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The study investigates the feasibility of the Lamb wave topological imaging method for detecting multiple blind-
holes in an isotropic plate. The topological imaging method is performed based on the computations of two
wave fields, a forward and an adjoint, in the defect-free reference medium using different emitting sources. The
image is computed by multiplying the forward and adjoint wave fields together and integrating them over time or
frequency. The interferences of multimode aliasing and the scattering effect can thus be eliminated at the defect-
free positions with an improved image resolution. To investigate the physical mechanism, the refocusing process of
the multimode Lamb waves at the defect positions is presented by a face-to-face comparison between the snapshots
of the forward and adjoint wave fields using the finite element simulation. The Lamb wave topological imaging
method is numerically and experimentally verified to identify multiple blind-holes in an isotropic aluminium plate.
The results demonstrate that the topological imaging method enables the suppression of the sartefacts resulting
from the mode conversion and achieve high-resolution imaging of the blind defects.

1. INTRODUCTION

The inverse scattering imaging has attracted considerable at-
tentions in the biomedical engineering, industrial nondestruc-
tive testing and geophysics.1, 2 Diffraction tomography,3 devel-
oped from inverse scattering algorithm, is capable of rapidly
fulfilling the tomography imaging by using the Fast Fourier
Transform (FFT) under the Born approximation assumption.
However, the application of diffraction tomography is limited
since Born approximation assumption is only applicable to the
weak scattering case.

The topological optimization method has been applied to ul-
trasonic bulk wave imaging.4–8 The topological asymptote is
applied and the defect imaging can be obtained without the
prior assumptions of locations and shapes of defects. This
method is derived from the shape optimization in mathemat-
ics. Early in 1994, Eschenauer et al.4 proposed the concept
of topological gradient for topological optimization of me-
chanical structures. In 2001, Garreau et al.5 developed an
asymptotic expansion in the context of linear elasticity for gen-
eral functional and arbitrary shaped holes by using an adapta-
tion of the adjoint method and a domain truncation technique.
The proposed method was general and can be readily adapted
to other linear partial differential equation and other types of

boundary conditions. In 2004, Bonnet and Guzina6, 7 extended
the topological derivative to solve elastic wave inverse scatter-
ing problem. They illustrated the methodology enables to char-
acterize the topological differentia towards the gradient-based
imaging. In the field of ultrasonic nondestructive inspection,
Gallego et al.8 conducted the inspection of crack and chamber
defects using topological sensitivity boundary integral method.

Topological gradient method has been used to achieve a high
resolution imaging.9, 10 However, the method requires many it-
erations. Subsequently, the researchers began to explore the
use of other fast imaging methods, for instance the time do-
main topological energy method proposed by Dominguez and
Gibiat11 and frequency domain topological imaging by Ro-
driguez et al.12 Owing to the refocusing properties of the
time-reversal13–15 for the scatterers, an accurate image could
be readily obtained by solving two wave propagation problems
in an homogeneous medium. Despite the iterative nature of the
topological method, a single iteration leaded to an accurate im-
age.11, 12 Basing on the improvement of the topological imag-
ing theory and algorithm, the experimental works are carried
out successively. Tokmashev et al.16 has conducted the experi-
mental investigation of elastic wave topological sensitivity for
the aluminum plate with dual defects of a circular hole and a
rectangular slit using a single longitudinal piezoelectric trans-
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ducer along the edges of the plate under varying transducer
locations.

Rodriguez et al.17, 18 recently combined the topological
imaging method with the guided wave tomography, so-called
guided wave topological imaging, which can provide the defect
imaging in the isotropic and anisotropic plates. Existing stud-
ies have investigated the through-thickness defects basing on
single mode excitation. However, the Lamb wave topological
imaging for hidden asymmetric defects has not been reported
yet. Furthermore, it has been widely analyzed that Lamb mode
conversion can occur upon encountering the blind holes, gen-
erating the newly-converted modes apart from the reflection
and transmission.19 It brings challenges for multimode scat-
tering signal interpretation and leads to artifacts in the image.
Nevertheless the impact of mode conversion for guided waves
topological imaging has not been thoroughly discussed.

The present study focuses on the application of Lamb wave
topological imaging with significant mode conversion. We
considered the multiple blind holes in an isotropic plate, where
significant mode conversion can be observed. In Section 2, the
theory and the algorithm of topological imaging method are
introduced. In Section 3, a finite element model is built to
investigate the physical mechanism of topological method for
the inspection of multiple blind holes. The experimental veri-
fication of the method is given in Sections 4.

2. TOPOLOGICAL IMAGING THEORY

As shown in Fig. 1, the medium containing the defects is
called the inspected medium, Ωm. The defect-free medium,
Ω0, which has the same properties as the inspected medium,
is initialized as the reference medium. The process of gradual
approach from Ω0 to Ωm through insertion of a defect into
Ω0 is named as the topological asymptote. The new medium
obtained in each step is called the virtual modified medium,
Ωε. The positive definite cost function j(Ωε) is used to evaluate
the difference of the displacement fields between the calculated
and reference mediums.

j(Ωε) =
1

2

∫
R

(∫ ∫
(x,y)∈Γm

|uε − um|2 dxdy

)
dt =

1

2

∫
R

(∫
(x,0)∈Γm

|uε − um|2 dx

)
dt, (1)

where uε represents the calculated displacement field at the
boundary Γm of the reference medium or the virtual modified
medium, and um is the measured displacement field obtained
experimentally at the boundary Γm of the inspected medium,
(x, y) denotes the coordinate in space Ω0 or Ωm, and R is the
duration time. Considering that a linear array is set along an
edge of the inspected plate, x defines the lateral positions of all
array-elements, and y = 0 in the study. The topological imag-
ing can be obtained by retrieving an optimal solution after min-
imizing the cost function. Consequently, the virtual modified
medium converges to the inspected medium. The variables,
j(Ω0) and j(Ωε), represent the cost functions of the reference
and virtual modified medium, respectively. The asymptotic ex-
pansion of the cost function is given by

j(Ωε) = j(Ω0) + f(ε)g(x, y) + o(f(ε)), (2)

Figure 1. Principle of the topological asymptote

where ε stands for the defect parameter, f(ε) is the expression
function of the defect and o(f(ε)) represents the higher-order
small term of f(ε). Ignoring the impact of the higher-order
small terms, Eq. (3) can be written as

g(x, y) =
j(Ωε)− j(Ω0)

f(ε)
, (3)

where g(x, y) is so-called topological gradient. Dominguez
gave the specific function expression of g(x, y) and f(ε) us-
ing Dirichlet and Neumann types of boundary conditions under
two-dimensional and three-dimensional models, respectively.9

Using the topological gradient g(x, y) as the imaging function,
the gradient value of each point in the imaging area is calcu-
lated. Thus, the topological gradient image can be obtained.

The topological asymptotic method, which takes the topo-
logical gradient as the imaging function, involves more itera-
tions which, lead to relatively low computation efficiency. In
this study, we choose an efficient topological energy imaging
method. This method regards topological energy g0(x, y) as
the imaging function by transforming the topological gradient
to solve the solutions of forward problem and adjoint prob-
lems.

The imaging methodology is described as follows. First
the analytical solutions of the forward problem leading to
U0(x, y, t) in the reference medium Ω0 are calculated accord-
ing to the Lamb wave propagation model, where the source is
the numerical or experimental emission signal e0(t). Then, a
measurement or simulation is performed on the reference and
inspected medium that gives un0 (t) and unm(t) on the array of
transducers, respectively, where the superscript n is the trans-
ducer number. The time reversed difference unm(t) − un0 (t)
is then used as the source of the adjoint problem to compute
V0(x, y, t) in the reference medium. Finally, the topological
energy is determined and the image of the inspected medium
is given. The topological imaging process using the time do-
main topological energy method is shown in Fig. 2.

The detailed description of the imaging process is as fol-
lows:

1. The forward problem is solved according to the Lamb
wave propagation model in the reference medium Ω0. Let
the exciting signal be e0(t), and the displacement field
U0(x, y, t) at the imaging area (x, y) is calculated using
the analytical solution.20

U0(x, y, t) = F−1

{
F {e0 (t)} exp

(
−i2πfd
cp (f)

)}
, (4)
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Figure 2. The process of topological imaging using the time domain topolog-
ical energy method

whereF{•} and F−1{•} are the operators of the forward
and inverse Fourier transform, respectively, i is the imag-
inary symbol, and cp(f) is the phase velocity of the Lamb
wave mode computed by using the Rayleigh-Lamb equa-
tion.21 The expression d =

√
(x− x0)2 + (y − y0)2 rep-

resents the distance between the location (x, y) and emit-
ting source coordinate (x0, y0).

2. The scattered Lamb wave signals are acquired by the ex-
periment or simulation. Set a number of transducers on
the boundaries Γm of the reference medium Ω0 and in-
spected medium Ωm, respectively. Each of the trans-
ducers is used as the emitter and the rest are receivers.
The variables un0 (t) and unm(t) are the recorded response
signals in the reference medium Ω0 and the inspected
medium Ωm, respectively. The difference hn0 (t) =
unm(t)− un0 (t) are the scattered Lamb wave signals.

3. The adjoint problem is solved according to the Lamb
wave propagation model in the reference medium Ω0.
Assume that at a low frequency-thickness product range
there only exist two fundamental Lamb modes, symmet-
rical S0 mode and asymmetrical A0 mode. The signal
zn0 (t) obtained by the time reversal of hn0 (t), is used as
excitation. The adjoint displacement field V0(x, y, t) in
the imaging area is calculated by

V n0 (x, y, t) = F−1

{
αF {zn0 (t)} exp

(
−i2πfd
cS0
p (f)

)}
+

F−1

{
βF {zn0 (t)} exp

(
−i2πfd
cA0
p (f)

)}
, (5)

where α, β, cS0
p (f), cA0

p (f) are propagating coefficient
and phase velocities of S0 and A0 modes, respectively.
Equation (6) takes into account the influence of mode
conversion. A similar expression to Eq. (6) can be derived
for more guided modes. According to the reciprocity
principle, during the forward propagation, the time re-
versal signal zn0 (t) will refocus at the location of the de-
fect.22 Ignoring the mutual scattering influence among
the defects, the focusing process of converted multimode
signals at the defect location is depicted in Fig. 3. The
identical mode signals S0/S0 and A0/A0 generated by
S0 and A0 overlap at the defect location, which are called
the main lobes. The signal A0/S0 denotes an A0 mode
converted from S0 mode and S0/A0 denotes an S0 mode
converted from A0 mode. The two modes are distributed
on the two sides of the main lobes and their amplitudes
are relatively smaller than that of the main lobes, called
the side lobes.

Figure 3. The focusing process of converted multi-mode signals at the defect
locations. (Note: A0/S0 denotes A0 mode converted from S0 mode due to the
interaction of the defect. S0/A0, S0/S0, and A0/A0 are similarly defined).
The blue and red lines represent the scattering signals produced by defect 1
and 2, respectively.

4. Using the time domain topological energy as the imag-
ing function, the energy value at each point (x, y) in the
imaging area is computed. The topological energy is

g0(x, y) =

∫ T

0

||U0(x, y, t)||2||V0(x, y, t)||2dt, (6)

where T is the duration and (x, y) is the coordinate loca-
tion in the imaging area.

By introducing the forward displacement field and multiply-
ing it with the adjoint displacement field, the topological en-
ergy imaging function can eliminate the interference of multi-
mode overlap at the defect-free position. It enables focusing
the energy on the defect location, which overcomes the dis-
advantage of other imaging methods that use only scattering
signals and improves the resolution significantly.

(5) To further improve the image quality, the iteration pro-
cedure can be carried out by changing the emitting source po-
sition and repeating steps (1) through (4). Consolidating all
the imaging results, a relatively high accuracy image can be
obtained.

3. SIMULATIONS

3.1. Mechanism of Topological Imaging
To explain the refocusing physical mechanism of the multi-

mode guided waves at defect locations, the snapshots of tran-
sient displacement field at the different moments were com-
puted using the finite element simulations. The simulation was
carried out by using the commercial software PZFlex. The de-
fect image is reconstructed based on the topological imaging
method. The numerical model of an isotropic aluminium plate
is shown in Fig. 4. A 500 × 500 × 3 mm3 aluminium plate
was meshed using hexahedral elements with the element size
of 1.3 × 1.3 × 0.5 mm3. The total number of elements was
385 × 385 × 6 = 889350. Absorbing boundary conditions
were set to prevent the reflections from the edges. The imag-
ing region of interest is located at the centre of the model with
a size of 100× 100 mm2. The material parameters of the alu-
minium are Young modulus 69 GPa, density of 2.69 g/cm3, and
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Figure 4. Schematic diagrams of the finite element model.

Figure 5. Emitting signal (a) waveform and (b) spectrum.

Poisson’s ratio 0.35. Time duration is set as 200 µs with a sam-
pling interval of 84.6 ns. Sixteen transducers are arranged on
the left side of the model. The interval distance between each
two transducers is 30 mm, and their diameter is 2.5 mm. Two
circular blind holes with a diameter 10 mm locate at (−30 mm,
−30 mm) and (30 mm, 3 mm). To model the partial-thickness
defects, the holes are asymmetric to the mid-plane of the plate
and are 1 mm in depth. The mid-plane refers to the horizontal
section at 1/2 plate thickness, which is perpendicular to the
plate thickness direction. As shown in Fig. 5, the emitting
e0(t) is a five-cycle Hanning-windowed sinusoidal signal with
a 500 kHz centre frequency. At this frequency, the wavelength
λ of S0 mode is 10.6 mm and close to the defect diameter,
which denotes the challenges of hide-defect imaging.

In the numerical example, the plate is excited by trans-
ducer 1 and the backscattering signal is recorded by all trans-
ducers. The source is applied symmetrically on the top and
bottom surfaces of the plate to selectively excite the symmet-
ric S0 mode. As a result, the S0 mode is emitted at frequency-
thickness product 1.5 MHz·mm according to the Lamb wave
dispersion curves.

Figure 6 depicts the transient displacement field of S0 mode
at a different time. The scattering and mode conversion can be
observed. At 1.5 MHz·mm frequency-thickness product, the
group velocity of A0 mode is smaller than that of S0 mode. As
shown in Figs. 6c and 6d, the two different wave-fronts of S0

and A0 modes can be clearly distinguished.
Figure 7 shows the focusing process of the forward and

adjoint displacement fields. Lamb wave scattering signals
hn0 (t) = unm(t)− un0 (t)(n = 1 ∼ 16) are shown in Fig. 7a. It
can be seen from these waveforms that the signals scattered by
the two defects include multiple modes. To obtain the adjoint
wave field, the signals in Fig. 7a were then time-reversed (see
Fig. 7b) and regarded as the emissions in adjoint problem, and
the corresponding adjoint displacement field can be computed
according to Eq. (6). As shown in Figs. 7c and 7d, in the for-
ward and adjoint displacement fields, the wave-packets arrive

Figure 6. Transient displacement fields of Lamb waves at the different mo-
ments: (a) when t = 55µs, before wave-front encountering the defects; (b)
when t = 75µs, it is passing through defect 1; (c) when t = 95µs, it is
passing through defect 2; (d) when t = 115µs, it is departing from the two
defects.

Figure 7. The simulated focusing process of the forward and adjoint displace-
ment fields: (a) Scattering signals received by each transducer; (b) zn0 (t) are
the time-reversed waveforms of signals in figure (a). According to Eq. (6),
zn0 (t) are used as emissions to compute adjoint fields V n

0 (t); Fig. 6c–e show
the adjoint-field signals obtained at (c) defect 1; (d) defect 2; (e) a defect-
free position (−30 mm, 30 mm). Ud

0 (t) is the signal in the forward prob-
lem. V n

0 d(t) is the adjoint-field signal and the superscript d represents defect.
Uh
0 (t) and V n

0 h(t) are the signals at the defect-free location in the forward
and adjoint displacement fields, respectively.

at the defect position at the same time. The adjoint field sig-
nals at the defect-free location (−30 mm, 30 mm) are shown
in Fig. 7e. Different from the waveforms of the adjoint field
computed using the defect coordinates (see Figs. 7c–7d), the
wave-packets arrived at the array element with different time
and no-focusing effect can be observed in Fig. 7e.

Figure 8 shows the focusing process of the forward and ad-
joint problems at the two defect locations using the snapshots
of the transient displacement fields. Figures 8a–8d in the left
column illustrate the propagating process of acoustic waves
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Figure 8. The snapshots of transient displacement fields in the forward and
adjoint problems: (a)–(d) forward problem; (e)–(h) adjoint problem; (i-l) the
product of the corresponding two displacement fields. Please note that in
Figs. 7a–d, the wave seems to propagate backward because the time is re-
versed with t = T − tp, where tp is the moment at which the source e0(t)
propagates to the location p(x, y) and T is the total propagating time.

in the forward problem, in which the emitting signal e0(t)
is applied on transducer 1 with the coordinates (−225 mm,
−247 mm). Figures 8e–8f illustrate the propagating process of
acoustic waves in the adjoint problem, in which the emitting
signal z7

0(t) in Fig. 7b is applied on transducer 7 with the co-
ordinates (−45 mm, −247 mm). It can be seen from Figs. 8b
and 8f that the displacement fields of the forward and adjoint
problems arrive at the defect 2 simultaneously when t = 215
µs. In Figs. 8c and 8g, the two displacement fields arrive at
the defect 1 simultaneously when t = 230 µs. Figures 8i-l
illustrate the product of the corresponding two displacement
fields. Similar to the waveforms shown in Fig. 7, the defect fo-
cusing imaging can be seen from the snapshots of the transient
displacement fields.

3.2. Topological Imaging
Figure 9 illustrates the imaging results and the intensity pro-

file views in length and width direction using the methods
of delay and sum (DAS) and topological imaging under the
same emission and reception condition, respectively. In the
profile view, the parameters of the −2.5 dB main lobe width
ω are used to quantify the imaging resolution. High resolu-
tion corresponds to small main lobe width. It can be seen
that the traditional DAS method has a large defect size with
a high ambiguity of defect location. The −2.5 dB main lobe
widths of the DAS method and the topological method are
ω = maxω1 ∼ ω4 ≈ 30mm and ω = maxω1 ∼ ω4 ≈ 10
mm, respectively. As the defect radius was 10 mm, the imag-
ing defect size of the topological method is more accurate than
the DAS method. Both methods enable to provide correct de-
fect locations in simulation.

Figure 9. Simulation of two defects: DAS imaging methods (a) defect imag-
ing; (b) width profile view; (c) length profile view of DAS; topological imaging
method (d) defect imaging; (e) width profile view; (f) length profile view.

Figure 10. Simulation of three defects: DAS imaging methods (a) imaging,
(b) width profile view, (c) length profile view; topological imaging methods
(d) defect imaging; (e) width profile view; (f) length profile view.

Figure 10 depicts the imaging results of three blind holes
with a diameter of 10 mm and a defect depth of 1 mm. The
positions of the three blind holes are (−25 mm, −25 mm),
(0 mm, 0 mm), and (25 mm, 25 mm), respectively. As shown
in Figs. 10b–c, DAS results are obtained with ω > 50 mm
and τ > −2.5 dB, though failing to localize the three defects
individually, it can be seen in Figs. 10d–f that the topolog-
ical method still can distinguish the three defects with ω =
maxω1 ∼ ω4 ≈ 8 mm and τ < −2.5 dB.

4. EXPERMENTAL VERIFICATION

To verify the reliability of topological imaging, the exper-
iment was performed in a 3 mm-thickness aluminium plate.
Two holes were drilled partly through the plate thickness with
diameters of 4 mm. Figure 11a shows the position of the drilled
holes on the plate. Measurements were carried out using an
M2M MultiX LF system. A 16-element linear array (Shantou
Ultrasonic Electronics Co. LTD Guangdong, China) was used.
The array is composed of 16 transducers whose central fre-
quency is 500 kHz. The pitch size is 2 mm and thus the whole
array is 32 mm long. The transducer width is 1.8 mm and the
height is 15 mm. Similar to previous literatures, the array is
coupled to the plate on the edge, so that it is sensitive to the
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Figure 11. Experimental configuration: (a) vertical view; (b) front view

Figure 12. Typical measured signal.

in-plane motion.17, 18 As shown in Fig. 11b, since the trans-
ducer height is larger the plate thickness, the transducers cover
entire thickness of the plate. Considering the 3 mm thickness
of the plate, the corresponding frequency-thickness product is
1.5 MHz·mm.

The source is successively applied on the transducers along
the x-axis at the plane y = 0. The emitting signal is a
five-cycle Gauss-windowed sinusoidal signal with 0.5 MHz
central frequency. One of the transducers is used as emit-
ter and all transducers (including the emitter itself) record the
scattering Lamb wave signals. Using the single-emitter and
multi-receiver measurement, a total of 256 channels signals
are recorded by the linear-array. A typical measured signal
is shown in Fig. 12. The excitation wave-packets are followed
by the scattered waves from the two holes. Because of the
mode conversion between S0 andA0 modes at two blind holes,
multi-scattering wave-packets can be observed in the recorded
signals. However, as shown in Figs. 13a and 13b, the forward
and adjoint displacement fields focus on the two defect loca-
tions with an identical arrival time; on the contrary, unfocused
results can be seen in Fig. 13c in the non-defect region.

The imaging results of the topological and DAS methods are
presented in Fig. 14. In Fig. 14a, the two defects can be clearly
distinguished from the topological imaging result without sig-
nificant artifacts, while the DAS result in Fig. 14b presents ob-
vious sidelobes and ring artifacts. However, because of the
influence of the boundary reflection and the dispersion of mul-
timode guided waves, the imaging quality is not as good as in
the simulation.

5. DISCUSSION AND CONCLUSIONS

This work investigates the applicability of the Lamb wave
topological imaging method for the inspection of multiple
blind-hole defects in an isotropic aluminium plate. Based on

Figure 13. The focusing of mode conversion signals and multiple scattering
signals from two defect in the experiment. (a) Focusing at defect 1; (b) focus-
ing at defect 2; (c) unfocusing at non-defective position.

Figure 14. Experimental results for defect imaging of two holes in a 3 mm-
thickness aluminum plate: (a) topological method; (b) DAS method.

the Lamb wave propagation model, the solutions displacement
fields in the forward and adjoint problems are solved using
the different emitting source in the reference medium. The
multimode Lamb wave imaging mechanism is explained using
a face-to-face comparison between the snapshots of the for-
ward and adjoint transient displacement fields. Both the nu-
merical and the experimental results are presented for multi-
ple blind-hole defects to verify the efficiency of the proposed
method. The mode conversion is modelled in the adjoint prob-
lem, which enables the suppression of the artefacts in the de-
fect image caused by the converted modes.

Compared with the classical DAS method, topological
imaging enables refocusing the mode energy at the defect-free
position, so that the artefacts can be suppressed with a signif-
icant contrast enhancement for the defect imaging with more
accurate defect evaluation and localization. Taking advantage
of the proposed multimode strategy for the adjoint field com-
putation, the improved topological imaging method can over-
come the artefacts that resulted from the mode conversion and
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multi-scattering, and further improve the defect imaging. Gen-
erally speaking, the topological method is able to provide high
precision results for defect imaging with the same magnitude
of computation time as the DAS method.
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