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Tubular ultrasonic motors are one of the simplest yet effective methods to realize rotational ultrasonic motors. In
this paper, electromechanical modeling of a tubular ultrasonic motor is achieved using assumed-modes method,
Euler-Bernoulli beam theory, and constitutive equations of piezoelectricity. Upon validating the analytical model
using finite element method (FEM) and the experimental result, effect of the design variables on speed is inves-
tigated using sensitivity analysis. The result proves that the speed of the motor is almost independent of the tube
length for a constant length ratio of the tube and piezo-plates. Excellent agreement between the experimental and
analytical model is observed. In addition, a set of guidelines for high speed designing of the stator is proposed.
The results of this paper greatly facilitate design of tubular ultrasonic motors with respect to achieving high speed
motor.

1. INTRODUCTION

Ultrasonic motors, transducers that convert ultrasonic vibra-
tions to the rotational or linear movement, are valuable for the
industry and researchers due to their superior characteristics
compared to the conventional electromagnetic motors. Some
of the advantages are the ability of miniaturization, simple
structure, high reliability, and functioning capability in high
magnetic field and vacuum spaces such as in a spacecraft.1

Tubular ultrasonic motors (TUSM) are designed to produce
rotary movement in a simple and straightforward way. Two
types of travelling and standing wave tubular ultrasonic motors
are categorized and investigated by researchers.2–9 Attached
piezoelectric transducers to the stator convert alternative volt-
age signal to vibration. Thereby, the resulted tooth displace-
ments by stator vibrations rotates the shaft through friction
force.

Parametric optimization of ultrasonic motors intended to en-
hance the characteristics of motors such as speed, torque, and
efficiency is one of the main fields of research in ultrasonic
motor designs. Pons et al.10 proposed a new optimization ap-
proach for the stator of travelling ultrasonic motors, according
to the stator, rotor, and interference model. Zhao et al.11 in-

troduced an optimization design method for a three-degree of
freedom ultrasonic motor using constrained variable metric al-
gorithm (CVMA). Mathematical models combined with finite
element method (FEM) is used for estimating the character-
istics of a motor. Experimental mode shapes and frequencies
were in good agreement with those predicted by the program.
Ko et al.12 investigated the curvature of the stator tip and its
normal force along with the stress analysis to improve torque,
speed, transmitted power, and efficiency. Eventually they val-
idated the influence of the stator’s tip on the motor charac-
teristics using experimental data. Zhu et al.13 prepared the
electromechanical coupled dynamic model of bar-type ultra-
sonic motor based on finite element method. An optimal model
to achieve design requirement was derived using the pattern
search algorithm. Zhang et al.14 accomplished multi-objective
optimization of rod shape ultrasonic motor using sequential
quadratic programming and finite element method. The pro-
posed design method achieved significant enhancement in the
design indexes and was effective in the design of ultrasonic
motors.

This paper concerns the electromechanical modeling, sen-
sitivity analysis, and the design of tubular ultrasonic motors,
which aim to increase motor speed. Main dimensions of the
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Figure 1: Tubular ultrasonic motor (a) stator, rotor and preload
of TUSM, (b) Illustration of the procedure that motor converts
bending ultrasonic vibration to rotational motion of the rotor.

tube and piezo-plates are considered as design variables and
their effects on the speed of the motor are investigated using
analytical model and sensitivity analysis. Finally, a guideline
for design of the motor to achieve high speed is proposed and
the main points are explained.

2. ELECTROMECHANICAL MODELING OF
THE STATOR OF A TUBULAR
ULTRASONIC MOTOR

2.1. Tubular Ultrasonic Motor

A tubular ultrasonic motor is composed of a stator, rotor,
and preload mechanism as shown in Fig. 1a. In this figure, the
stator is composed of piezoelectric ceramic plates that are con-
nected using an adhesive layer to a metallic tube. As a result of
applying a sinusoidal voltage on the piezoelectric plates with
a frequency near the first bending mode, the stator will con-
vert electric voltage to mechanical vibration shown in Fig. 1b.
Energy from this vibration is transferred through the contact
of the tooth between the stator and the rotor, and eventually
causes rotation of the rotor. Further description of this mo-
tor is discussed by Park and He.8 In the following section we
develop an approximated analytical solution using assumed-
modes formulation, Euler-Bernoulli beam theory, and consti-
tutive equations of piezoelectricity.

Figure 2a shows the electric circuit used for the excitation of
the stator. A sinusoidal voltage vS is generated with a voltage
source with an internal resistance of R . In Fig. 2b, the length
of the tube and piezo-plates, the width of tube and piezo-plates,
and the thickness of the tube are denoted by Ltb, Lp, atb, ap,
and t, respectively. The system of coordinates is located on
the left side of the stator where x1 coincides with the neutral

Figure 2: Stator of TUSM, (a) electric circuit for excitation of
the motor (b) Main geometrical parameters of the stator and its
cross section.

axis of the stator. Directions of polarization of the piezo-plates
oppose each other.

2.2. Extended Hamiltonian’s Principle and
Lagrange’s Equations

Because of the difficulty associated with the section varia-
tion along the stator, Hamiltonian’s principle is utilized to de-
rive an approximated solution for electromechanical vibration
of the stator. Extended Hamiltonian’s principle considering
electrical energy stored in the piezo-plates is:15

∫ t2

t1

(δT − δU + δWie + δWnc) dt = 0; (1)

where δT , δU , δWie, and δWnc are first variation of total kine-
matic energy, total elastic potential energy, internal electric en-
ergy stored in the piezo-plates, and energy dissipation due to
the structural damping of the stator, respectively. These terms
can be addressed using generalized coordinates qn(t) and their
time derivatives q̇n(t) as:

T = T (q1, q2, . . . , qn, q̇1, q̇2, . . . , q̇n); (2a)

U = U(q1, q2, . . . , qn); (2b)

Wie = Wie(q1, q2, . . . , qn). (2c)

Taking first variation of the energy terms in (2) and substi-
tuting in (1), integrating by parts, gives Lagrange’s Eq. (3b):

254 International Journal of Acoustics and Vibration, Vol. 24, No. 2, 2019



V. Dabbagh, et al.: ELECTROMECHANICAL MODELING AND HIGH SPEED DESIGN OF A TUBULAR ULTRASONIC MOTOR

∫ t2

t1

{
n∑
k=1

[
∂T

∂qk
− ∂U

∂qk
+
∂Wie

∂qk
−

d

dt

(
∂T

∂q̇k

)
+Qk

]
δqk

}
dt = 0; (3a)

d

dt

(
∂T

∂q̇k

)
− ∂T

∂qk
+
∂U

∂qk
− ∂Wie

∂qk
= Qk; (3b)

where Qk is generalized non-conserved force derived by
δWnc =

∑n
k=1Qkδqk.

2.3. Lagrange’s Equations for
Euler-Bernoulli Beam and Piezo-Plates

Total kinematic energy of the stator is comprised of the tube
and piezo-plates kinetic energy given by:

T =
1

2

(∫
Vtb

ρtb
∂ut

∂t

∂u
∂t
dVtb +

∫
Vp

ρp
∂ut

∂t

∂u
∂t
dVp

)
; (4)

where ρtb, ρp, Vtb, and Vp are density and volume of
tube and piezo-plates, respectively and superscript t stands
for transpose. Vector of displacement is denoted by u =

[u1 u2 u3]t . Assuming that the beam is vibrating in its
first bending mode we can assume that the transverse and axial
displacement is zero which means u = [u1 0 0]t.

Elastic potential energy stored in the tube and piezo-plates
is:

U =
1

2

(∫
Vtb

StTdVtb +

∫
Vp

StTdVp

)
; (5)

where S and T are the strain and mechanical stress vector, re-
spectively.

According to Euler-Bernoulli beam theory, strain vector can
be related to curvature of beam by:16

S = [−x3
∂2u1(x1, t)

∂x1
2

0 0]. (6)

Neglecting axial and in-plane deformation, strain vector will
be: S = [S1 0 0]t

Using Hooke’s law we can relate stress to strain on the tube
using the following relations:

T1 = YtbS1, T2 = 0, T3 = 0; (7)

where Ytb is the elastic modules of the tube material.
Similarly, we could obtain stress of the piezo-plates using

the equation of converse piezoelectric effect:1

T1 = YpS1 − e31E3 = Yp

(
−x3

∂2u1

∂x3
2

)
+ e31

vp
tp

; (8)

where E3 is the electric field across thickness of the piezo-
plates tp by the external voltage of vp. In addition, piezoelec-
tric stress constant is denoted by e31.

Electric energy stored in the piezo-plates depends on the
vector of the electric field, E and electric displacement field
D = [0 0 D3]t as follows:

Wie =
1

2

∫
Vp

EtDdVp. (9)

We can obtain electric displacement using the equation of
direct piezoelectric effect:1

D3 = e31S1 + ε33E3 = e31(−x3
∂2u1

∂x1
2

)− εs
33

vp
tp

; (10)

where εS33 is permittivity of piezoelectric material at constant
strain.

Using assumed-modes method, the following series defines
the stator transverse deformation u1(x, t) at a given point along
the stator:

u(x1, t) =

N∑
r=1

ar(t)φr(x1) = {q}t{φ(x1)}; (11)

where {a} and {φ(x1)} are the vector of generalized coordi-
nates and shape functions that satisfy global boundary condi-
tions, respectively, andN is the total number of modes utilized.
Since the stator is in free-free condition, we can use the mode
shapes of free-free Euler-Bernoulli beam defined as:16

φn(x1) = [sinh(knx1/Lt) + sin(knx1/Lt)]+

sin(kn)− sinh(kn)

cosh(kn)− cos(kn)
[cosh(knx1/Lt) + cos(knx1/Lt)];

(12)

where kn is solution of cos(kn) cosh(kn) = 1.
Employing equations (4)– (11) in (3b), matricial form of La-

grange’s equation for a tubular ultrasonic motor could be de-
rived as follows:

m{ä}+ d{ȧ}+ k{ȧ} − {θ}vp = 0. (13)

In the above equation, m and k are the mass and stiffness
matrix and θ is the electromechanical coupling vector. The
structural damping matrix, denoted by d, could be assumed
as a linear combination of the mass and stiffness matrix with
proportionality constants µ and γ as follows:16

d = µm + γk. (14)

In Eq. (13) element of mass, stiffness, and coupling vector
are given by:

mrl =

∫ L

0

(ρtbAtb + ρpAp)φr(x1)φl(x1)dx1; (15)

krl =

∫ L

0

(YtbItb + YpIp)φ
′′
r (x1)φ′′l (x1)dx1; (16)

θr =

∫ L

0

Jpφ
′′
r (x1) dx1. (17)

In the above equations, prime represents derivation with re-
spect to x1. Area and second area moment for the tube and
piezo-plates are defined by:

{Atb, Itb} =

∫∫
tb

{1, x3
2}dx3dx2; (18)

{Ap, Ip} =

∫∫
p

{1, x3
2}dx3dx2; (19)

International Journal of Acoustics and Vibration, Vol. 24, No. 2, 2019 255



V. Dabbagh, et al.: ELECTROMECHANICAL MODELING AND HIGH SPEED DESIGN OF A TUBULAR ULTRASONIC MOTOR

and coupled terms defined for convenience as:

Jp+ =

∫∫
p+

e31

tp
x3dx3dx2; (20)

where p+ shows that the integral must takes place on the piezo-
plates in which the electric field is imposed.

In Eq. (13), electric voltage vp is not equal to voltage of
the source vx because of voltage drop due to the internal resis-
tance. To derive voltage applied on the piezo-plates we can use
Eq. (10). Taking derivation with respect to time:

i(t) = −
∫
Ap

dD3

dt
dA =

∫
Ap

(e31x3
∂3u1

∂t∂x1
2

+ εs
33

v̇p
tp

)dA;

(21)
where i(t) is the electric current flow in the wire connected to
the electrode of the piezo-plates.

Referring to Fig. 2a and employing Kirchhoff’s circuit law,
the voltage on the piezo-plate’s electrode is:

vp(t) +Ri(t) = vs(t). (22)

Combining Eqs. (21) and (22), voltage of the piezo-plates is
derived by the following differential equation:

Cpv̇(t) +
v(t)

R
+ {θ}t{ȧ} =

vs
R

; (23)

where Cp =
εs
33
Ap

tp
is the piezo-plate capacitance. Equa-

tions (13) and (23) are coupled differential equations with the
transverse displacement and voltage of the piezo-plates as un-
knowns.

In our case, the piezoelectric motor is driven by a sinusoidal
voltage source and because Eqs. (13) and (23) are linear, we
can assume:

vs = Vse
jωt, {a} = {A }ejωt; (24)

where j is the imaginary unit. Substituting (24) in (13)
and (23) gives:

(k− ω2m + jωd){A} = {θ}V ; (25)

R−1
eq
V = −jω{θ}t{A}+R−1Vs. (26)

Substituting piezo-plate voltage from Eq. (26) at (25) gives:

{A} = [k− ω2m + jωd̃]−1{θ}Req
R
Vs; (27)

where d̃ = d +Req{θ}{θ}t is the electromechanical damping
and Req = ( 1

R + jCpω)−1.
The solution of Eq. (27) provides us the generalized co-

ordinates which depend linearly on the amplitude of voltage
source. In addition, natural frequencies of the system are the
solution in which the determinant of k−ω2m + jωd̃ becomes
zero.

3. STATOR DESIGN

One of the main drawbacks of ultrasonic motors is their rel-
ativity low speed in comparison to electromagnetic motors. In-
vestigating and identifying parameters that enhance the speed

Figure 3: Tooth displacement and contact with moving rotor.

of ultrasonic motors is crucial to expand their potential applica-
tions in the various fields. The functionality and performance
of the ultrasonic motors are defined and affected substantially
by their structural shape and dimensions. In the following, we
are interested in identifying the significant geometrical param-
eters’ effect on the speed of the motor.

Generally, in the standing wave ultrasonic motors, the tooth
of the stator follows an elliptical path as shown in Fig. 3.1 Dur-
ing some portion of this path, the tooth contacts with the mov-
ing rotor. Linear speed of the rotor is always lower than the
maximum linear speed of the tooth. As shown in Fig. 3, the
speed of the tooth is:

Vc = Atωnr sin(θ); (28)

where Vc is the velocity of the tooth displacement parallel to
the rotor motion,At is the displacement amplitude of the tooth,
and ωnr is the working frequency of the stator. When the tooth
begins to contact the rotor, its speed is lower or equal to the
speed of the rotor. The first case is stable while the last case is
unstable. In the stable case, because the speed of the rotor is
lower than the rotor speed, contact of the tooth with the rotor
reduces the speed of the rotor. On the other hand, the speed
of the tooth increases with time. Therefore, there is a point,
namely θe, in which the speeds of the rotor and the tooth be-
come equal. As a result, the speed of the rotor will be:

ωr = 2
At
atb

ωnr sin θe. (29)

3.1. Objective Function

The value of θe in Eq. (29) depends on many factors such as
the material of the tooth and rotor, contact properties, and es-
pecially the preload force.1 Analytical derivation of this angle
is very complicated and involves nonlinear differential equa-
tions. However, it is well known that the preload force reduces
speed while increasing output torque. Therefore, by having in-
sight about the effect of the preload, the effect of the preload is
not considered as a design variable.

The remaining three terms in Eq. (29) significantly influence
the speed of the motor. According to this equation, the speed of
the motor is directly related to the displacement of the tooth as
well as working frequency and inversely related to the width
of the tube. To achieve the highest possible speed, working
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frequency of the motor should be close to the fundamental nat-
ural frequency of the stator. For any arbitrary material and di-
mensions of the stator, the modeling methodology outlined in
section 2.2 could be utilized to calculate the natural frequency
as well as the displacement of the stator on its ends. There-
fore, the following function is defined as the objective function
which gives maximum speed in RPM units:

F =
60

π

At
atb

ωnr. (30)

3.2. The Design Variables
Although material characteristics of the tube and piezo-

plates influence the speed of the motor (usually due to the
practical consideration and easiness of prediction of its impact
on overall behavior of the motor) the, material of the motor
is excluded from the design space. Brass, because of its easy
machinability, considerably high density, and resistivity to ox-
idation is chosen as the tube material. Lead zirconate titanate,
PZT is used as piezo-plate.

The structural parameters that significantly influence the ve-
locity are chosen as length Ltb and width Wtb of the tube,
length Lp, and width Wp of the piezo-plates, and finally thick-
ness t of the tube as shown in Fig. 2. Because length and width
of the piezo-plates must always be less than the tube length
and width, instead of the piezo-plate length and width, the ra-
tio of them to corresponding length and width of the tube are
considered. In addition, because one of the main advantages
of ultrasonic motors is their ability to miniaturize, the range of
design variables are chosen to be in millimeter range with the
lower bound imposed by a fabrication limit as listed below:

Length of tube [mm]: 10 ≤ Ltb ≤ 30;
Width of tube [mm]: 2 ≤Wtb ≤ 5;
Lenght ratio Lp/Ltb: 0 ≤ Lp/Ltb ≤ 1;
Width ratio 4Wp/Wtb: 0 ≤Wp/Wtb ≤ 1;
Thickness of tube [mm]: 0.2 ≤ t ≤ 0.5.

3.3. Global Sensitivity Analysis: Morris
Method

To analyze the effect of the design variables on the ob-
jective function defined in Eq. (30) Morris method is em-
ployed.17 This method is a global sensitivity analysis method
that demonstrates the overall effect of each parameter on an ob-
jective function in a given design space. This method requires
computing of the elementary effects defined by:

di,j(X) =
f(X1, X2, . . . , Xi + ∆j , . . . , Xk)− f(X)

∆j
; (31)

where X is a normalized vector of the variable, where the
original value of parameter xi is given by xi = Xi(xi

max −
xi

min)+xi
min, and k is the number of parameters. ∆ is the res-

olution of sampling and is ∆j = j
m−1 where j = 1, 2, . . . ,m

and m is the number of levels.
In Morris method for each parameter there are two factors,

mean µi and variance σi, that show the overall influence of pa-
rameter and an estimate of the nonlinear and higher order effect
of parameter on an objective function, respectively. These two

Figure 4: Working mode shape of the motor (First bending
mode).

factors are defined by:

µi =
1

m

m∑
j=1

di,j(X); (32)

σi =

√√√√m

m∑
j=1

(di,j(X)− µi)2
. (33)

3.4. Modeling, Verification and Sensitivity
Analysis

The effect of the design variables on the speed of the mo-
tor is complicated and could not be intuitionally figured out.
Therefore, a modeling methodology outlined in section 2 is
employed. All the parameters required in the modeling are
listed in Table 1. Note that the value of the damping ratio is
selected tentatively as ζ = 0.05 and its experimental value de-
pends on the prototype adhesive layer and the tube structural
damping. For validation of the analytical model, a finite ele-
ment model of the stator is constructed. Figure 4 shows the first
bending mode of the stator at the frequency of 37.34 kHz and
the tooth displacement of 1.13 µm obtained by FEM mode.
Corresponding results by the analytical method, Eq. (27), is
37.61 kHz and 1.13 µm which is very close to the FEM model.

Using an analytical model, Eq. (28), and Morris sensitivity
analysis, Eqs. (32) and, (33), the effect of the design variables
on the speed, Eq. (30), is explored in Fig. 5. An important
and useful result illustrated in this figure is that, surprisingly,
the length of the tube does not have any significant effect on
the speed of the motor. It can be justified that during the varia-
tion of the tube length, other parameters remain constant which
means that the length of the piezo-plate to the length of the tube
remains constant, too. Increasing the length of the stator causes
the natural frequency and reduction of the motor’s stiffness.
Furthermore, increasing the piezo-plate length increases de-
veloped bending moment by piezoelectric which yield higher
deflection. The overall effect of the length on the natural fre-
quency and deflection counteract each other.
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Table 1: Mechanical and electrical properties of brass, PZT and voltage source, and dimensions of the motor.

Mechanical properties

Brass PZT
Density [kg/m3] Modulus of elasticity [Gpa] Density [kg/m3] Modulus of elasticity [Gpa]

8450 97 7800 66

Dimension [mm]

Length of tube Length of PZT-plate Width of tube Width of PZT-plate Thickness of tube
15.4 11.5 2 2 0.3

Other parameters

Piezoelectric stress Piezoelectric strain Thickness of Source internal PZT capacitance Voltage of
constant e31[ C/m2] constant d31[pm/Volt] PZT [mm] resistance R[Ω] per unit area [pF/mm2] source [V]

-12.54 -190 0.267 50 60 10

Figure 5: Morris sensitivity analysis for investigation of the
stator dimension on the motor speed.

Figure 5b shows variance of the elementary elements. Re-
sult of this figure shows that, except length and thickness of
the tube, other parameters have considerable variance which
can be the sign of nonlinearity and second order effect of these
parameters on the motor speed.

Figure 6 shows variation of the speed with respected to the
design variables normalized in their range. Again, there is a
negligible effect of the tube length and thickness on the speed.
Ratio variation of the piezo-plate to the tube length shows an
optimum point at approximately 80% of the stator length. In
addition, according to the result of this figure, approximately
80% of maximum speed could be achieved with a PZT length
half the tube length. Effect of width ratio on the motor speed
is almost linear. The speed of the motor reduces rapidly as
the width of the stator increases. The width of the tube is main
parameter of the tube that significantly affects the motor speed.

Figure 6: Variation of the motor speed with respected to the
normalized design variables.

According to the result, the following remarks, which aim
to enhance the speed of the motor, could be concluded:

• Length and thickness of the stator could be disregarded as
design variables because of their negligible effect on the
motor speed

• Width of the motor is a crucial parameter and minimum
value is recommended to achieve the highest speed

• Optimum length of the piezo-plate is about 80% of the
tube length

• Width of the piezo-plate must be close to tube width

In a more simplified case, length and width ratio are equal
to one. In this case, speed of the motor only related inversely
to the tube width. Therefore, Eq. (29) could be written in a
simpler form as follows:

ωr =
Ω

atb
; (34)

where Ω is the speed coefficient with unit of rad.m/s. This pa-
rameter for stators, which is constructed by the same materials
and imposed with same preload force, is identical.

4. EXPERIMENTAL RESULTS

To validate the analytical model, a prototype of the motor
with dimensions listed in Table 1 is fabricated. Precise machin-
ing and tight tolerance is controlled during fabrication. After
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Figure 7: Equipment used for measurement and excitation of
the motor.

Figure 8: Prototype of the motor and experimental set-up for
measuring working characteristics of the motor.

careful cutting of PZT-plates, a cyanoacrylate adhesive is uti-
lized to bond the PZT-plates to the tube surface. Before gluing,
the surface of the tube is cleaned and polished to remove oil
and other contaminants and to ensure strong bonding between
the PZT-plates and the tube.

The equipment employed for the measuring and exciting
of the motor includes two-channel function generator Agilent
33500B, high voltage amplifier piezo-system EPA-104, oscil-
loscope, and multi-meter which is shown in Fig. 7. A prototype
of the motor and the set-up for measuring speed and torque of
the motor is shown in Fig. 8. A photoelectric sensor is used to
measure speed of the motor. For measuring the torque, a fine
string connected to a small weight is utilized.

For measuring natural frequency of the stator one of the

Figure 9: Set-up for measuring natural frequency of the stator,
(a) one piezo-plate is connected to voltage source and another
opposite plate is connected to oscilloscope probe, (b) FFT of
voltage measurement of PZT-plate: vertical axis voltage in
dB unit and horizontal axis is frequency.

piezo-plates is connected to a sinusoidal voltage and generated
voltage at opposite piezo-plate is measured using an oscillo-
scope as shown in Fig. 9a. According to the piezoelectricity
theory, this voltage is proportional to the strain imposed on
the piezo-plate and, therefore, in resonance, this voltage must
be maximum. In order to reduce temperature and nonlinearity
effects, a sinusoidal voltage of 10 volt is applied on one PZT-
plate and its frequency is varied between 20 to 70 kHz. Results
have been shown in Fig. 9b with peak frequency of 37.4 kHz.
Compared to the theoretical result of 37.61 kHz, the result is
very close. Measured voltage at the resonant is approximately
6 volt. This voltage can be related to the tooth displacement
using piezoelectric constitutive equations and Euler-Bernoulli
beam model as described in the appendix A. Employing this
method gives 0.52 µm. To calculate analytical model, damping
ratio of the structure is required. For measuring damping of the
stator, half power method is applied.17 The natural frequency
of the stator is 37.4 kHz and the frequency where half power is
observed is 35.6 and 38.2 kHz. Therefore, using ζ = ∆f

2fn
we

have a damping ratio of 0.034. Repeating the calculation with
ζ = 0.034 and considering just one PZT-plate under electric
field results in 0.53 µm which demonstrates excellent agree-
ment.

Stall torque of the motor is measured using the weights con-
nected with a fine string to the end of the motor. The motor is
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Figure 10: Motor rotational speed versus frequency, Solid line:
Vp = 20 V and preload of 0.2 N, Dash line: Vp = 50 V and
preload of 0.5 N.

Figure 11: Motor rotational speed versus phase difference
(Working frequency 36.5 kHz).

tested with two preloads of 0.2 and 0.5 N with applied voltage
of 20 and 50 V pick voltage, respectively. Figure 10 shows
the speed versus frequency of driving voltage. As shown in
this figure, due to the temperate rise of the stator, working fre-
quency is reduced from 37.4 kHz to 36.5 kHz for applied volt-
age of 20 V pick and 35.5 kHz for applied voltage of 50 V pick.
In addition, the damping ratio also rises to 0.05. As seen in this
figure, maximum rotational speed with applied voltage of 20
and 50 V is close to 3,500 rpm and 4,000 rpm. Compared to
the results achieved with other researchers, the designed motor
achieves significantly higher speed. For instance, the motor de-
signed by Park and He8 and Zhang et al.6 achieved up to 1,000
and 3,000 rpm with driving frequency of 50 and 55 V, respec-
tively. The length of the motor designed in this paper is close to
that of the motor designed by Park and He, and three times that
of the motor designed by Zhang et al. It is worth mentioning
that according to Eq. (30) it is expected that by miniaturiza-
tion of the motor, its speed increases and the result obtained by
Zhang was expectable, while, the motor designed in this paper
achieved higher speed with bigger size than Zhang’s motor.

Figure 11 shows the velocity versus phase difference for ap-
plied voltage of 20 V and preload of 0.2 N. According to our
expectation, a higher velocity is achieved when the phase dif-
ference is close to 90◦.

Figure 12 presents motor speed versus applied voltage. As
seen, start-up voltage depends on applied preload. By raising
voltage, motor speed changes linearly at the beginning and al-
most remains constant at the end portion of the speed-voltage
diagram. The reason of not rising speed is mainly because of
the temperature and damping rise as well as changing of the
natural frequency of the stator.18

Result of measurement reveals that for a preload of 0.2 N

Figure 12: Motor speed versus applied voltage, Solid line:
Vp = 20 V and preload of 0.2 N and Working fre-
quency=36.5 kHz, Dash line: Vp = 50 V and preload of 0.5 N
and Working frequency=35.5 kHz.

with a maximum applied voltage of 20 V, current flow is
14.3 mA and stall torque is 54 µNm which pull 3.4 gram
up. For a preload of 0.5 N and maximum applied voltage of
50 V, current is 37 mA and stall toque is around 78.8 µNm and
4.96 gram.

5. CONCLUSIONS

This paper concerns electromechanical stator modeling of
a tubular ultrasonic motor. The model is verified with experi-
mental and FEM results and is used for identifying the effect of
the design variables including length of the tube, length ratio
of piezo-plate to the tube, width of tube, width ratio of piezo-
plate to the tube, and thickness of the tube on speed of the
motor. Results demonstrated that speed of motor is almost in-
dependent of the tube length for a constant piezo-plate to tube
length ratio and mainly determined by width of tube. This re-
sult could greatly facilitate design stage of a stator. A set of
guidelines for design of a high speed ultrasonic motor is pro-
posed and accordingly a prototype is fabricated. The motor
yields very high speed which verifies the method introduced in
this paper.

APPENDIX A

Piezoelectric constitutive equations for sensory application
are as follows:19

S1 = Yp
−1T1 + d31

vp
tp

; (A.1)

D3 = d31T1 + εs
33

vp
tp

; (A.2)

where d31 is the piezoelectric strain constant. In a case that
piezoelectric voltage is measured by an oscilloscope, because
of high impedance of the oscilloscope input, electric displace-
ment of the piezoelectric plate in Eq. (A.2) could be neglected.
Substituting T1 from (A.2) to Eq. (A.1) we have:

S̄1 =
εs
33

+ d2
31

Ypd31

vm
tp

; (A.3)

where vm is the measured voltage. In above equation S̄1 is
the average strain sensed by a piezo-plate. We can find ap-
proximated relationship between the average strain and tooth
displacement using Euler-Bernoulli beam theory and assuming
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that the stator vibrating mode is close to first bending mode of
free-free beam, Eq. (12) then we will have

S̄1 =
1

Lp

∫ (Lt+Lp)/2

(Lt−Lp)/2

atb
2

∂2u(x1)

∂2x1
dx1 =

Ae
atb
Lp

∂φ1(x1)

∂x1

∣∣
x1=(Lt+Lp)/2 ; (A.4)

where Ae is an unknown. Using equation (A.3) and (A.4) and
considering that the tooth displacement is δ = Ae φ(0) one can
find the tooth displacement by measuring voltage generated on
the piezo-plate. For the case that length of the piezo-plate is
equal to the tube length, tooth displacement could be calcu-
lated by:

δ =
1

4.7

Ltb
2

atb

εs
33

+ d2
31

Ypd31

vm
tp
. (A.5)
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