transition layer parameters on the
behaviour of the whole structure, but the rest parameters of the
other layers were not discussed.4

In order to compensate the lack of the present research about
the transition constrained damping beam, this current paper es-
tablished the finite element model of TCDB. During the deriva-
tion process, the viscoelastic layer and transition layer are as-
sumed to only produce the longitudinal shear deformation and
the rotary inertia of each layer are ignored. However, due to
the adding of the transition layer, it will bring about a lot of
inconvenience of the whole formula derivation of the model,
so this paper took the method of making the element stiffness
and mass matrix become more regular in order that the whole
expressions got more concise and clear. At the same time, the
correctness of the model was verified, the shear modulus and
material loss factor of transition layer were discussed, the in-
fluences of the thickness of each layer on the natural frequency
and the loss factor of TCDB were also discussed. The results in
this paper have a certain guiding significance to the application
of the damping structure in actual engineering.

2. FINITE ELEMENT MODEL OF TCDB

2.1. Model Assumptions

In order to facilitate the construction of TCDB finite element
model, this paper made the following assumptions: (1) the
compression deformation along with the thickness of TCDB
was neglected, that is to say, each layer had the same deflec-
tion; (2) the viscoelastic layer and transition layer only pro-
duced longitudinal shear deformation; (3) the effect of the mo-
ment of inertia of each layer was ignored; (4) each layer was
pasted firmly, no relative sliding produces and the displace-
ment between all layers was continuous; (5) the deformation
was limited to the scope of linear viscoelasticity.

2.2. Kinematics Relations

The geometry and deformation relationship of TCDB is
shown in Fig. 2. Here, the dotted line represents the neu-
tral surface of each layer: ∂w/∂x was the rotation angle of
the transition constrained damping beam, ψ denoted the shear
angle of the transition layer, γ was the shear angle of the
viscoelastic layer. The set ui (i = b, s, v, c) denoted the
displacements of the base layer, transition layer, viscoelastic
layer, and constrained layer in the x-direction. Respectively,
hi(i = b, s, v, c) was the thicknesses of each layer.

According to Fig. 2 and the classic Euler Bernoulli beam
theory,15 the displacement in the x-direction for the transition

Figure 2. Geometric and deformation of TCDB.

layer and viscoelastic layer were given as follows:{
us = ub − (hb+hs

2 )∂w∂x
uv = uc + (hv+hc

2 )∂w∂x
. (1)

Based on Hooke’s law and the axial force balance condition
of TCDB,16, 17 the shear angles of the transition layer and vis-
coelastic layer were expressed as:

γ =

[
(uc − ub)

hs
+ (1 +

hc + 2hv + 2yb
2hs

)
∂w

∂x

]
·
(

1

hv/hs +Gv/Gs

)
ψ =

[
(uc − ub)

hs
+ (1 +

hc + 2hv + 2yb
2hs

)
∂w

∂x

]
·
(

Gv/Gs
hv/hs +Gv/Gs

)
; (2)

where yb represented the distance from the upper surface of
the constrained layer to the neutral surface of the TCDB. In
general, it could be replaced by hb/2.

2.3. Shape Function
For the transition constrained damping beam, the beam el-

ement with a one-dimensional two node (i, j) was used. The
beam element length was denoted with l, each node had four
degrees of freedom (w, θ, uc, ub), respectively. Among the
four degrees of freedom, w was the longitudinal displacement
of TCDB (i. e. deflection), θ was the rotation angle of cross
section, uc was the axial displacement of the constrained layer,
and ub was the displacement of the base layer. The node dis-
placement vector for beam element was as follows:10

{∆e} = {wi θi uci ubi wj θj ucj ubj}T . (3)

The deflection w is denoted with the Hermite shape func-
tion, and the axial displacements of uc, ub were given by the
Lagrange shape function. Therefore, the shape function was as
follows: 

w = a0 + a1ξ + a2ξ
2 + a3ξ

3

ub = b0 + b1ξ
uc = c0 + c1ξ

; (4)
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where ξ = x/l, and the displacement of each element in the
beam element could be defined as:

{∆} = [w θ uc ub]
T

= N {∆e} ; (5)

where N =
[
NT
w NT

θ NT
uc
NT
ub

]T
, N was a 4× 8 matrix and

each component was defined as in Eq (6).
Therefore, the 4 degrees of freedom of the beam element

were written in a shape function as follows:

w = [Nw] {∆e} , θ = [Nθ] {∆e} ,
uc = [Nuc

] {∆e} , ub = [Nub
] {∆e} . (7)

At the same time, the x-direction displacement and shear
angle of the transition layer and viscoelastic layer could be ex-
pressed with the shape function as follows:

us = [Ns] {∆e} , uv = [Nv] {∆e} ,
ψ = [Nψ] {∆e} , γ = [Nγ ] {∆e} . (8)

In the equation (8), Ns, Nv , Nψ, Nγ were defined as fol-
lows:

Ns = [Nub
]−
(
hb + hs

2

)
[Nθ] ;

Nv = [Nuc ] +

(
hc + hv

2

)
[Nθ] ;

Nψ =

[
([Nc]− [Nb])

hs
+ (1 +

hc + 2hv + 2yb
2hs

) [Nθ]

]
·
(

Gv/Gs
hv/hs +Gv/Gs

)
;

Nγ =

[
([Nc]− [Nb])

hs
+ (1 +

hc + 2hv + 2yb
2hs

) [Nθ]

]
·
(

1

hv/hs +Gv/Gs

)
. (9)

2.4. Beam Element Stiffness Matrix
The stiffness matrix of the beam element could be obtained

by the energy method. The total potential energy U of the
beam element was equal to the sum of the bending potential
Ubc, Ubb, tensile potential Utc, Utb of the constraining layer
and the base layer, and the shear potential Usv , Uss of the vis-
coelastic layer and the transition layer. That is, the total poten-
tial energy U of the beam element could be expressed as:10

U = [Ubc] + [Utc] + [Ubb] + [Utb] + [Usv] + [Uss] ; (10)

where:

Ubi =
1

2
EiIi

∫ l

0

(
∂2w

∂x2

)2

dx =
1

2
{∆e}T [Kbi] {∆e} ;

Uti =
1

2
EiAi

∫ l

0

(
∂ui
∂x

)2

dx =
1

2
{∆e}T [Kti] {∆e} ;

Uss =
1

2
GsAs

∫ l

0

ψ2dx =
1

2
{∆e}T [Ks] {∆e} ;

Usv =
1

2
GvAv

∫ l

0

γ2dx =
1

2
{∆e}T [Kv] {∆e} ; (11)

where Ei, Ai, Ii(i = c, b) denoted the Young’s modulus,
cross-sectional area, and moment of inertia of the constrained
layer and the base layer, respectively. Ai and Gi(i = s, v)
were the cross-sectional area and shear modulus of the transi-
tion layer and viscoelastic layer, respectively. Here, Gi is usu-
ally expressed as a plural form. Therefore, through the Eq (10),
beam element stiffness could be expressed as:

[Kbi] =
EiIi
l3

∫ 1

0

[
∂2Nw
∂ξ2

]T [
∂2Nw
∂ξ2

]
dξ;

[Kti] =
EiAi
l

∫ 1

0

[
∂Nui

∂ξ

]T [
∂Nui

∂ξ

]
dξ;

[Ks] = GsAsl

∫ 1

0

[Nψ]
T

[Nψ] dξ;

[Kv] = GvAvl

∫ 1

0

[Nγ ]
T

[Nγ ] dξ; (12)

where [Kbi], [Kti] were the bending and extensional stiffness
matrices of the constrained layer and the base layer, [Ks], [Kv]
were the shear stiffness matrix of the viscoelastic layer and
the transition layer. So, the total stiffness matrix of the beam
element was:

[Ke] = [Kbc] + [Ktc] + [Kbb] + [Ktb] + [Ks] + [Kv] . (13)

2.5. Beam Element Mass Matrix
The total kinetic energy of beam element was expressed

as:10

T = [Tbc] + [Ttc] + [Tbb] + [Ttb]

+ [Tbs] + [Tts] + [Tbv] + [Ttv] ; (14)

where Tbc, Tbb were the bending kinetic energy and Ttc, Ttb
were the extensional kinetic energy of the constrained layer
and the base layer. The variables Tbs, Tbv were the bending
kinetic energy and Tts, Ttv were the extensional kinetic en-
ergy of the viscoelastic layer and the transition layer. And each
component of the total kinetic energy was given by:

Tbi =
1

2
ρiAi

∫ l

0

(
∂w

∂t

)2

dx =
1

2

{
∆̇e
}T

[Mbi]
{

∆̇e
}

Tti =
1

2
ρiAi

∫ l

0

(
∂uc
∂t

)2

dx =
1

2

{
∆̇e
}T

[Mti]
{

∆̇e
}
,

i = (c, b, s, v); (15)

where ρi, Ai(i = c, b, s, v) were the density and cross-
sectional area of each layer, and the bending mass matrix [Mbi]
and the tensile mass matrix [Mti] of each layer could be ex-
pressed as follows:

[Mbi] = ρiAi

∫ l

0

[Nw]
T

[Nw] dx =

ρiAil

∫ 1

0

[Nw]
T

[Nw] dξ, i = (c, b, s, v) (16)

Then, the total element mass matrix could be written as:

[Me] = [Mbc] + [Mtc] + [Mbb] + [Mtb]

+ [Mbs] + [Mts] + [Mbv] + [Mtv] . (17)
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Nw =
[
1− 3ξ2 + 2ξ3 (ξ − 2ξ2 + ξ3)l 0 0 3ξ2 − 2ξ3 (−ξ2 + ξ3)l 0 0

]
;

Nθ =

[
∂Nw
∂x

]
=

[
1

l

∂Nw
∂ξ

]
=

[
−6ξ + 6ξ2

l
1− 4ξ + 3ξ2 0 0

6ξ − 6ξ2

l
− 2ξ + 3ξ2 0 0

]
;

Nuc
= [0 0 1− ξ 0 0 0 ξ 0] ;

Nub
= [0 0 0 1− ξ 0 0 0 ξ] . (6)

2.6. Dynamic Equation of TCDB
Based on the Hamilton variational principle, the following

equation could be obtained:

δ

∫ t2

t1

(U − T −W )dt = 0; (18)

where W = {∆e} {Re}, it denoted the work of all the non-
conservative forces which were applied on the transition con-
strained damping beam. {Re} was the external force; δ was
the variation between the time t1 and t2. U , T were the total
potential energy and kinetic energy, respectively. Substituting
the Eqs. (10) and (14) into Eq. (18), the beam element dynamic
equations could be determined using the following equation:

Me∆̈e +Ke∆e = Re. (19)

The above element mass matrix, element stiffness matrix
and element external force vector matrix were assembled to
obtain total mass matrix M , total stiffness matrix K and ex-
ternal force matrix R, and then kinetic equation of the TCDB
damping beam could be obtained as follows:

M∆̈ +K∆ = R. (20)

2.7. The Natural Frequency and Loss Factor
Calculation

By solving Eq. (19), the dynamic parameters of TCDB
damping beam could be expressed as:18(

[K]− (ω∗)
2

[M ]
)
{∆} = 0; (21)

where ω∗ was the angular frequency, and it was always a com-
plex number. At that time, the natural frequency f and the loss
factor η of the TCDB could be calculated as follows:19

η =
Im[(ω∗)

2
]

Re[(ω∗)
2
]

f =

√
Re[(ω∗)

2
]

2π

. (22)

3. RESULTS AND DISCUSSION

3.1. Comparison with Results in the
Literature

To verify the correctness of the present TCDB finite element
model, one example from Daya and Potier-Ferry, and Soni and
Bogner was presented.18, 19 A uniform symmetrical cantilever
sandwich beam was taken. Many researchers have analysed
this three-layer beam by employing various methods. Here, it

Table 1. Natural frequency and loss factor corresponding to the first six order
modes of TCDB.

Natural frequency (Hz) Loss factors
Mode Results Present Error Mode Results Present Error
No. from method % No. from method %

[18,19] [18,19]
1 64.1 64.1 0 1 0.0281 0.0281 0
2 296.4 296.1 0.10 2 0.0242 0.0240 0.83
3 743.7 743.0 0.094 3 0.0154 0.0152 1.30
4 1393.9 1391.8 0.15 4 0.0088 0.0086 2.27
5 2261.1 2258.2 0.13 5 0.0057 0.0054 5.26
6 3343.6 3338.0 0.16 6 0.0039 0.0036 7.69

should be noted that if the material of the transition layer is
same as of the viscoelastic layer, it will increase the thickness
of viscoelastic layer. Therefore, during the computation of the
proposed finite element model of the 4-layer, the total thick-
ness of the transition layer and viscoelastic layer is equal to the
thickness of viscoelastic layer in both Daya and Potier-Ferry,
and Soni and Bogner, which was 0.127 mm.18, 19 The thick-
ness of the transition layer was selected as half of 0.127 mm,
which was 0.0635 mm. At the same time, the thickness of the
viscoelastic layer was also selected as half of 0.127 mm, which
was 0.0635 mm. The material for the base layer and the con-
strained layer was the same with the modulus of elasticity as
69 Gpa, and Poisson ratio was 0.3, density is 2766 kg/m3. Both
layer thicknesses were 1.524 mm. The shear modulus and loss
factor of the viscoelastic layer was 1.794 Mpa and 0.1. Density
and thickness of the viscoelastic layer was 968.1 kg/m3 and
0.127 mm. The length and width of the beam were 177.8 mm
and 12.7 mm.

The beam was discretized into 40 finite elements, and
through successive iteration and using Eq. (22), the natural
frequency and loss factor of the beam were calculated. Ta-
ble 1 shows the comparison between Daya and Potier-Ferry,
and Soni and Bogner and present the method for the frequen-
cies and modal loss factors.18, 19

From Table 1, it could be known that the maximum error
of all the six natural frequencies between the analysis solution
and the present method was 0.16%, and the average error was
0.11%. At the same time, it could be found that maximum er-
ror of the loss factor results was equal to 7.69%, this may have
caused by the temperature and frequency effect of viscoelas-
tic material, and the average error of all the modal loss factor
was 2.89%. So, there was quite a close map between the re-
sults, which showed that the overall analysis could satisfy the
engineering requirements, which also verified the correctness
of the present TCDB finite element model.
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Table 2. Material and structural parameters of TCDB.

Elastic modulus Poisson ratio Density Thickness
(GPa) (kg/m3) (mm)

Transition layer 0.29 0.35 1200 0.264
Viscoelastic layer 0.00029 0.45 1600 0.127
Constrained layer 72 0.33 2700 0.203
Base layer 68.9 0.33 2730 2.29

Table 3. Influence of ηs and Gs/Gv on the first three-order structural loss
factor of TCDB.

Lg(Gs/Gv)

ηs 0 1 1.5 2 2.5 3 4 5
0.0218 0.0680 0.0758 0.0784 0.0792 0.0795 0.0796 0.0796

0.1 0.0041 0.0186 0.0227 0.0243 0.0248 0.0250 0.0251 0.0251
0.0011 0.0063 0.0080 0.0087 0.0089 0.0090 0.0090 0.0090
0.0292 0.0703 0.0766 0.0786 0.0793 0.0795 0.0796 0.0796

0.3 0.0055 0.0193 0.0230 0.0244 0.0249 0.0250 0.0251 0.0251
0.0015 0.0065 0.0081 0.0087 0.0089 0.0090 0.0090 0.0090
0.0401 0.0737 0.0777 0.0790 0.0794 0.0795 0.0796 0.0796

0.6 0.0076 0.0204 0.0234 0.0245 0.0249 0.0250 0.0251 0.0251
0.0021 0.0069 0.0082 0.0087 0.0089 0.0090 0.0090 0.0090
0.0472 0.0759 0.0785 0.0792 0.0795 0.0796 0.0796 0.0796

0.8 0.0089 0.0211 0.0237 0.0246 0.0249 0.0250 0.0251 0.0251
0.0025 0.0072 0.0083 0.0088 0.0089 0.0090 0.0090 0.0090

3.2. Influence of the Shear Modulus and
Loss Factor of the Transition Layer

In the present work, a beam with a length of 150 mm and a
width of 11.7 mm was taken as the research object. The other
parameters are given in Table 2. Then the shear modulus, loss
factor, and thickness of the transition layer and the thicknesses
of the other three layers were discussed about their influences
on the frequencies and modal loss factors.

To see the effect of transition layer, it was essential to choose
its shear modulus and loss factor reasonably. Table 3 shows the
change of the loss factor of TCDB under the different Gs/Gv
ratio when the material loss factor of the transition layer (ηs)
increases from 0.1 to 0.8. As can be seen from Table 3, when
the Gs/Gv was relatively small, the material loss factor of
transition layer had a more significant effect on the structure
loss factor of the TCDB. But with the continuous increase of
the Gs/Gv , the influence of ηs on the structure loss factor
gradually weakened, which indicated that the increase of the
shear modulus leading to the structure loss factor increase was
greater than that of the material loss factor increase. Finally,
the structure loss factor gradually became stable and got to an
extreme value.

At the same time, by comparing the first three-order struc-
tural loss factor in Table 3, it could be found that with the
increase of the modal number, the structural loss factor de-
creased. When the elastic modulus of transition layer was 1000
times bigger than that of viscoelastic layer, even the ratio ofGs
and Gv increased, the structure loss factor gradually tended to
a constant value. When the Gs/Gv ratio was less than 1000,
the structure loss factor could be improved by increasing the
material loss factor of transition layer. When the Gs/Gv ratio
was equal to about 1000, the TCDB could achieve the better
effect of energy dissipation without the increase of the mate-
rial loss factor of transition layer. So, considering the actual
effect of energy consumption and economy, it was suggested
that the shear modulus value of transition layer should be about

1000 times larger than that of viscoelastic layer.
Table 4 gives the change of the natural frequencies of the

structure under the different Gs/Gv ratio when the material
loss factor of the transition layer increased from 0.1 to 0.8. It
could be concluded that the natural frequencies of the whole
beam had increased in different degrees with the increase of
Gs/Gv , this was because the structure stiffness was propor-
tional to the shear modulus, and the natural frequencies in-
creased with the increase of the structure stiffness. Meanwhile,
the material loss factor of the transition layer had a weak influ-
ence on the natural frequency of the whole beam. This was due
to the shear modulus of the transition layer increasing with the
increase of the material loss factor, however, the shear mod-
ulus of transition layer was relatively lower than that of the
base and the constrained layer. Therefore, it could only bring a
small amount of increase of the structure natural frequency of
the transition constrained damping beam.

3.3. Thickness Influence of Transition Layer
The thickness effects of the transition layer on the natu-

ral frequency and the loss factor of the TCDB are shown in
Fig. 3. It can be seen from Fig. 3(a), the first-order natural
frequency increased and the second and third order natural fre-
quencies decreased when the thickness of transition layer in-
creased. This phenomenon indicated that the effect of the tran-
sition layer thickness on the structure natural frequency had a
relationship with the modes.

From Fig. 3(b), it could be known that the structural loss
factor of TCDB increased when the thickness of the transition
layer increased. Further analysis showed that with the increase
of the thickness of the transition layer, the first-order modal
loss factor gradually slowed down, whereas the second-order
modal loss factor tended to increase linearly and an increase in
the rate of the third loss factor gradually accelerated. There-
fore, an appropriate increase in the thickness of the transition
layer was advisable under the condition of meeting the struc-
tural size and mass requirements of the whole beam.

3.4. Thickness influence of Viscoelastic
Layer

The effect of the viscoelastic layer thickness on the natural
frequency and the modal loss factor of the TCDB are shown
in Fig. 4. It could be seen from Fig. 4(a) that the overall natu-
ral frequencies decreased when the viscoelastic layer thickness
increased. This was because the viscoelastic layer thickness
increase brought about the stiffness and mass increase of the
beam at the same time, but the rate of increase for the mass of
the beam was bigger than the stiffness of the beam. The overall
effect was the decrease of the natural frequency of the whole
structure. As it is shown in Fig. 4(b) with the increase of the
viscoelastic layer thickness, the loss factors of the second- and
third-order decreased at first and then increased, whereas the
first modal loss factor got bigger and bigger.

3.5. Thickness Influence of Constrained
Layer

As it can be seen from Fig. 5(a), the natural frequencies of
the whole beam reduced at first and then increased. Further
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Table 4. Influence of ηs and Gs/Gv on the first three-order natural frequency of TCDB.

Lg(Gs/Gv)

ηs 0 0.5 1 1.5 2 2.5 3 4 5
79.21 81.15 82.66 83.40 83.67 83.77 83.79 83.81 83.81

0.1 482.12 484.30 486.09 486.99 487.33 487.45 487.49 487.50 487.50
1344.17 1345.82 1347.18 1347.87 1348.1 1348.22 1348.25 1348.26 1348.26

79.25 81.24 82.72 83.43 83.68 83.77 83.80 83.80 83.81
0.3 482.14 484.35 486.12 487.00 487.34 487.45 487.49 487.49 487.50

1344.17 1345.82 1347.18 1347.87 1348.1 1348.22 1348.25 1348.25 1348.26
79.34 81.38 82.82 83.46 83.70 83.77 83.80 83.81 83.81

0.6 482.18 484.42 486.17 487.03 487.35 487.45 487.49 487.50 487.50
1344.16 1345.82 1347.18 1347.87 1348.1 1348.22 1348.25 1348.26 1348.26

79.42 81.48 82.88 83.49 83.70 83.78 83.80 83.81 83.81
0.8 482.21 484.47 486.21 487.04 487.35 487.45 487.49 487.50 487.50

1344.16 1345.81 1347.18 1347.87 1348.1 1348.22 1348.25 1348.26 1348.26

analysis showed that the first mode frequency underwent a very
small decline, and then continued to increase. The second- and
third-order frequencies also experienced a brief decline and
then they increased, but the rate of increasing of the latter two
frequencies was faster. In Fig. 5(b), all of the loss factors of the
TCDB first increased and then decreased when the constrained
layer thickness increased. The first modal loss factor reached
the maximum when the thickness ratio of the constrained layer
and the base layer was equal to 0.8.

3.6. Thickness Influence of Base Layer
Figure 6 shows the influence of the base layer thickness on

the natural frequency and loss factor of TCDB. From Fig. 6(a),
it could be seen that all of the natural frequencies increased
with the increase of the thickness of the base layer. That was
because when the base layer’s thickness increased, the stiffness
and mass of the whole transition constrained damping beam
increased, but the stiffness increase was greater than that of the
mass. Therefore, the frequencies displayed a trend of increase.

At the same time, the structure loss factor of the transition
constrained damping beam decreased rapidly with the increase
of the thickness of the base layer. This was because the attenu-
ation of vibration energy became more difficult when the base
layer thickness increased under the same conditions. There-
fore, when the base layer thickness was chosen, it was advis-
able to reduce its thickness under the condition of meeting the
stiffness and strength of the whole structure. From the point of
view of engineering design, although the damping treatment
was a kind of post-damping method, the results about the dis-
cussion of the base layer thickness in this paper can provide
some reference for the initial thickness choice.

3.7. Relationship Between Structural Loss
Factor and Frequency

Figure 7 gives the structural loss factor variation with re-
spect to frequencies. In contrast to Figs. 3–6, it provides a
wider frequency range. From the Fig. 7(a), it could be known
that in the given frequency range (the first six mode frequency),
the variation was different as to the different thicknesses of the
transition layer. When the thickness of the transition layer was
selected as 0.1, 0.15, and 0.2, the loss factors decreased at first
and then increased at a different rate. When the thickness of
the transition layer was equal to 0.25 and 0.3, the loss factors
decreased all the time. At the same time, from the Fig. 7(a), it

could be concluded that in the low frequency range, with the
thickness increase of the transition layer, the loss factors grew.
However, in the higher frequency range, this phenomenon took
a change. No what matter the thickness of the transition layer
was, the effect of vibration-reducing was better in the low fre-
quency range than that of the high frequency. Therefore, the
changes of loss factor on frequency were not monotonous.

Similarly, from the Fig. 7(b), we could know that when the
thickness of the viscoelastic layer was comparatively big (e.g.
0.50), the loss factors first got smaller and then increased again
at the given frequency range. In addition, when the thickness of
the viscoelastic layer was comparatively small (e.g. 0.10), the
loss factors of the TCDB got smaller and smaller. On the other
hand, the first-order loss factor increased as the thickness of the
viscoelastic layer increased. But in the higher frequency range
(e.g. the fourth, fifth and sixth natural frequency), the struc-
tural loss factors decreased first and then increased rapidly.
The larger the thickness, the more obvious this phenomenon.

From the Fig. 7(c), it is easy to see that the damping perfor-
mance of the TCDB at the lower frequency is better than that
of the higher frequency. The loss factor of the TCDB changed
continuously with the change of frequency, so long as the fre-
quency was equal or close, the loss factor was equal or close,
too. In addition, the effect of the thickness of the constrained
layer on the structural loss factor was different in the whole
frequency range.

At last, from the Fig. 7(d), the structure loss factors of the
TCDB got smaller and smaller with the increase of frequency.

4. CONCLUSIONS

In this paper, a finite element model of TCDB is established
to calculate a structure’s natural frequency and loss factor ac-
cording to the first shear deformation theory, and the vibration
and damping characteristic are analysed. The specific results
are given as follows:

1. When the transition layer material is chosen, its shear
modulus is advisable to be 1000 times greater than that of
the viscoelastic layer and its material loss factor is as big
as possible. At the same time, the increase of the thick-
ness of the transition layer is beneficial under the con-
dition of meeting the size and mass requirement of the
whole transition constrained damping beam.
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Figure 3. Influence of transition layer thickness on (a) natural frequency and
(b) loss factor.

2. When the viscoelastic layer thickness increases, the nat-
ural frequencies tend to decrease and the structure loss
factors decrease at first and then increase. As the con-
strained layer thickness increases, the natural frequencies
decrease at first and then increase, and the structure loss
factors increase at first and then decrease. For the base
layer, its thickness may be reduced appropriately under
the condition of meeting the stiffness and strength of the
whole structure.
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