
Application of Variational Mode Decomposition and
Permutation Entropy for Rolling Bearing Fault
Diagnosis
Xiaoxia Zheng, Guowang Zhou and Dongdong Li
Shanghai University of Electric Power, Shanghai, China.

Rongcheng Zhou and Haohan Ren
Shanghai Donghai Wind Power Co., Ltd, Shanghai, China.

(Received 6 December 2016; accepted 21 March 2018)

Rolling bearings are the key components of rotating machinery. However, the incipient fault characteristics of
a rolling bearing vibration signal are weak and difficult to extract. To solve this problem, this paper presents
a novel rolling bearing vibration signal fault feature extraction and fault pattern recognition method based on
variational mode decomposition (VMD), permutation entropy (PE) and support vector machines (SVM). In the
proposed method, the bearing vibration signal is decomposed by VMD, and the intrinsic mode functions (IMFs)
are obtained in different scales. Then, the PE values of each IMF are calculated to uncover the multi-scale intrinsic
characteristics of the vibration signal. Finally, PE values of IMFs are fed into SVM to automatically accomplish
the bearing condition identifications. The proposed method is evaluated by rolling bearing vibration signals. The
results indicate that the proposed method is superior and can diagnose rolling bearing faults accurately.

1. INTRODUCTION

In order to ensure the reliability of rotating machinery, con-
dition monitoring and fault diagnosis of rolling bearings timely
and accurately become very essential.1 Because of the direct
connection between the structure of the rotating machinery and
vibration sensor, vibration analysis methods have been widely
applied for fault diagnosis in machinery fields.2, 3 When a fault
occurs on the surface of a rolling bearing, the periodicity im-
pulses will appear in the vibration signals. Vibration signals
are directly associated with the structural dynamics of the mon-
itored machine, which consists of adequate information relat-
ing to the mechanical system. How to extract useful informa-
tion that represents the bearing fault feature from the vibration
signals is the key point for condition monitoring and fault di-
agnosis.4 Due to the complex and harsh working conditions of
the mechanical system, the useful characteristics of vibration
signals are usually drowned out by noises.5 Many advance
signal processing methods have been employed to extract the
characteristics of the vibration signals.

The well-known time-frequency method wavelet trans-
form (WT) can decompose a signal into several scale time-
frequency components. The WT method is widely used in the
fault diagnosis of rolling bearings.6, 7 However, the appropriate
selection of the wavelet basis function needs to be solved, and
WT does not have the self-adaptive feature. Empirical mode
decomposition method (EMD)8 is a self-adaptive signal de-
composition technique, which can decompose any complicated
signal into IMFs depending on the natural oscillations embed-
ded in signal. The EMD method has received the extensive at-
tention of researchers and has been used in the diagnosis appli-

cations of mechanical system.9 However, the mode mixing and
end effect problems of EMD algorithm limit its applications
to the fault diagnosis.10, 11 Ensemble empirical mode decom-
position (EEMD),12 an improved version of EMD, improves
the mode mixing drawback of the EMD method. The EEMD
method consists of sifting through an ensemble of white noise-
added signals and treats the mean as the final true result. The
EEMD method has improved the mode mixing, and has been
applied to bearing fault diagnosis.13 Xiang and Zhong,14 on
the basis of EEMD, found that feature extraction is further per-
formed by the random decrement technique (RDT) to deter-
mine the feature frequency, and the combination of the meth-
ods is effective for fault diagnosis. Considering that the faulty
component has severe noise, LI et al. proposed the morpho-
logical filtering-translation invariant wavelet and the improved
EEMD method, which reduced the noise of the original signal
and made the diagnosis more accurate.15

Recently, a new adaptive and quasi-orthogonal signal de-
composition method, variational mode decomposition (VMD)
was put forward by Konstantin Dragomiretskiy and Dominique
Zosso.16 VMD can decompose a signal into various modes
or IMFs by using calculus of variation. VMD is a signal de-
composition algorithm with more refinement time-frequency
divisions than EMD and local mean decomposition (LMD).17

The decomposition performance of VMD can substitute EMD
method which does not have a strong mathematical founda-
tion.18 Considering the advantage in the aspects of signal de-
composition, VMD is applicable to process the rolling bearing
vibration signals.

In order to extract the dynamic characteristics hidden in the
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measured signals, many nonlinear parameter estimation tech-
niques emerge in fault diagnosis domain. Yang et al.19 used
fractal dimension to classify rolling element bearing fault types
and evaluate various fault conditions. Yan and Gao introduced
approximate entropy (ApEn) to characterize the severity of
structural defect.20 The fuzzy entropy method is used to ex-
tract fault characteristics of the rolling bearing vibration sig-
nals.21 The fractal demands very long data set, which is not
suitable for online monitoring. Although the methods based
on entropy require much less computation and are simplicity,
they have good properties in fault diagnosis of bearing.22

Permutation entropy (PE) was presented by Bandit and
Pompe. PE can estimate the complexity of time series through
the comparison of neighboring values.23 Permutation entropy
is robust under the non-liner distortion of signals and has a fast
calculation speed. The PE method has been widely applied to
detect dynamic changes of complex time series, such as elec-
troencephalograph (EEG) signals24 and cardiac heart inter-beat
signals.25 In the mechanical fault diagnosis field, many re-
searchers investigated the PE method and the studies show that
PE can effectively detect and amplify the dynamic changes of
the vibration signal. Yan et al. used PE as an effective fea-
ture to monitor the working conditions of rolling bearings.26

Zhang et al. extracted the characteristics of the vibration sig-
nal by calculating the PE value of the IMFs after processing
the vibration signal by EEMD, and then utilized a support vec-
tor machine (SVM) to recognize bearing faults.27 The effec-
tiveness of permutation entropy is also been proved in gearbox
fault diagnosis.28

The purpose of this study is to propose a novel method based
on VMD, PE and SVM for rolling bearing fault feature extrac-
tion and identification. Considering the advantages of VMD in
signal processing, PE value of IMFs are calculated as feature
vectors that representing the multi-scale characteristics of the
vibration signal. After extracting features using the VMD and
PE algorithm, the obtained features are fed into one against all
(OAA) SVM29 classifier to accomplish the fault recognition.
The vibration signals are sampled from rolling bearing. Then
the signals are decomposed into several IMFs by VMD. Sub-
sequently, PE values of IMFs would be calculated and utilized
as the feature vectors. Finally, the feature vectors of the vibra-
tion signals are fed in the SVM model to identify the bearing
conditions. The rest of this paper is organized as follows. In
Section 2, the VMD algorithm and its number of modes are
studied. PE and its parameter settings are both described and
explored in Section 3. The procedures of the proposed method
will be presented in Section 4. The experimental results of the
proposed method will be discussed in Section 5. Finally, con-
clusions are drawn in Section 6.

2. VARIATIONAL MODE DECOMPOSITION

2.1. Variational Mode Decomposition
Algorithm

Variational mode decomposition is a newly adaptive decom-
position method, which can decompose the signal into various

modes or band-limited intrinsic mode functions by using cal-
culus of variation. VMD can decompose an input signal f into
a discrete number of sub-signals uk, that have specific sparsity
properties of its bandwidth in the spectral domain. Each mode
k is mostly compact around a center pulsation ωk, which is to
be determined along with the decomposition.

Intrinsic mode function is amplitude modulated - frequency
modulated (AM-FM) signal, written as:

uk(t) = Ak(t)cos(φk(t)); (1)

where the phase φk(t) is a non-decreasing function, φ′k(t) ≥ 0,
the envelope is non-negative Ak(t) ≥ 0, both the envelope
Ak(t) and the instantaneous frequency ωk(t) = φ′k(t) vary
much slower than the phase φk(t).16

In order to measure the bandwidth of an IMF uk(t),
Dragomiretskiy and Zosso proposed a function in their study.
For each mode uk(t), using the Hilbert transform to obtain
a unilateral frequency spectrum of the associated analytic sig-
nal: (

δ(t) +
j

πt

)
∗ uk(t). (2)

Frequency spectrum of the analytic signal assumed to be
centered on ωk. By multiplying the analytic signal with
e−jωkt, the signal frequency is translated to be centered at ori-
gin: [(

δ(t) +
j

πt

)
∗ uk(t)

]
e−jωkt. (3)

Using H1 Gaussian smoothness of the demodulated signal
the bandwidth of each mode is estimated. The resulting con-
strained variational problem is the following:

min
{uk},{ωk}

{∑
k

∥∥∥∥∂t[(δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥∥2
2

}
;

s.t.

K∑
k=1

uk = f ; (4)

where {uk} = {u1, u2, ..., uK} and {ωk} = {ω1, ω2, ..., ωK}
are the set of all modes and their center frequencies, f is the
original signal. The calculations will be easier by convert-
ing constrained problem to unconstrained problem. The aug-
mented Lagrangian multiplier method and a quadratic penalty
is used to convert the problem into a unconstrained optimiza-
tion problem as follows:

L({uk}, {ωk}, λ) =

= α

K∑
k=1

∥∥∥∥∂t[(δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥∥2
2

+

+

∥∥∥∥f(t)− K∑
k=1

uk(t)

∥∥∥∥2
2

+

〈
λ(t), f(t)−

K∑
k=1

uk(t)

〉
; (5)

where λ is Lagrangian multiplier, α is the balancing parameter
of the data-fidelity constraint.

The alternate direction method of multipliers (ADMM)30 is
used to solve the original minimization problem. In ADMM
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algorithm, the solutions of one variable is solved assuming the
other variables are known. The expression for updating uk at
the n+ 1’ iteration is written as:

un+1
k =

= argmin
uk∈X

{
α

∥∥∥∥∂t[(δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥∥2
2

+

+

∥∥∥∥f(t)−∑
i

ui(t) +
λ(t)

2

∥∥∥∥2
2

}
; (6)

where ωk denotes the ωn+1
k ,

∑
i

ui(t) denotes
∑
i 6=k

ui(t)
n+1.

Making use of the Parseval/Plancherel Fourier isometry un-
der the L2 norm, the problem of the formulas solved in spectral
domain:

ûn+1
k =

= argmin
ûk,uk∈X

{
α

∥∥∥∥jω[(1 + sgn(ω + ωk))ûk(ω + ωk)]

∥∥∥∥2
2

+

+

∥∥∥∥f̂(ω)−∑
i

ûi(ω) +
λ̂(ω)

2

∥∥∥∥2
2

}
. (7)

The variable ω can be replaced by ω − ωk in the first term:

ûn+1
k =

= argmin
ûk,uk∈X

{
α

∥∥∥∥j(ω − ωk)[(1 + sgn(ω))ûk(ω)]

∥∥∥∥2
2

+

+

∥∥∥∥f̂(ω)−∑
i

ûi(ω) +
λ̂(ω)

2

∥∥∥∥2
2

}
. (8)

In the above expression, the first term vanishes for negative
frequencies:

ûn+1
k =

= argmin
ûk,uk∈X

{∫ ∞
0

4α(ω − ωk)2|ûk(ω)|2+

+2

∣∣∣∣f̂(ω)−∑
i

ûi(ω) +
λ̂(ω)

2

∣∣∣∣2∂ω}. (9)

The solution of this quadratic optimization problem is read-
ily found by letting the first variation vanish for the positive
frequencies:

ûn+1
k (ω) =

=

(
f̂(ω)−

∑
i 6=k

ûi(ω) +
λ̂(ω)

2

)
1

1 + 2α(ω − ωk)2
; (10)

where ωk is computed at the center of gravity of the corre-
sponding mode’s power spectrum. It can be seen that Wiener
filtering is embedded in the VMD algorithm, which makes it
much more robust to sampling and noise. In order to obtain the
mode in time domain, inverse Fourier transform is applied to
the filtered analytic signal.

To update frequencies ωk, the relevant problem is as follow-
ing:

ωn+1
k =

= argmin
ωk

{∥∥∥∥∂t[(δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥∥2
2

}
. (11)

As before, the optimization can be transferred to spectral
domain:

ωn+1
k =

= argmin
ωk

{∫ ∞
0

(ω − ωk)2|ûk(ω)|2∂ω
}
. (12)

The quadratic problem is solved as:

ωn+1
k =

∫∞
0
ω|ûk(ω)|2∂ω∫∞

0
|ûk(ω)|2∂ω

. (13)

Update for λ:

λn+1 = λn + τa(f − un+1
k (t)); (14)

where τa is time-step of the dual ascent.
Variational mode decomposition complete algorithm is as

follows:
Initialize {û1k}, {ω̂1

k}, λ̂1, n← 0

Repeat
n← n+ 1

or k = 1 : K do
Update ûk for all ω ≥ 0:

ûn+1
k (ω)←

f̂(ω)−
∑
i<k

ûn+1
i (ω)−

∑
i>k

ûni (ω) +
λ̂n(ω)

2

1 + 2α(ω − ωnk )2
.

(15)

Update ωk:

ωn+1
k ←

∫∞
0
ω|ûn+1

k (ω)|2∂ω∫∞
0
|ûn+1
k (ω)|2∂ω

. (16)

end for
Dual ascent for all ω ≥ 0:

λ̂n+1(ω)← λ̂n(ω) + τa

(
f̂(ω)−

∑
k

ûn+1
k (ω)

)
. (17)

Until convergence:
∑
k

‖ûn+1
k − ûnk‖22/‖ûnk‖22 < ε

2.2. Setting the Number of Modes
VMD algorithm and EMD algorithm are based on two dif-

ferent theoretical frameworks. Unlike EMD, the signal pro-
cessing by VMD requires a predetermined number of modes.
The different number of modes of decomposition will have an
impact on the decomposition results and then the final fault
diagnosis. Selecting the appropriate number of modes of de-
composition is crucial to the proposed fault diagnosis method.
This research determines the number of modes K by analyz-
ing and comparing the spectrum of original signal and decom-
posed IMFs, and then proposes the general principles of deter-
mination number of modes.

The vibration data of roller bearings in this paper come
from Case Western Reserve University (CWRU).31 The out-
race fault bearing vibration signal is decomposed into differ-
ent sets of modes, or different K values of VMD algorithms.
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Figure 1. Spectrum of original signal and each K mode components: (a) orig-
inal signal, (b) K = 2, (c) K = 3, (d) K = 4, (e) K = 5.

To avoid the influence of other factors, balancing parameters
were set as constants. Figure 1 shows the spectrum of each set
mode components and the original vibration signal spectrum.
The spectrum shows that different sets of modes had effects
on the result of the signal decomposition. When K = 2 (too
few modes), the VMD algorithm is equivalent to the adap-
tive Wiener filter, the important information will be discarded.
Indeed, as shown in Fig. 1b, the high frequency band above
2000 Hz is mostly discarded. If the characteristic information
is contained in the high frequency band, the important infor-
mation will be missing after VMD algorithm processing in this
condition.

On the other hand, when K = 5 (too many modes), the
same parts of the signal spectrum are shared by two or more
different modes. As shown in Fig. 1e, some frequency of mode
U1 and mode U2 are overlap, their center frequencies coincide.
The characteristic information will be shared by two or more
modes, this result in the weak signal fault characteristic like
the incipient fault of rolling bearing is difficult to be identified.

Figure 2. VMD results of bearing vibration signal with outer race fault.

Based on the above analysis, the general principles of de-
termine the number of modes decomposition when extracting
signal characteristic using the VMD algorithm is proposed as
follows:

(1) Avoid mode mixing. Mode mixing will reduce the in-
tensity of characteristic information, which increase the diffi-
culty of weak information extraction. Many researchers have
studied the mode mixing problem of the EMD algorithm and
proposed the improved methods.12, 32 But, as long as the appro-
priate number of K modes are being chosen, the mode mixing
problem of the VMD algorithm can be avoided.

(2) Reserve all characteristics. The main purpose of decom-
posing signal is to extract the information that the original sig-
nal contains. We hope that the modes decomposition contains
all the feature of the decomposed signal, which can extract the
useful information instead of discarding the useful informa-
tion.

According to the above principles and comparing the dif-
ferent number of modes and the original signal spectrum in
Fig. 1 shows: both K = 2 (too few modes) and K = 5 (too
many modes) is not the appropriate sets of the decomposi-
tion and the frequency band 2000 Hz–4000 Hz are mostly dis-
carded when K = 2. So, K = 4 is a more appropriate set
for the decomposition when analyzing this signal. The results
processed by VMD are shown in Fig. 2.

3. PERMUTATION ENTROPY

3.1. Basic Principle of Permutation Entropy

The concept of entropy stems from the ideas of physics,
which measures the disorder degree of a system. The larger
entropy value indicates a more complex system. Permutation
entropy (PE) was proposed by Bandt and Pompe23 for de-
tecting the dynamic change of the time series. According to
the Takens-Maine theorem, the phase space of a time series
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{X(i), i = 1, 2, ..., N} can be reconstructed as:

x(1) x(1 + τ) . . . x(1 + (m− 1)τ)
...

...
...

x(i) x(i+ τ) . . . x(i+ (m− 1)τ)
...

...
...

x(G) x(G+ τ) . . . x(G+ (m− 1)τ)

 ; (18)

where m is the embedded dimension, it is an important fac-
tor in determining the reconstruction quality of phase space.
The proper value of m can correctly estimate the topological
characteristics of the original state space. τ is the time de-
lay value. The theory holds that any delay time value can be
taken in a noise-free, infinitely long one-dimensional time se-
ries. However, in practice, general time series contain noise
and have limited length. Therefore, it is necessary to select an
appropriate delay time value and extract the feature vectors of
the phase space. G is the number of vectors in phase space
reconstruction, G = N − (m− 1)τ . m number of real values
contained in each x(i) can be arranged in an increasing order
as:

{x(i+ (j1 − 1)τ) ≤ x(i+ (j2 − 1)τ) ≤
≤ ... ≤ x(i+ (jm − 1)τ)}; (19)

where j1, j2, ..., jm is the column index of the reconstruction
component elements.

For a given embedding dimension, it will bem! possible per-
mutations. If each permutation is considered as a symbol se-
quence, l, the probability distribution is Pl. Thus, based on the
Shannon entropy definition the permutation entropy of a given
time series {X(i), i = 1, 2, ..., N} can be defined as:

PE(m) = −
k∑
l=1

Pl lnPl. (20)

The permutation entropy of order m can be normalized as:

PE = PE(m)/ ln(m!); (21)

where 1/ ln(m!) is a normalization factor such that 0 ≤
PE(m)/ ln(m!) ≤ 1. The value of permutation entropy can
represent the randomicity of the time series, and it describes
local order structure of the time series. It can be known that
a bigger PE value represents more random and irregular of time
series. The smaller the value of PE, the more regular the time
series is.

3.2. Parameters Setting for Permutation
Entropy

In the calculation of permutation entropy, it is necessary to
consider and determine the parameters, such as data length
N , embedded dimension m and time delay. Different param-
eters will have impact on the calculation of the permutation
entropy. In order to investigate the effect of parameters on
PE calculation, we calculate the PE values of rolling bearing
vibration signal as the time series under different value of pa-
rameters.

Figure 3. The PE values of vibration signals with different time delays.

Figure 4. The PE values of vibration signals with different lengths.

The relationship between PE value and time delay is shown
in Fig. 3, where PE calculated by selecting the data lengthN =

1024, time delay τ = 1–6, under the dimension m = 2–8. We
can clearly see that when τ takes 1–6, there are no significant
changes with the same embedded dimension. Thus, time delay
τ = 1 is used to calculate the PE in this paper.

Bandt and Pompe23 recommended the value of embedded
dimension m = 3–7. If the embedded dimension is too small,
such as 1 or 2, permutation entropy cannot detect the dynamic
changes of the mechanical vibration signals exactly. On the
other hand, when m is too large, reconstruction of phase space
will homogenize vibration signals, and it will be difficult to
detect changes in time series.27 Cao and Tung33 found that the
valuem = 5, 6 or 7 seems to be the most suitable for capturing
the periodic windows in a transient time series. After a series
of test, we set m = 6 in this paper.

The data length is also an important parameter in the cal-
culation of the PE value. In the process of calculation, it is
found that, too small N would cause computational results to
be no statistical significance. However, in order to accurately
find transitional signals, data length N should not be too large
either. Figure 4 shows PE values of vibration signals with data
length N = 256, 512, 1024, 2048 and 4096 by selecting m =

2–8, τ = 1. It can be seen that when embedded dimension
m ≤ 5, PE values are small change with the increase of the
data length. Table 1 shows the permutation entropy and the
differences between the different data length of the vibration
signal. We can see that the permutation entropy difference de-
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Table 1. PE and PE differences of vibration signal with different lengths.

Data length 256 512 1024 2048 4096
PE 0.772 0.85 0.894 0.922 0.935

Difference 0.078 0.044 0.028 0.013 -

Figure 5. Flow chart of the proposed method.

creases with the increase of the data length. PE value is sta-
bilized when the data length is larger than 1024. Thus, we set
data length N = 2048 to calculate the permutation entropy of
the rolling bearing vibration signal in this paper.

4. THE PROPOSED METHOD

We proposed a hybrid approach using SVM and PE to ex-
tract the characteristic information, and SVM to classify the
fault types. The proposed method combing the advantages
of VMD on signal decomposition and the property of the PE
which can detect the randomness and dynamic mutation of vi-
bration signals. The vibration signals of the rolling bearing are
decomposed into sets of IMFs by variational mode decompo-
sition. Then, the PE values of the IMFs are calculated to form
the feature vectors. Finally, the fault feature vectors are fed
into SVM to classify the faulty types. The complete process of
the proposed method flow chart is shown in Fig. 5.

The main steps of the proposed method are as follows:
(1) Collect the normal status, inner race fault, outer race

fault and ball fault vibration signals of rolling element bear-
ing.

(2) Each vibration signal data is divided into several subse-
quences of a certain length.

(3) The vibration signal is processed by VMD and a set of
IMF components will be obtained.

(4) PE values of IMF components are calculated, and the
PE values are considered as the fault feature vectors of subse-
quences signal.

(5) The feature vectors of different conditions are used to
train the SVM, and the SVM classification models of each con-
dition are obtained.

Figure 6. Vibration signals of rolling bearing under different working
conditions.

(6) Test vibration signals are collected from the rolling bear-
ing for diagnosis, and the feature vectors are obtained accord-
ing to above steps. The feature vectors are put into the trained
SVM to specify rolling bearing fault type.

5. EXPERIMENTAL DATA ANALYSIS

The experimental vibration data of roller bearings also come
from Case Western Reserve University. The normal status, in-
ner race fault, outer race fault and ball fault of the bearing vi-
bration signals are divided into some non-overlapping sections
with the data length N = 2048. The four working conditions
time waveform of rolling bearing vibration signals are shown
in Fig. 6. Each condition has 40 samples, and there are to-
tal 160 samples. 25% samples of the total samples, namely
10 samples in each condition will be randomly selected as the
training data, and the remaining samples are used as the testing
data.

We applied the VMD algorithm to decompose the training
vibration signals with four conditions. Four IMF components
are obtained in each sample data. We then calculated the PE
value of the IMF components to extract the fault features, and
the average of PE feature vectors are shown in Fig. 7. A total
40 feature vectors collected from the training vibration signal
of the four conditions were used to train the VMD classifier. In
this study, a one against all SVM model of multi-class classi-
fication is used to distinguish the four bearing conditions. Per-
mutation entropy feature of each condition is taken as a pos-
itive class, and the remaining three conditions as the negative
class. Then input the SVM classifier to train the SVM predic-
tion model.

The testing features of the remaining 120 testing samples
are obtained according to the proposed method and fed into
the well trained SVM classifier. The results are listed in Ta-
ble 2. The overall classification accuracy rate of the proposed
method is 97.5%. We can see from the results table that one
inner race fault is diagnosed as ball fault, and two outer race
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Figure 7. The feature vectors of PE.

Figure 8. Flow chart of the comparison method.

faults are diagnosed as the inner race faults. While the accu-
racy of the normal status and the ball fault is 100%.

In order to demonstrate the effects of the number of training
samples, different training set sizes are selected to train SVM
classification model, and the remaining samples are used to
test the classification model. The results are presented in Ta-
ble 3, where the percentages of training samples are 20%, 30%,
40%, 50% and 60%. The accuracy rate increases with the in-
crease of the training samples. When the percentage of sam-
ples is 50%, the proposed method accuracy is up to 100%. In-
deed, the large number of training samples will establish more
accurate model. Whereas, it increases the computational com-
plexity of the SVM algorithm.

To illustrate the important role of VMD decomposition, the
proposed method is compared with those of wavelet packet de-
composition (WPD) and EEMD decomposition, which use PE
to extract the feature vectors and SVM as classifier. The pro-
cess is shown in Fig. 8.

The selection and feature extraction method of vibration sig-
nals data of the bearing is same to the proposed method. We
select the first four IMFs decomposed by EEMD, which almost
contain all energy of the original signal, to extract the feature

vectors. The wavelet packet scale is 2, and the 4 wavelet co-
efficients are obtained to extract the feature vectors. The vec-
tors were then used for training the SVM model and testing
the classifier model. The classification results are listed in Ta-
ble 4 and Table 5.

In Table 4, normal status, inner race fault and ball fault
recognition accuracy of EEMD method is 100%. But 5 outer
race fault samples are diagnosed as the inner race fault. Thus,
the average accuracy of the EEMD method is 95.83%, which
is lower than the VMD method. Table 5 shows that the normal
status and inner race fault recognition accuracy of the wavelet
packet decomposition method is also 100%. But 2 inner fault
samples are diagnosed as ball fault, and 4 ball fault samples are
diagnosed as inner race fault. The average accuracy of wavelet
packet decomposition method is 95%. It can be seen that the
proposed feature extraction method can obtain a better success
rate. From the comparison results we can see that the proposed
method is efficient for rolling bearing fault diagnosis, and the
overall classification rate is higher, to a certain extent, than
ensemble empirical mode decomposition and wavelet packet
decomposition.

6. CONCLUSIONS

Aiming at extracting characteristics information of rolling
bearing vibration signal, a hybrid approach integrating VMD
and PE is proposed in this work. The rolling bearing vibration
signal is decomposed into a set of IMFs by VMD algorithm.
PE values of IMFs are calculated as the feature of the vibration
signal. The PE values are composed as feature vector and fed
into SVM model to implement fault diagnosis. The normal,
inner race fault, outer race fault and ball fault signals of rolling
bearing are tested and verified.

The VMD algorithm is applied to rolling bearing vibration
signals processing, which can decompose signal into band-
limited intrinsic mode functions and provide non-mode mix-
ing and feature-rich data components for the following fea-
ture extraction and fault classification. Permutation entropy
can detect the randomicity and dynamic mutations of vibration
signals, and the characteristics information of rolling bearing
vibration signals are extracted as much as possible combining
with VMD. As compared to the EEMD and wavelet packet
decomposition method, a higher classification rate is achieved
by using the proposed. Therefore, the proposed method has
a potential application for development of real time condition
monitoring and fault diagnosis system.
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Table 2. Classification results based on VMD and PE.

Fault type Test sample
Classification results

Classification rate (%)
Overall

classification rate (%)Normal status Inner race fault Outer race fault Ball fault
Normal status 30 30 0 0 0 100

97.5Inner race fault 30 0 29 0 1 96.67
Outer race fault 30 0 2 28 0 93.33

Ball fault 30 0 0 0 30 100

Table 3. Classification results under different training samples.

Training sample (%) 20 30 40 50 60
Classification rate (%) 96.1 98.21 98.89 100 100
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