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This work focuses on the dynamical behaviour and bifurcations of a vertically supported Jeffcott rotor system
having a transverse crack and nonlinear stiffness characteristics at the primary, sub-harmonic, and super-harmonic
resonance cases. The nonlinear restoring force due to the bearing-clearance, the crack breathing, the disc eccentric-
ity, and the orientation angle between the crack and imbalance direction are considered in the system model. The
equations governing the system motion are derived and solved analytically by applying the Multiple Scales Per-
turbation Technique (MSPT). The slow-flow modulating equations are obtained and the spinning speed response
curve is plotted. The whirling orbit and amplitude spectrum are constructed in the three considered resonance
cases. The acquired results provide a better understanding of the main reasons of the super- and sub-harmonic
resonance excitations. In additions, we concluded that the suitable resonance case that can be used for early de-
tections of the cracks in the rotating shafts is the sub-harmonic resonance case. Finally, the obtained results are
confirmed numerically and compared with the work published in the literature.

NOMENCLATURE

y1, ẏ1, ÿ1 Dimensionless displacement, velocity, and
acceleration of the disc geometric center at
Y1-direction

y2, ẏ2, ÿ2 Dimensionless displacement, velocity, and
acceleration of the disc geometric center at
Y2-direction

a1, a2 Dimensionless whirling amplitudes of the
disc geometric center at Y1 and Y2-directions.

µ1, µ2 Dimensionless linear damping coefficients at
Y1 and Y2-directions, respectively.

ω Dimensionless linear natural frequency of the
cracked system.

β Dimensionless cubic nonlinearity coefficient.
Ω Dimensionless spinning speed of the disc.
γ The orientation angle between the crack di-

rection and imbalance direction.
f Dimensionless disc-eccentricity magnitude.
α Dimensionless parameter representing the rel-

ative reduction of the shaft-stiffness due to the
crack.

1. INTRODUCTION

Rotating machines have an important role in modern indus-
try due to their numerous applications such as automobile en-
gines, turbo-machinery, pumps, high-speed compressors, gen-
erators, aerospace, steam and gas turbines, etc. The existence
of vibration in such machines is an inherent phenomenon,
which initiates because of the dynamic interaction between the
stator and rotating parts, the shaft cracks, and the mass imbal-
ance. The existence of cracks in a machine shaft can eventually
lead to catastrophic failures and dangerous accidents. There-

fore, studying the dynamic behaviour of cracked rotors has re-
ceived considerable attention of researchers for many years.

Comprehensive reviews on the dynamic behaviour of a rotor
system with transverse cracks have been presented by Wauer1

and Dimarogonas,2 where the authors reported many dynam-
ical phenomena that can be used to diagnose the presence of
cracks on machine rotors. Gasch3 investigated the dynamic
behaviours of a simple rotor system with a transverse crack
on its shaft by using the hinge model. Based on the breath-
ing crack model, the equations of motion for a simple rotor
system has been formulated and studied by Jun, et al.4 The
authors reported that the vibration behaviour due to the shaft
crack could be recognized from the second horizontal har-
monic components measured near the second harmonic res-
onant speed. Cheng, et al.5 discussed the influences of the
orientation angle between the crack direction and the imbal-
ance eccentricity on the vibrations level of a cracked Jeffcott
rotor system at synchronous whirling. They concluded that the
maximum vibration peak occurs when the orientation angle is
zero, while the minimum vibration peak happens at orientation
angle equal to π.

Sinuou and Lees6 applied the alternate frequency/time do-
main approach to analyze the dynamic response of a rotor sys-
tem having a breathing crack. It was found that the change
of the dynamic characteristics of the rotor system near half of
the resonant speed is a positive indication of the presence of
a breathing crack. Sinuou and Lees7, 8 introduced nonlinear
studies to the rotor system with a cracked shaft. The harmonic
balance and the continuation method have been combined to
analyze the system periodic motion. The authors concluded
that the whirling motion at half the critical speed and at the crit-
ical speed could be considered as indicators of the existence of
a breathing crack. In addition, Sinuou9 studied a cracked ro-
tor system numerically with the crack breathing model. He
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illustrated that the evolutions of the sub-harmonic resonance
component that was excited at 2:1 and 3:1 resonance cases can
be used to detect the cracks in the rotating machines.

Chen, et al.10 discussed the influence of the crack depth
on the whirling amplitude of a rotor system. The authors re-
ported that, at the critical speed, the whirling amplitude does
not affect the crack depth if it is less than 50%. However, the
small crack depth has a significant effect on the whirling mo-
tion at higher harmonics. Han and Chu11 investigated the ef-
fects of double cracks on the dynamic behaviour of the rotor-
bearing system. The authors concluded that the existence of
two cracks on the rotor shaft have a significant influence on
system behaviour that differs completely from that of a sys-
tem with one crack. Dai and Chen12 investigated the nonlinear
response of a cracked rotor system that had asymmetrical vis-
coelastic supports. The authors utilized the harmonic balance
method to study the effect of different parameters such as the
crack-depth, crack-position, disc-position and disc-thickness.
Lin and Chu13 investigated the effect of torsional excitation on
a cracked rotor system. AL-Shudeifat, et al.14 applied har-
monic balance method and breathing crack mechanism to ex-
plore the dynamic characteristics of a cracked rotor system.
They concluded that the results from the theoretical model are
very close to the practical system if the length and diameter
of the shaft are large. However, when the crack thickness is
narrow, the breathing of the crack becomes more similar to the
theoretical model. Jun and Gadala15, 16 analyzed the dynamic
behaviour of the cracked rotor system using the additional
slope and bending moment at the crack position. Ishida17 stud-
ied different resonant cases of cracked Jeffcott rotor system.
Hou, et al.18 investigated both 2:1 and 3:1 sub-harmonic reso-
nances of aircraft cracked rotor systems that were subjected to
maneuver load. The authors applied the multiple scales pertur-
bation method to study local bifurcations of the system at the
considered resonance cases.

In most articles concerning crack detection in rotating ma-
chines, the authors used the linear model of a horizontally sup-
ported Jeffcott rotor system to simulate the dynamic behaviour
change due to existence of a crack on their shafts. The most
applied analytical techniques are the numerical ones. Addi-
tionally, the dynamic behaviour of a vertically supported Jef-
fcott rotor system with nonlinear stiffness characteristics has
not been investigated. Therefore, a vertically supported Jeff-
cott rotor system with nonlinear stiffness and a transverse crack
on its shaft has been studied within this article. The disc eccen-
tricity, the breathing crack mechanism, and the orientation an-
gle between the crack and imbalance directions are considered
in the system model. Multiple scales perturbation technique is
employed to obtain an analytical solution at the different reso-
nance cases. Bifurcation analysis for the different system pa-
rameters is conducted. Then, the acquired analytical results are
confirmed numerically. The presented results may contribute
to better understanding of the main reasons of the super- and
sub-harmonic resonance excitations, and the orientation angle
that has a significant effect on the oscillation amplitude. The
suitable resonance case that can be used for early detections of
a crack in the rotating shafts has been defined. By the end, a
comparison with previously published work is included.

2. SYSTEM MODELLING AND
APPROXIMATE SOLUTION

Figures 1a and 1b illustrates a schematic diagram for a ver-
tically supported Jeffcott rotor system, where G denotes the
disc geometric center, O is the intersection point of both the
disc plane (i.e. Y1Y2 plane) and the bearing axis (OY3), and
r represents the horizontal distance between G and O. The
restoring force Fr by the shaft stiffness and the supporting
bearings is considered a nonlinear function of r such that
Fr = k1r + k2r

3. Accordingly, the restoring forces at Y1 and
Y2 directions are FY1 = Fr cos(θt) = k1y1 + k2(y2

1 + y2
2)y1

and FY2
= Fr sin(θt) = k1y2 +k2(y2

1 +y2
2)y2. Therefore, the

equations that govern the dynamical behaviours of a vertically
supported Jeffcott rotor system that having a transverse-crack
on its shaft can be expressed as follows:18–20

mÿ1 + c1ẏ1 + k1y1 + k2(y3
1 + y1y

2
2) =

medθ
2 cos(θt+ γ) +R1; (1a)

mÿ2 + c2ẏ2 + k1y2 + k2(y3
2 + y2

1y2) =

medθ
2 sin(θt+ γ) +R2; (1b)

where m is the mass of the disc, c1 and c2 are the linear damp-
ing coefficients, k1 and k2 are the linear and nonlinear stiff-
ness coefficients, ed represents the disc eccentricity, θ is the
disc spinning speed, γ is the orientation angle between the
crack direction (Gζ) and the imbalance direction (Ge), R1, R2

represent the parametric forces exerted due to the time vary-
ing stiffness that resulting from the shaft crack, O − Y1Y2Y3

is stationary-coordinate system, O − y1y2 is the loci of the
geometric-center G, and O− ζη is a rotational coordinate sys-
tem, which rotates by the disc spinning speed.

2.1. Parametric Forces Due to the Crack-
Breathing

It is assumed that the initial tendency of the rotational axis
Oζ (i.e. the crack direction) is parallel to Y1-axis as illustrated
in Fig. 1c. Therefore, the parametric forces at Y1 and Y2 direc-
tions are R1 and R2, respectively, which can be represented as
follows:3, 5, 18

R1 = F (θt)∆k yζ cos(θt)

= F (θt)∆k
[
y1 cos(θt) + y2 sin(θt)

]
cos(θt); (2a)

R2 = F (θt)∆k yζ sin(θt)

= F (θt)∆k
[
y1 cos(θt) + y2 sin(θt)

]
sin(θt); (2b)

where ∆k represents the maximum reduction of the shaft stiff-
ness when the crack is fully opened, and ∆kF (θt) describes
the variation of the shaft-stiffness as a function of the rotation
angle (θt), where F (θt) is given as follows:

F (θt) =
1

2

(
1 + cos(θt)

)
. (3)

The derivation of Eqs. (2a), (2b) and (3) can be found in detail
in Gasch.3 During the rotation of the shaft, the crack opens
and closes according to rotational angle magnitude as shown
in Fig. 2, where if the rotational angle θt ≈ 0◦, the crack is
considered fully opened, while at θt ≈ 180◦, the crack is as-
sumed fully closed. Substituting Eq. (3) into Eqs. (2a)–(2b),
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Figure 1. (a) Jeffcott rotor system, (b) coordinate system of the disc, and (c) Schematic diagram of the cracked shaft cross section.

and then inserting the resulting equations into Eqs. (1a)–(1b),
we get

mÿ1 + c1ẏ1 +

(
k1 −

∆k

4

)
y1 + k2y

3
1 + k2y1y

2
2 =

medθ
2 cos(θt+ γ) +

∆k

4

y1

3∑
j=1

qj cos(jθt) + y2

3∑
j=1

fj sin(jθt)

; (4a)

mÿ2 + c2ẏ2 +

(
k1 −

∆k

4

)
y2 + k2y

3
2 + k2y

2
1y2 =

medθ
2 sin(θt+ γ) +

∆k

4

y2

3∑
j=1

pj cos(jθt) + y1

3∑
j=1

fj sin(jθt)

. (4b)

Introducing the dimensionless parameters t∗ =
√

k1
m t, y

∗
1 =

y1
e , y∗2 = y2

e into Eqs. (4a)–(4b), and omitting the asterisk for
brevity (where e is a representative length that has a magnitude
of the same order as the imbalance ed), we get the following
dimensionless equations of motion

ÿ1 + µ1ẏ1 + ω2y1 + βy3
1 + βy1y

2
2 =

fΩ2 cos(Ωt+ γ) +

α

y1

3∑
j=1

qj cos(jΩt) + y2

3∑
j=1

fj sin(jΩt)

; (5a)

ÿ2 + µ2ẏ2 + ω2y2 + βy3
2 + βy2y

2
1 =

fΩ2 sin(Ωt+ γ) +

α

y1

3∑
j=1

fj sin(jΩt) + y2

3∑
j=1

pj cos(jΩt)

; (5b)

where µ1 = c1√
k1m

, µ2 = c2√
k1m

, α = ∆k
4k1

, β = e2k2
k1

,

ω =
√

1− α, Ω = θ
√

m
k1

, f = ed
e , q1 = 3

2 , q2 = f2 = 1,

q3 = f1 = f3 = p1 = 1
2 , p2 = −1, p3 = −1

2 .

Figure 2. Model of stiffness-variation for the breathing crack.

2.2. Perturbation Analysis
Applying MSPT21–23 an approximate solution can be ob-

tained to Eqs. (5a)–(5b) by seeking the solution in the follow-
ing form:

yk(t, ε) = yk1(τ0, τ1) + εyk2(τ0, τ1) +O(ε2) and k = 1, 2;
(6)

where ε is a book-keeping dimensionless perturbation param-
eter, τ0 = t and τ1 = εt are the fast and slow time scales. In
terms of τ0 and τ1, the time derivatives can be written as

d

dt
= D0 + εD1;

d2

dt2
= D2

0 + 2εD0D1;

Dj =
∂

∂τj
; j = 0, 1. (7)

Parameters of Eqs. (5a)–(5b) had to be scaled so that the sys-
tem damping, nonlinearities, and excitation forces appeared in
the same perturbed equation as

µ1 = εµ1; µ2 = εµ2; α = εα; β = εβ; f = εf.
(8)
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Substituting Eqs. (6)–(8) into Eqs. (5a)–(5b), and equating co-
efficients of the same powers of ε, we get the following:
O(ε0):

(D2
0 + ω2)y11 = 0; (9a)

(D2
0 + ω2)y21 = 0; (9b)

O(ε1):

(D2
0 + ω2)y12 = −2D0D1y11 − µ1D0y11 − βy3

11 −
βy11y

2
21 + fΩ2 cos(Ωτ0 + γ) +

1

2
αy11

[
3 cos(Ωτ0) + 2 cos(2Ωτ0) + cos(3Ωτ0)

]
+

1

2
αy21

[
sin(Ωτ0) + 2 sin(2Ωτ0) + sin(3Ωτ0)

]
; (10a)

(D2
0 + ω2)y22 = −2D0D1y21 − µ2D0y21 − βy21y

2
11 −

βy3
21 + fΩ2 sin(Ωτ0 + γ) +

1

2
αy11

[
sin(Ωτ0) + 2 sin(2Ωτ0) + sin(3Ωτ0)

]
+

1

2
αy21

[
cos(Ωτ0)− 2 cos(2Ωτ0)− cos(3Ωτ0)

]
. (10b)

The solution of Eqs. (9a)–(9b) can be formulated as

y11 = Q1(τ1)eiωτ0 +Q1(τ1)e−iωτ0 ; (11a)

y21 = Q2(τ1)eiωτ0 +Q2(τ1)e−iωτ0 . (11b)

The coefficients Q1(τ1) and Q2(τ1) are unknown functions up
to this step of analysis, and the over bar denotes the complex
conjugate function. Inserting Eqs. (11a)–(11b) into Eqs. (10a)–
(10b), we get

(D2
0 + ω2)y12 = −

(
2iωD1Q1 + µ1iωQ1 + 3βQ2

1Q1 +

βQ1Q
2
2 + 2βQ1Q2Q2

)
eiωτ0 − β

(
Q3

1 +Q1Q
2
2

)
e3iωτ0 +

fΩ2

2
eiγeiΩτ0 +

1

4
α
(
3Q1 − iQ2

)
ei(Ω+ω)τ0 +

1

4
α
(
3Q1 − iQ2

)
ei(Ω−ω)τ0 +

1

2
α
(
Q1 − iQ2

)
ei(2Ω+ω)τ0 +

1

2
α
(
Q1 − iQ2

)
ei(2Ω−ω)τ0 +

1

4
α
(
Q1 − iQ2

)
ei(3Ω+ω)τ0 +

1

4
α
(
Q1 − iQ2

)
ei(3Ω−ω)τ0 + cc ; (12a)

(D2
0 + ω2)y22 = −

(
2iωD1Q2 + µ2iωQ2 + 3βQ2

2Q2 +

βQ2
1Q2 + 2βQ1Q1Q2

)
eiωτ0 − β

(
Q3

2 +Q2
1Q2

)
e3iωτ0 −

ifΩ2

2
eiγeiΩτ0 +

1

4
α
(
Q2 − iQ1

)
ei(Ω+ω)τ0 +

1

4
α
(
Q2 − iQ1

)
ei(Ω−ω)τ0 − 1

2
α
(
Q2 + iQ1

)
ei(2Ω+ω)τ0 −

1

2
α
(
Q2 + iQ1

)
ei(2Ω−ω)τ0 − 1

4
α
(
Q2 + iQ1

)
ei(3Ω+ω)τ0 −

1

4
α
(
Q2 + iQ1

)
ei(3Ω−ω)τ0 + cc ; (12b)

where cc denotes the complex conjugate of the preceding
terms, The reported resonance cases from Eqs. (12a)–(12b)
are the primary resonance (Ω ∼= ω), sub-harmonic resonance
(Ω ∼= 2ω), and super-harmonic resonance (Ω ∼= 2

3ω) cases.
The closeness of the spinning speed (Ω) to the obtained reso-
nance cases can be described quantitatively via introducing the

detuning parameters σ1, σ2, and σ3 as follows:

Ω = ω + σ1 = ω + εσ̂1;

Ω = 2ω + σ2 = 2ω + εσ̂2;

Ω =
2

3
ω + σ3 =

2

3
ω + εσ̂3. (13)

2.2.1. Primary Resonance Case (Ω = ω + σ1)

Inserting the first relation in Eq. (13) into Eqs. (12a)–(12b),
yields

(D2
0 + ω2)y12 = −

(
2iωD1Q1 + µ1iωQ1 + 3βQ2

1Q1 +

βQ1Q
2
2 + 2βQ1Q2Q2 −

fΩ2

2
eiγeiσ1τ1 −

1

2
α
(
Q1 − iQ2

)
ei2σ1τ1

)
eiωτ0 + NST ; (14a)

(D2
0 + ω2)y22 = −

(
2iωD1Q2 + µ2iωQ2 + 3βQ2

2Q2 +

βQ2
1Q2 + 2βQ1Q1Q2 +

ifΩ2

2
eiγeiσ1τ1 +

1

2
α
(
Q2 + iQ1

)
e2iσ1τ1

)
eiωτ0 + NST ; (14b)

where NST stands for non-secular terms. The solvability con-
ditions of Eqs. (14a)–(14b) are

2iωD1Q1 + µ1iωQ1 + 3βQ2
1Q1 + βQ1Q

2
2 + 2βQ1Q2Q2 −

fΩ2

2
eiγeiσ1τ1 − 1

2
α
(
Q1 − iQ2

)
ei2σ1τ1 = 0; (15a)

2iωD1Q2 + µ2iωQ2 + 3βQ2
2Q2 + βQ2

1Q2 + 2βQ1Q1Q2 +

ifΩ2

2
eiγeiσ1τ1 +

1

2
α
(
Q2 + iQ1

)
e2iσ1τ1 = 0. (15b)

To analyze Eqs. (15a)–(15b), we put Q1 and Q2 in the polar
form as

Q1 =
a1

2
eiψ1 ⇒

D1Q1 =
d

dτ1
Q1 =

d

εdt
Q1 =

ȧ1

2ε
eiψ1 + i

a1

2ε
ψ̇1e

iψ1 ; (16a)

Q2 =
a2

2
eiψ2 ⇒

D1Q2 =
d

dτ1
Q2 =

d

εdt
Q2 =

ȧ2

2ε
eiψ2 + i

a2

2ε
ψ̇2e

iψ2 ; (16b)

where aj , ψj (j = 1, 2), denote the oscillation amplitudes and
phases of the two vibrating modes. Substituting Eqs. (16a)–
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(16b) into Eqs. (15a)–(15b), yields

iωȧ1 − ωa1ψ̇1 +
i

2
εµ1ωa1 +

3

8
εβa3

1 +

1

8
εβa1a

2
2e
−i(2ψ1−2ψ2) +

1

4
εβa1a

2
2 −

1

2
εfΩ2eiγei(σ1τ1−ψ1) − 1

4
εαa1e

2i(σ1τ1−ψ1) +

i

4
εαa2e

i(2σ1τ1−ψ1−ψ2) = 0; (17a)

iωȧ2 − ωa2ψ̇2 +
i

2
εµ2ωa2 +

3

8
εβa3

2 +

1

8
εβa2

1a2e
i(2ψ1−2ψ2) +

1

4
εβa2

1a2 +

i

2
εfΩ2eiγei(σ1τ1−ψ2) +

1

4
εαa2e

2i(σ1τ1−ψ2) +

i

4
εαa1e

i(2σ1τ1−ψ1−ψ2) = 0. (17b)

Returning each scaled parameter in Eqs. (17a)–(17b) to its
original form (i.e. µ̂1 = µ1

ε , µ̂2 = µ2

ε , α̂ = α
ε , β̂ = β

ε ,
f̂ = f

ε , σ̂1 = σ1

ε2 , t = τ1
ε ), while assuming φ1 = σ1t−ψ1, and

φ2 = σ1t− ψ2, we get

iωȧ1 − ωa1ψ̇1 +
i

2
µ1ωa1 +

3

8
βa3

1 +
1

8
βa1a

2
2e
−i(2φ1−2φ2) +

1

4
βa1a

2
2 −

1

2
fΩ2ei(φ1+γ) − 1

4
αa1e

2iφ1 +

i

4
αa2e

i(φ1+φ2) = 0; (18a)

iωȧ2 − ωa2ψ̇2 +
i

2
µ2ωa2 +

3

8
βa3

2 +
1

8
βa2

1a2e
i(2φ2−2φ1) +

1

4
βa2

1a2 +
i

2
fΩ2ei(φ2+γ) +

1

4
αa2e

2iφ2 +

i

4
αa1e

i(φ1+φ2) = 0. (18b)

Eliminatingψ1, ψ2, and separating the real and imaginary parts
of Eqs. (18a)–(18b), yields the following four autonomous
slow-flow modulating equations that describe the evolution of
both vibration amplitudes and their phases at the primary res-
onance

ȧ1 = − 1

2
µ1a1 +

1

8ω
βa1a

2
2 sin(2φ2 − 2φ1) +

1

2ω
fΩ2 sin(φ1 + γ) +

1

4ω
αa1 sin(2φ1)−

1

4ω
αa2 cos(φ1 + φ2); (19a)

ȧ2 = − 1

2
µ2a2 −

1

8ω
βa2

1a2 sin(2φ2 − 2φ1)−

1

2ω
fΩ2 cos(φ2 + γ)− 1

4ω
αa2 sin(2φ2)−

1

4ω
αa1 cos(φ1 + φ2); (19b)

φ̇1 = σ1 −
3

8ω
βa2

1 −
1

8ω
βa2

2 cos(2φ2 − 2φ1)− 1

4ω
βa2

2 +

1

2a1ω
fΩ2 cos(φ1 + γ) +

1

4ω
α cos(2φ1) +

1

4a1ω
αa2 sin(φ1 + φ2); (19c)

φ̇2 = σ1 −
3

8ω
βa2

2 −
1

8ω
βa2

1 cos(2φ2 − 2φ1)− 1

4ω
βa2

1 +

1

2a2ω
fΩ2 sin(φ2 + γ)− 1

4ω
α cos(2φ2) +

1

4a2ω
αa1 sin(φ1 + φ2). (19d)

2.2.2. Sub- and Super-Harmonic Resonance Cases
(Ω = 2ω + σ2, Ω = 2

3ω + σ3)

Substituting the second relation in Eq. (13) into Eqs. (12a)–
(12b), and following the same procedure applied in section
2.2.1, we can get the amplitude-phase modulating equations
at sub-harmonic resonance case as

ȧ1 = − 1

2
µ1a1 −

1

8ω
βa1a

2
2 sin(φ1 − φ2) +

3

8ω
αa1 sin(φ1)− 1

8ω
αa2 cos

(
φ1 + φ2

2

)
; (20a)

ȧ2 = − 1

2
µ2a2 −

1

8ω
βa2

1a2 sin(φ2 − φ1) +

1

8ω
αa2 sin(φ2)− 1

8ω
αa1 cos

(
φ1 + φ2

2

)
; (20b)

φ̇1 = σ2 −
3

4ω
βa2

1 −
1

4ω
βa2

2 cos(φ1 − φ2)− 1

2ω
βa2

2 +

3

4ω
α cos(φ1) +

1

4ωa1
αa2 sin

(
φ1 + φ2

2

)
; (20c)

φ̇2 = σ2 −
3

4ω
βa2

2 −
1

4ω
βa2

1 cos(φ2 − φ1)− 1

2ω
βa2

1 +

1

4ω
α cos(φ2) +

1

4ωa2
αa1 sin

(
φ1 + φ2

2

)
; (20d)

where φ1 = σ2t− 2ψ1, φ2 = σ2t− 2ψ2.
From the third relation in Eq. (13) into Eqs. (12a)–(12b), we

can get the following amplitude-phase modulating equations
that describe the amplitudes and phases evolution at super-
harmonic resonance case as

ȧ1 = − 1

2
µ1a1 +

1

8ω
βa1a

2
2 sin(φ2 − φ1) +

1

8ω
αa1 sin(φ1)− 1

8ω
αa2 cos

(
φ1 + φ2

2

)
; (21a)

ȧ2 = − 1

2
µ2a2 −

1

8ω
βa2

1a2 sin(φ2 − φ1)−

1

8ω
αa2 sin(φ2)− 1

8ω
αa1 cos

(
φ1 + φ2

2

)
; (21b)

φ̇1 = 3σ3 −
3

4ω
βa2

1 −
1

4ω
βa2

2 cos(φ2 − φ1)− 1

2ω
βa2

2 +

1

4ω
α cos(φ1) +

1

4ωa1
αa2 sin

(
φ1 + φ2

2

)
; (21c)

φ̇2 = 3σ3 −
3

4ω
βa2

2 −
1

4ω
βa2

1 cos(φ2 − φ1)− 1

2ω
βa2

1 −

1

4ω
α cos(φ2) +

1

4ωa2
αa1 sin

(
φ1 + φ2

2

)
; (21d)

where φ1 = 3σ3t− 2ψ1, φ2 = 3σ3t− 2ψ2.
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3. STEADY STATE WHIRLING MOTION AND
ITS STABILITY

At steady state vibrations, we have ȧ1 = ȧ2 = φ̇1 = φ̇2 =
0. Substituting this condition into Eqs. (19a)–(19d), (20a)–
(20d), and (21a)–(21d), we get the steady state whirling ampli-
tude of the system at the three considered resonant cases. For
example, the steady state motion at the primary resonance can
be obtained from Eqs. (19a)–(19d) as follows:

− µ1

2
a1 +

β

8ω
a1a

2
2 sin(2φ2 − 2φ1) +

fΩ2

2ω
sin(φ1) +

α

4ω
a1 sin(2φ1)− α

4ω
a2 cos(φ1 + φ2) = 0; (22a)

− µ2

2
a2 −

β

8ω
a2

1a2 sin(2φ2 − 2φ1)− fΩ2

2ω
cos(φ2)−

α

4ω
a2 sin(2φ2)− α

4ω
a1 cos(φ1 + φ2) = 0; (22b)

σ1 −
3βa2

1

8ω
− βa2

2

8ω
cos(2φ2−2φ1)− βa2

2

4ω
+

fΩ2

2a1ω
cos(φ1) +

α

4ω
cos(2φ1) +

αa2

4a1ω
sin(φ1 + φ2) = 0; (22c)

σ1 −
3βa2

2

8ω
− βa2

1

8ω
cos(2φ2−2φ1)− βa2

1

4ω
+

fΩ2

2a2ω
sin(φ2)−

α

4ω
cos(2φ2) +

αa1

4a2ω
sin(φ1 + φ2) = 0. (22d)

Since there is no closed-form solution for Eqs. (22a)–(22d),
Newton-Raphson methods are utilized to obtain the numerical
solution. Additionally, the solution stability was determined
by examining the eigenvalues of the Jacobian matrix on the
right-hand side of Eqs. (19a)–(19d) according to the Lyapunov
indirect method.24 To obtain the Jacobian matrix, let a10, a20,
φ10, and φ20 be the steady state solution of Eqs. (19a)–(19d).
Therefore, we need to examine the behaviour of small devia-
tions from that solution. Thus, we assume that

a1 = a11 + a10; a2 = a21 + a20;

φ1 = φ11 + φ10; φ2 = φ21 + φ20;

⇓
ȧ1 = ȧ11; ȧ2 = ȧ21; φ̇1 = φ̇11; φ̇2 = φ̇21; (23)

where a11, a21, φ11, φ21 are perturbations that are assumed
to be small compared to a10, a20, φ10, and φ20. Substituting
Eq. (23) into Eqs. (19a)–(19d) and expanding for small a11,
a21, φ11, and φ21 with keeping the linear terms only, yields

ȧ11

ȧ21

φ̇11

φ̇21

 =


δ11 δ12 δ13 δ14

δ21 δ22 δ23 δ24

δ31 δ32 δ33 δ34

δ41 δ42 δ43 δ44



a11

a21

φ11

φ21

 . (24)

The above matrix is the Jacobian matrix and their coefficients
δkj {k, j = 1, 2, 3, 4} at the three considered resonant cases
are given in the appendix. The characteristic equations of the
Jacobian matrix can be given as follows:

λ4 + ∆1λ
3 + ∆2λ

2 + ∆3λ+ ∆4 = 0; (25)

where λ denotes the eigenvalues of the matrix, ∆1, ∆2, ∆3,
and ∆4 are the coefficient of Eq. (25), which is given in the ap-
pendix. According to Routh-Hurwitz criterion, the necessary

and sufficient conditions for the solution of Eqs. (19a)–(19d)
to be asymptotically stable are

∆1 > 0; ∆1∆2 −∆3 > 0;

∆3(∆1∆2 −∆3)−∆2
1∆4 > 0; ∆4 > 0. (26)

Based on Eqs. (22a)–(22d), the steady state solutions are ob-
tained, and corresponding to the conditions Eq. (26), the stabil-
ity criteria are checked at primary resonance case. The same
procedure for stability analysis has been applied to the other
resonance cases (i.e. sub- and super-harmonic).

4. RESULTS AND DISCUSSIONS

In this section, unless stated otherwise, the vibrations of a
nonlinear Jeffcott rotor system with a cracked shaft is investi-
gated at the following values of the system parameters: f =
0.025, α = 0.05, β = 0.05, ω =

√
1− α, µ1 = µ2 = 0.01,

γ = 0. Solid lines correspond to stable solutions, while dashed
lines correspond to unstable ones. Some of the obtained bifur-
cation diagrams have been validated numerically by solving
Eqs. (5a)–(5b) using ODE45 MATLAB solver. The numeri-
cal results are illustrated as small-circles when the bifurcation
parameter (i.e. σ1, σ2, σ3, α, γ, or f ) is varied from small to
large values and as big-dots when it is varied from the large to
small values.

4.1. Primary Resonance (Ω = ω + σ1)
Figure 3 illustrates the spinning speed-response curve when

the disc eccentricity f = 0.025 and α = 0 (i.e. without crack).
It is noticed from the figure, the bending of the curves to right
due to the cubic nonlinearity resulting in jump phenomenon
and bi-stable whirling orbits in a wide range above the ma-
jor critical speed ω (i.e. σ1 > 0). The spinning speed- re-
sponse curve of the cracked rotor system at different values of
α (i.e. different crack depths) at zero imbalance is shown in
Fig. 4. It is clear from the figure that as α increases, both the
vibration amplitude and bandwidth around σ1 = 0 increase.
The influence of both crack and disc eccentricity are displayed
in Fig. 5. It is noticed from the figure that the appearance of
new hidden stable whirling motions that are not excited during
the traditional acceleration or deceleration of the rotating disc,
but requires especial initial positions for the disc to be raised.
Therefore, it is expected that the cracked rotor system having
a nonzero eccentricity can perform three different whirling or-
bits if its spinning speed Ω is slightly higher than the major
critical speed ω.

In Fig. 6, the influence of the eccentricity on the spinning
speed-response curve is illustrated. It is evident from the fig-
ure that increasing the eccentricity magnitude, increases both
the whirling amplitude and differences between the tri-stable
whirling motions. Eccentricity-response curve at different val-
ues of σ1 is depicted in Fig. 7. The figure illustrates that tri-
stable whirling motions begin to emerge when σ1 ≥ 0.03. It is
worth stating that the generation of a tri-stable whirling motion
can be used as indication to the existence of a transverse crack.
Figures 8, 9, and 10 are numerically simulating points p1, p2,
and p3, that showed on Figs. 7g, and 7h. The figures confirm
the presence of three forward whirling orbits at the same spin-
ning speed (ω = ω + 0.05), which depends on the disc initial
position.
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Figure 3. Jeffcott rotor spinning speed-response curve when α = 0.0: (a) y1-mode, and (b) y2-mode.

Figure 4. Jeffcott rotor spinning speed-response curve when f = 0.0: (a) y1-mode, and (b) y2-mode.

Figure 5. Jeffcott rotor spinning speed-response curve when f = 0.025, α = 0.03: (a) y1-mode, and (b) y2-mode.
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Figure 6. Effect of increasing the eccentricity f on the Jeffcott rotor spinning speed-response curve: (a, c, e) y1-mode, and (b, d, f) y2-mode.
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Figure 7. Jeffcott rotor eccentricity-response curve at different spinning speed: (a, c, e, g) y1-mode, and (b, d, f, h) y2-mode.
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Figure 8. Simulation of point p1 on Fig. 7. (i.e. f = α = 0.05, Ω = ω + 0.05): (a) Jeffcott rotor whirling orbit and (c, d) frequency-spectrum when the disc
center G starts from the position y1(0) = y2(0) = 0.75.

Figure 9. Simulation of point p2 on Fig. 7. (i.e. f = α = 0.05, Ω = ω + 0.05): (a) Jeffcott rotor whirling orbit and (c, d) frequency-spectrum, when the disc
center G starts from the position y1(0) = −1.5, y2(0) = 1.

Figure 10. Simulation of point p3 on Fig. 7. (i.e. f = α = 0.05, Ω = ω + 0.05): (a) Jeffcott rotor whirling orbit and (c, d) frequency-spectrum, when the disc
center G starts from the position y1(0) = y2(0) = 0.0.

International Journal of Acoustics and Vibration, Vol. 24, No. 2, 2019 293



N. A. Saeed, et al.: BIFURCATION ANALYSIS OF A TRANSVERSELY CRACKED NONLINEAR JEFFCOTT ROTOR SYSTEM AT DIFFERENT. . .

Figure 11. Jeffcott rotor α-response curve at different spinning speed (Ω = ω + σ1): (a, c, e) y1-mode, and (b, d, f) y2-mode.
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Figure 12. Orientation angle γ-response curve at σ1 = −0.05, 0 : (a) y1-mode, and (b) y2-mode.

Figure 13. Jeffcott rotor spinning speed-response curve at the resonant case (Ω ∼= 2ω + σ2) when α = 0.01: (a) y1-mode, and (b) y2-mode.

Figure 14. Jeffcott rotor spinning speed-response curve at the resonant case (Ω ∼= 2ω + σ2) when α = 0.02: (a) y1-mode, and (b) y2-mode.
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The relative reduction of the linear shaft-stiffness (α) due to
the crack is plotted against the response amplitudes in Fig. 11
at different values of the spinning speed. It is clear from the
figure that the whirling amplitudes are monotonic increasing
functions in α, and the existence of the multi-valued solutions
depends on both the spinning speed and the relative reduction
of the linear shaft-stiffness. In Fig. 12, the orientation angle
(γ) is plotted versus the response amplitudes. The figure shows
that the maximum response amplitude may appear if the crack
and imbalance are in the same or opposite directions (i.e. when
γ = 0◦ or 180◦), and the minimum vibrations occurs if their
directions are perpendicular to each other (i.e. when γ = π

2 or
−π2 )

4.2. Sub-Harmonic Resonance (Ω = 2ω + σ2)

It is evident from Eqs. (20a)–(20d) that the whirling mo-
tions at sub harmonic resonance does not depend on the disc
eccentricity and hence the orientation angle. Therefore, the
only reason of the whirling motions at Ω ∼= 2ω is the exerted
parametric force due to time-varying stiffness. Figures 13, 14,
and 15 illustrate the spinning speed-response curve at three dif-
ferent values of α. It is clear from the figures that the whirling
motions have been excited when α ≥ 0.02 (i.e. ∆k

k1
≥ 0.08).

Moreover, increasing α, increases the whirling amplitudes and
bends the response curves to the right that leading to bi-stable
solutions, and jump phenomenon occurrence.

In Fig. 16, α-response curve is showed at different values
of the detuning parameter σ2, while Fig. 17 shows numerical
confirmation for one of the obtained curves in Fig. 16. As it is
clear from Figs. 13, 14, 15, and 17 that the obtained numerical
solutions of Eqs. (5a)–(5b) and acquired analytically results us-
ing multiples scale method show an excellent agreement. The
whirling orbits and frequency spectrum of the cracked Jeffcott
rotor system according to points p1 and p2 that illustrated in
Fig. 17 are given in Figs. 18 and 19, respectively. The two
figures show the existence of two stable whirling motions at
the same spinning speed (i.e. Ω = 2ω + 0.05), one of them
is the trivial solution and the other has a considerable whirling
amplitude.

4.3. Super-Harmonic Resonance (Ω= 2
3
ω+σ3)

The evolution of whirling amplitudes and their phase an-
gles does not depend on the disc eccentricity and the orien-
tation angle at the resonance case Ω ∼= 2

3ω as it clear from
Eqs.(21a)–(21d), but only on the parametric force α resulting
from the shaft crack. The spinning speed-response curve at
three different values of α is illustrated in Figs. 20, 21, and 22.
It is noticed from the figures that the whirling motion does not
arise unless α ≥ 0.03 (i.e. ∆k

k1
≥ 0.12), and has a narrow

bandwidth around σ3 = 0 compared to the whirling motion
at the sub-harmonic resonant case (i.e. Figs. 13, 14 and 15).
The system whirling orbit and frequency spectrum are numer-
ically simulated in Figs. 23 and 24 according to points P1 and
P2 that displayed on Fig. 22. Frequency spectrum shown in
Fig. 23 confirms that the forced oscillation with the harmonic
and super-harmonic components have been raised, which re-
sulting in more than one loop whirling orbit.

5. CONCLUSIONS

This research provides clear understanding and insight anal-
ysis for the nonlinear dynamics of a vertically supported Jef-
fcott rotor system having a transversely cracked shaft. An
approximate analytical solution was conducted to the system
equations of motion, and numerical confirmations for the ob-
tained results were carried out. The stiffness nonlinearity, the
disc imbalance, the breathing crack mechanism, and the orien-
tation angle are included in the system modelling. The anal-
yses illustrated the raising of three resonance cases that are
primary, sub-, and super-harmonic. Bifurcation analyses were
performed which provided global expectations to the system
response at wide range of its parameters. The evolution of the
reported resonance cases have been investigated. Accordingly,
this work may provide a possible basis for a cracked shafts di-
agnosis. Based on the above discussion, we may conclude the
following:

1. At primary resonance and when the spinning speed is
slightly higher than the major critical speed ω, it is no-
ticed the existence of two stable whirling orbits for non-
cracked rotor system, and three stable whirling orbits for
the cracked rotor-system, which one of them was named
“hidden-motion”.

2. Despite of the qualitative changes in the system dynamics
due to the shaft crack at primary resonance case, the accu-
rate detection of a crack may not be successfully achieved
due to the effect of the disc imbalance.

3. The whirling oscillations at sub- and super-harmonic res-
onance cases are independent of both the disc eccentric-
ity and the orientation angle γ, while the main reason of
their excitations is the exerted parametric force due to the
shaft-crack.

4. The evolution of the whirling motion at sub- and super-
harmonic resonance is a clear indication of the transverse
crack presence on the rotating shaft.

5. High sensitivity of the sub-harmonic resonance to the
crack presence, and the relative wide bandwidth around
σ2
∼= 0, make this resonance case the optimal to be uti-

lized for the crack diagnosis in the rotating machines.

6. In contrast to the horizontally supported Jeffcott rotor sys-
tem (Cheng, et al.5), at synchronous whirling (i.e. Ω ∼= ω)
the minimum vibration amplitude occurs when the orien-
tation angle γ ∼= ±π2 , and the maximum vibration ampli-
tudes appear at γ ∼= 0◦ or π.

7. All noticed vibrational motions are forward whirling or-
bits and no backward whirling motions have been re-
ported.

Compared to the above-mentioned articles, Jun, et al.4 con-
cluded that the residual imbalance has a little influence on the
sub-harmonic resonance, which made it the best case for crack
detection purposes. Cheng, et al.5 studied numerically the
effects of the breathing crack and the imbalance orientation
angle on the dynamical behaviour of a horizontally supported
Jeffcott rotor system. They reported that the diagnosis of a
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Figure 15. Jeffcott rotor spinning speed-response curve at the resonant case (Ω ∼= 2ω + σ2) when α = 0.05: (a) y1-mode, and (b) y2-mode.

Figure 16. Jeffcott rotor α-response curve at different spinning speed (Ω = 2ω + σ2): (a) y1-mode, and (b) y2-mode.

Figure 17. Numerical validations of Fig. 16 at σ2 = 0.05: (a) y1-mode, and (b) y2-mode.
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Figure 18. Simulation of point p1 on Fig. 17. (i.e. α = 0.05, Ω = 2ω + 0.05): (a) Jeffcott rotor whirling orbit and (c, d) frequency-spectrum when the disc
center G starts rotation from the position y1(0) = y2(0) = 0.0.

Figure 19. Simulation of point p2 on Fig. 17. (i.e. α = 0.05, Ω = 2ω + 0.05): (a) Jeffcott rotor whirling orbit and (c, d) frequency-spectrum when the disc
center G starts rotation from the position y1(0) = y2(0) = 0.5.

cracked rotor according to the system dynamic at primary res-
onance case might lead to incorrect data, which is consistent
with the results obtained in our work. Sinou7 investigated in-
fluence of the shaft crack on the Jeffcott rotor stability at 1

2 ,
1
3 super-harmonic resonance case. The author showed that the
system performs two or three whirling orbits per revolution
when the spinning speed is one-half or one-third of the critical
speed. In Sinou and Lees,8 Sinou,9 and Hou, et al.18 the au-
thors concluded that the increasing of the whirling amplitude
at the primary resonance or the evolution of a whirling mo-
tion at 1

2 , 1
3 super-harmonic resonance is an indication of the

shaft crack. Within this paper, the analysis illustrated that the
2
3 super-harmonic and 2

1 sub-harmonic resonance cases are ex-
cited due to the cracked shaft only, and their excitation magni-
tudes are independent of the disc eccentricity and hence the ori-
entation angle. In addition, the sub-harmonic resonance case is
more sensitive than the super-harmonic resonance to the crack
presence, which makes it the optimal for crack detection pur-
poses in a vertically supported Jeffcott rotor system.
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Figure 24. Simulation of point p2 on Fig. 22. (i.e. α = 0.05, Ω = 2
3
ω + 0.02): (a) Jeffcott rotor whirling orbit and (c, d) frequency-spectrum when the disc

center G starts rotation from the position y1(0) = y2(0) = 0.0.
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APPENDIX

Coefficients of Jacobian matrix at primary resonance case:

δ11 =
1

8ω

(
−4µ1ω + βa2

20 sin(2φ20−2φ10) + 2α sin(2φ10)
)
;

δ12 =
1

4ω

(
βa10a20 sin(2φ20−2φ10)− α cos(φ10+φ20)

)
;

δ13 =
1

4ω

(
−βa10a

2
20 cos(2φ20−2φ10)+2fΩ2 cos(φ10+γ)+

2αa10 cos(2φ10) + αa20 sin(φ10+φ20)
)
;

δ14 =
1

4ω

(
βa10a

2
20 cos(2φ20−2φ10) + αa20 sin(φ10+φ20)

)
;

δ21 =
−1

4ω

(
βa10a20 sin(2φ20−2φ10) + α cos(φ10+φ20)

)
;

δ22 =
−1

8ω

(
4µ2ω + βa2

10 sin(2φ20−2φ10) + 2α sin(2φ20)
)
;

δ23 =
1

4ω

(
βa2

10a20 cos(2φ20−2φ10) + αa10 sin(φ10+φ20)
)
;

δ24 =
1

4ω

(
−βa2

10a20 cos(2φ20−2φ10)+2fΩ2 sin(φ20+γ)−

2αa20 cos(2φ20) + αa10 sin(φ10+φ20)
)
;

δ31 =
−1

4ωa2
10

(
3βa3

10 + 2fΩ2 cos(φ10+γ) +

αa20 sin(φ10+φ20)
)
;

δ32 =
1

4ωa10

(
−βa10a20 cos(2φ20−2φ10)− 2βa10a20 +

α sin(φ10+φ20)
)
;

δ33 =
1

4ωa10

(
βa10a

2
20 sin(2φ10)− fΩ2 sin(φ10+γ)−

2αa10 sin(2φ10) + αa20 cos(φ10+φ20)
)
;

δ34 =
1

4ωa10

(
βa10a

2
20 sin(2φ20−2φ10) +

αa20 cos(φ10+φ20)
)
;

δ41 =
1

4ωa20

(
−βa10a20 cos(2φ20−2φ10)− 2βa10a20 +

α sin(φ10+φ20)
)
;

δ42 =
−1

4ωa2
20

(
3βa3

20 + 2fΩ2 sin(φ20+γ) +

αa10 sin(φ10+φ20)
)
;

δ43 =
1

4ωa20

(
βa2

10a20 sin(2φ20−2φ10) +

αa10 cos(φ10+φ20)
)
;

δ44 =
1

4ωa20

(
βa2

10a20 sin(2φ20−2φ10)+2fΩ2cos(φ20+γ)+

2αa20 sin(2φ20) + αa10 cos(φ10+φ20)
)
.

Coefficients of Jacobian matrix at sub-harmonic resonance
case:

δ11 =
1

8ω

(
−4µ1ω − βa2

20 sin(φ10−φ20) + 3α sin(φ10)
)
;

δ12 =
−1

8ω

(
2βa10a20 sin(φ10−φ20) + α cos

(φ10+φ20

2

))
;

δ13 =
1

16ω

(
−2βa10a

2
20 cos(φ10−φ20) + 6αa10 cos(φ10) +

αa20 sin
(φ10+φ20

2

))
;

δ14 =
1

8ω

(
βa10a

2
20 cos(φ10−φ20) + αa20 sin

(φ10+φ20

2

))
;

δ21 =
−1

8ω

(
2βa10a20 sin(φ20−φ10) + α cos

(φ10+φ20

2

))
;

δ22 =
1

8ω

(
−4µ2ω − βa2

10 sin(φ20−φ10) + α sin(φ20)
)
;

δ23 =
1

16ω

(
2βa2

10a20 cos(φ20−φ10)+αa10 sin
(φ10+φ20

2

))
;

δ24 =
1

16ω

(
−2βa2

10a20 cos(φ20−φ10) + 2αa20 cos(φ20) +

αa10 sin
(φ10+φ20

2

))
;

δ31 =
−1

4ωa2
10

(
6βa3

10 + αa20 sin
(φ10+φ20

2

))
;

δ32 =
1

4ωa10

(
−2βa10a20 cos(φ10−φ20)− 4βa10a20 +

α sin
(φ10+φ20

2

))
;

δ33 =
1

8ωa10

(
2βa10a

2
20 sin(φ10−φ20)−6αa10 sin(φ10)+

αa20 cos
(φ10+φ20

2

))
;

International Journal of Acoustics and Vibration, Vol. 24, No. 2, 2019 301

http://dx.doi.org/10.1016/j.ymssp.2007.11.005
http://dx.doi.org/10.1007/s11071-015-2009-1
http://dx.doi.org/10.1177/1077546307074577
http://dx.doi.org/10.1007/s11071-005-3937-y
http://dx.doi.org/10.1002/9783527617586


N. A. Saeed, et al.: BIFURCATION ANALYSIS OF A TRANSVERSELY CRACKED NONLINEAR JEFFCOTT ROTOR SYSTEM AT DIFFERENT. . .

δ34 =
1

8ωa10

(
−2βa10a

2
20 sin(φ10−φ20) +

2αa20 cos
(φ10+φ20

2

))
;

δ41 =
1

4ωa20

(
−2βa10a20 cos(φ20−φ10)− 4βa10a20 +

α sin
(φ10+φ20

2

))
;

δ42 =
−1

4ωa2
20

(
6βa3

20 + αa10 sin
(φ10+φ20

2

))
;

δ43 =
1

8ωa20

(
−2βa2

10a20 sin(φ20−φ10) +

αa10 cos
(φ10+φ20

2

))
;

δ44 =
1

8ωa20

(
2βa2

10a20 sin(φ20−φ10)− 2αa20 sin(φ20) +

αa10 cos
(φ10+φ20

2

))
.

Coefficients of Jacobian matrix at the super-harmonic reso-
nance case:

δ11 =
1

8ω

(
−4µ1ω + βa2

20 sin(φ20−φ10) + α sin(φ10)
)
;

δ12 =
1

8ω

(
2βa10a20 sin(φ20−φ10)− α cos

(φ10+φ20

2

))
;

δ13 =
1

16ω

(
−2βa10a

2
20 cos(φ20−φ10) + 2αa10 cos(φ10) +

αa20 sin
(φ10+φ20

2

))
;

δ14 =
1

16ω

(
2βa10a

2
20 cos(φ20−φ10)+αa20 sin

(φ10+φ20

2

))
;

δ21 =
−1

8ω

(
2βa10a20 sin(φ20−φ10) + α cos

(φ10+φ20

2

))
;

δ22 =
−1

8ω

(
4µ2ω + βa2

10 sin(φ20−φ10) + α sin(φ20)
)
;

δ23 =
1

16ω

(
2βa2

10a20 cos(φ20−φ10)+αa10 sin
(φ10+φ20

2

))
;

δ24 =
−1

16ω

(
2βa2

10a20 cos(φ20−φ10) + 2αa20 cos(φ20) +

αa10 sin
(φ10+φ20

2

))
;

δ31 =
−1

4ωa2
10

(
6βa3

10 + αa20 sin
(φ10+φ20

2

))
;

δ32 =
1

4ωa10

(
−2βa10a20 cos(φ20−φ10)− 4βa10a20 +

α sin
(φ10+φ20

2

))
;

δ33 =
1

8ωa10

(
−2βa10a

2
20 sin(φ20−φ10)−2αa10 sin(φ10)+

αa20 cos
(φ10+φ20

2

))
;

δ34 =
1

8ωa10

(
2βa10a

2
20 sin(φ20−φ10) +

αa20 cos
(φ10+φ20

2

))
;

δ41 =
1

4ωa20

(
−2βa10a20 cos(φ20−φ10)− 4βa10a20 +

α sin
(φ10+φ20

2

))
;

δ42 =
−1

4ωa2
20

(
6βa3

20 + αa10 sin
(φ10+φ20

2

))
;

δ43 =
1

8ωa20

(
−2βa2

10a20 sin(φ20−φ10) +

αa10 cos
(φ10+φ20

2

))
;

δ44 =
1

8ωa20

(
2βa2

10a20 sin(φ20−φ10) + 2αa20 sin(φ20) +

αa10 cos
(φ10+φ20

2

))
.

Coefficients of Eq. (26):

∆1 = −
(
δ11 + δ22 + δ33 + δ44

)
;

∆2 = δ11δ44 + δ11δ33 + δ11δ22 + δ22δ44 + δ22δ33 +

δ33δ44 − δ21δ12 − δ31δ13 − δ41δ14 − δ34δ43 −
δ32δ23 − δ42δ24;

∆3 = δ11δ32δ22 − δ31δ12δ23 − δ11δ22δ44 − δ42δ23δ34 +

δ31δ22δ13 + δ32δ23δ44 − δ11δ22δ33 − δ32δ43δ24 −
δ21δ32δ13 + δ11δ42δ24 + δ31δ13δ44 + δ21δ12δ44 −
δ21δ42δ14 + δ42δ24δ33 + δ21δ12δ33 − δ11δ33δ44 −
δ22δ33δ44 − δ41δ12δ24 − δ31δ43δ14 + δ41δ22δ14 +

δ22δ34δ44 + δ41δ14δ33 + δ11δ34δ43 − δ41δ13δ34;

∆4 = − δ41δ12δ23δ34 − δ21δ12δ33δ44 + δ11δ22δ33δ44 −
δ11δ42δ24δ33 + δ21δ32δ13δ44 + δ11δ32δ43δ24 −
δ41δ32δ13δ24 + δ41δ32δ23δ14 − δ11δ22δ34δ43 +

δ21δ12δ34δ43 − δ31δ12δ43δ24 − δ21δ42δ13δ34 −
δ21δ32δ43δ14 + δ31δ12δ14δ44 + δ31δ42δ13δ24 −
δ31δ42δ23δ14 + δ21δ42δ14δ33 + δ11δ42δ23δ34 −
δ11δ32δ23δ44 + δ31δ22δ43δ14 − δ31δ22δ13δ44 +

δ41δ12δ24δ33 − δ41δ22δ14δ33 + δ41δ22δ13δ34.
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