
Parametric Vibrations of Axially Moving Beams
with Multiple Edge Cracks
Murat Sarigül
Hafsa Sultan Mah. 4811 Sok. No:2/1 Yunusemre/Manisa, Turkey.

(Received 30 December 2015; accepted 31 January 2017)

Nonlinear transverse vibrations of axially moving beams with multiple cracks is handled studied. Assuming that
the beam moves with mean velocity having harmonically variation, influence of the edge crack on the moving
continua are investigated in this study. Due to existence of the crack in the transverse direction, the healthily beam
is divided into parts. The translational and rotational springs are replaced between these parts so that high stressed
regions around the crack tips are redefined with the springs’ energies. Thus, the problem is converted to an axially
moving spring-beam system. The equations of motion and its corresponding conditions are obtained by means of
the Hamilton Principle. In numerical analysis, the natural frequencies and responses of the spring-beam system
are investigated for principal parametric resonance in detail. Some important results are obtained; the natural
frequencies decreases with increasing crack depth. In case of the beam travelling with high velocities, the effects
of crack’s depth on natural frequencies seems to be vanished.

1. INTRODUCTION

The studying of a crack problem for vibrating systems has
been taking place in topic subjects. If a continuation consists
of any crack, the stress near the crack tips merges to infin-
ity. The effect of the crack on dynamic behavior of the beam
was simulated by means of the fracture mechanics methods.
When using these methods, generally two different approaches
have been followed: local flexibility and stress/strain func-
tions. Stress/strain functions are based on variation principle
and decay exponentially. According to loading type and crack
orientation on the beam, plate etc., the stress distributions near
crack tips could be formulated by means of opening and shear
mode Stress Intensity Factors (SIFs). Studies using these for-
mulations could be summarized in brief: for cracked continua
(beam, shaft, plate etc.), Dimarogonas summarized the studies
done between years 1970–1993,1 Sih proposed strain energy
density factor theory,2 and Wu studied maximum energy re-
lease rate criterion for a semi-infinite L-shaped crack.3 Tada
et al. presented SIFs of different modes.4 Anifantis and Di-
marogonas studied the system stability for the cracked col-
umn with vertical load.5 Christides and Barr presented an
exponential-type crack disturbance function.6 Shen and Pierre
proposed a similar approach for single-cracked beams.7 Chon-
dros et al. studied the lateral vibration of simply supported
beams.8 Yang et al. proposed an approach based on the stiff-
ness definition of cracked beams.9 Mazanoglu et al.10 used the
change of the strain energy distribution given by Yang et al.9

in order to analyze vibration of multiple-cracked non-uniform
beams. Developing a new model based on displacement field,
Behzad et al. studied simply supported beams with an edge
crack.11

For dynamics analysis of the cracked continua, springs have
been used widely. By the definition of local flexibility around
crack tip, cracked structures have been analyzed in several
models that use a massless spring or reduced cross-section.
Magnitudes of the local flexibility changes were estimated by
the fracture mechanics methods. According to these methods,

stress near the crack tip merges to infinity thus a singularity
occurs at the crack tip. Presenting this case by SIFs, stresses
in very small area were defined in terms of spring stiffness.
When finding spring stiffness for vibration analysis of cracked
structures, it is essential to have a load-deflection model for
the entire body. When doing so, it is assumed that the cracked
continuum consists of healthy parts connected by springs at
the position of crack. The solution of equation or equation set
was generally obtained by means of compatibility and conti-
nuity conditions at the crack location. For literature of cracked
continua, following studies could be summarized in brief: Os-
tachowicz and Krawczuk12 developed a new local flexibility
which was derived from the stress intensity factor by Anifantis
and Dimarogonas.5 Taking into account the crack location and
depth as well as the load, Sundermeyer et al. investigated a
cracked beam.13 Yokoyama et al. studied beams having edge
cracks of different depths at different positions.14 Wang et al.
studied simple supported Euler-Bernoulli type beam with sin-
gle edge open crack.15 Fernández-Sáez et al. studied funda-
mental frequencies of cracked Euler-Bernoulli beams.16 The
effect of mass attachment on the free vibrations of cracked
beams carrying a point mass has been discussed by Mermertas
et al.17 By using the nonlinear spring model, Mendelshon et al.
studied nonlinear free-vibration analysis of an Euler-Bernoulli
beam with an edge crack.18 Considering coupling of bend-
ing and longitudinal vibration of the cracked cantilever beam,
Rao et al. modeled the beam.19 Majkut studied the cantilever
beam with an edge crack by using translational and rotational
springs instead of the crack itself.20 The influence of location
and depth of the crack on the first and second natural frequen-
cies of flexural vibrations were analyzed. Loya et al. studied
flexural vibrations of cracked micro- and nano-beams.21 By
assuming the crossover flexibility constants to be too small,
the crack was modeled with rotational and linear springs for
clamped-clamped and simple-simple supporting cases.

Applying crack phenomenon to moving continua systems
is a new research field. Therefore, it is essential not to men-
tion too much of the background of studies done on moving
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Figure 1. Axially moving beam with edge cracks.

Figure 2. Spring-beam system.

continua. Moving continua’s problem is resulted from beam’s
pre-stress, beam’s axial velocity change, etc. Following studies
could be summarized as a background to axially moving con-
tinua: when studying axially moving beam, generally trans-
verse vibrations of it has been investigated. Simpson studied
the beam in unstressed case.22 Pasin analyzed periodically re-
ciprocating motion in axial direction,23 and Ponomareva and
van Horssen studied it in stretched case.24 When solving ax-
ially moving beam problem, different solution methods have
been used: the complex modal method25 and the variation
method,26 the method of multiple scales, and the method of
matched asymptotic expansions.27 Axially moving beams have
been analyzed by subjecting it to a transverse force,28 by hav-
ing small bending stiffness,29 and by considering multiple con-
centrated masses on the beam.30 The beam has been inves-
tigated under pinned-pinned supported case,31 under pinned-
pinned and clamped-clamped supported cases32 and while in
touch with a small mass under pinned-pinned and clamped-
clamped boundary conditions.33 Vibrations of axially mov-
ing beam have been examined as continuously incoming and
outgoing semi-infinite beam parts.34 When coming to vibra-
tion type, axially moving beams have been studied under pla-
nar vibration35 and nonlinear planar vibration.36 They’ve also
been studied in the case of the coupled nonlinear resonant re-
sponse37 and coupling dynamics of transverse vibration and
longitudinal vibration.38 The beam has been studied with as-
sumption of parametric vibrations.39 Axially accelerating vis-
coelastic beams have been investigated under the combination
and principal parametric resonances.40 In this study, vibrations
of axially moving beams with multiple edge cracks have been
investigated. For moving continua, cracks are assumed to be

distributed with equal spans throughout the beam length. The
beam moves with harmonically varying average transport ve-
locity. A mathematical model of the continua has been built by
using springs instead of the crack itself. By dividing the beam
with n cracks in number into n+ 1 parts and connecting them
with springs, a beam-spring system has been constituted as a
conjugate of cracked beam. The crack’s influence on axially
moving beam has been investigated according to the crack’s
position, height, as well as crack number. Damping factors
and viscosity could be introduced when investigating nonlin-
ear vibrations of the continua with crack.

2. MODELLING OF THE PROBLEM

An axially moving beam with multiple edge cracks could be
drawn on x-y domain as seen in Fig. 1. We’ve assumed that
the beam having length L consists of n edge cracks in number.
The cracks are located at an arbitrarily distance xc from sim-
ple support at left hand side. Cracks have different depths ac
throughout beam’s height (h). We’ve assumed that the beam is
of Euler-Bernoulli beam type. Under the assumption the beam
moves with harmonically varying average transport velocity,
v = v(t), and transverse vibrations of the beam have been in-
vestigated.

For modeling continuum media (beam, plate, etc.) includ-
ing cracks, one can assume that there are high stressed regions
occurring around the crack tips when considering the whole
system. These high stresses are resulted in stiffness reduction
of the beam. To define these high stresses being concentrated
at very small regions, translational, rotational, and interaction
springs could be used in means of equivalence of the system.
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Figure 3. Geometry of a cracked beam.

In other means, a cracked beam could be considered a spring-
beam system by means of statics. As seen in Fig. 2, the beam
with one edge crack has been divided into two parts. These
parts have been connected with each other by using springs.
w = w(x, t) is deflection of the beam, and x1 is the crack lo-
cation. The resulting system could be defined as spring-beam
system. Using the rotational type spring (k11) is due to bending
moment (M ). Using the translational spring (k22) is due to ax-
ial force (F ), which is resulted from axial stretching. For trans-
verse vibrations of Euler-Bernoulli beam, effects of rotational
and translational springs have been calculated separately. By
using only two springs for one crack, it is easy to study the
effect of one crack on transverse vibrations of axially moving
beams. But when using Timoshenko beam theory, interaction
between springs must be considered. This refers to a coupled
case between axial force and bending moment.

2.1. Finding Spring Constants
In this study, an edge crack has been considered. Geometry

of a cracked beam is seen in Fig. 3.
In the light of strength of materials,41 normal stresses acting

on the reduced cross section are given as

σx,w =
My

Ic
; σx,u =

F

Ac
; (1)

where M is bending moment, F is axial force, Ac = b(h− a)
and Ic = b(h − a)3/12 are the cross-section and the sec-
ond area inertial moment of the remaining part of the cracked
beam, respectively. a is crack’s depth, h and b are width and
height of the beam, respectively. Indexes w and u denote pa-
rameters related bending moment and axial force, respectively.
The distance y is found from Fig. 3 as

y =
h− a

2
→ y = y − b. (2)

Singular stress distribution in fracture mechanics4 could be
written in the following form:

σsx,w =
KI,w√

2πr
; σsx,u =

KI,u√
2πr

; (3)

where r refers to the distance from the crack tip. KI,w and
KI,u are opening mode Stress Intensify Factor (SIF) due to
bending moment and axial force, respectively. If one browses
the study done by Wang and Lee, it would be seen that the
procedures we follow are the same.15 In this study, axial force
has been considered in addition to bending moment.

Considering stress conditions as σsx,w = σx,w and σsx,u =
σx,u at the crack tips, the following expressions could be ob-
tained:

KI,w = σsx,w
√

2πr =
M

Ic

(
h− a

2
− bw

)√
2πbw;

KI,u = σsx,u
√

2πr =

(
P

Ac

)√
2πbu. (4)

The distances bw and bu could be determined from the equilib-
rium conditions along the x-axis.

bw∫
0

KI,w√
2πr

dr =

y∫
y−bw

σx,w dy;

bw∫
0

KI,u√
2πr

dr =

y∫
y−bw

σx,u dy.

(5)
By using Eq. (4), the left hand sides of Eq. (5) could be eval-
uated. In the same way, the evaluating the right hand sides of
Eq. (5) by using Eq. (1) gives the following distances:

bw =
h− a

3
; bu =

h− a
12

. (6)

Substituting Eq. (6) into Eq. (4), the SIFs could be expressed
as

KI,w =
6M

th3/2
FI,w(a/h); KI,u =

2P

th1/2
FI,u(a/h);

(7)
where

FI,w(a/h) =

√
2
27π

(1− a/h)3/2
; FI,u(a/h) =

√
2
48π

(1− a/h)1/2
.

(8)
See Wang and Lee for further information related withKI,w.15

Additionally, for cantilever beam, opening mode SIFs resulting
from axial force and bending moment could be seen from the
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study presented by Majkut.20 SIFs in Eq. (7) could be written
as

KI = KI,w +KI,u. (9)

Strain energy density function31, 32, 37 are given as

J =
K2
I

E′
; (10)

where E′ = E/(1 − ν2) for plane strain and E and ν are
Young’s modulus and Poisson’s ratio, respectively. By inte-
grating the density function over the crack depth, the strain
energy due to the crack is obtained. By applying Castiglione’s
theorem upon this energy, flexibilities could be written as

c11 =
∂2

∂M2

t a∫
0

J(a) da

 ;

c22 =
∂2

∂P 2

t a∫
0

J(a) da

 ;

c12 = c21 =
∂2

∂M∂P

t a∫
0

J(a) da

 ; (11)

where c11 is flexibility due to the bending moment, c22 is due
to the axial force, and c12 = c21 is crossover flexibility result-
ing from interaction between axial force and bending moment.
Loya et al. mentioned that the effects resulting from interac-
tions between axial forces and bending moment could be ig-
nored.21 By evaluating Eq. (11), flexibilities could be written
in the following forms:

c11 =
L

E′I
ĉ11; c22 =

L

E′A
ĉ22; (12)

where ĉ corresponds to non-dimensional flexibility and could
be written as follows:

ĉ11 =
2π

9
χ

1− (1− α)2

(1− α)2
; ĉ22 =

2π

6
χ ln(1− α); (13)

where α = a
h and χ = h

L are non-dimensional crack depth and
slightness coefficient, respectively. Finally, spring constants
could be obtained as follows:

k11 = c−1
11 ; k22 = c−1

22 . (14)

2.2. Equations of Motion
In this section energy approach has been used. Loya et

al. presented increments of the energy due to spring and the
crossover flexibility constants were assumed to be too small in
their study.21 By ignoring the crossover flexibility, the incre-
ment of energy could be written as follows:

∆Uc =

{
1

2
k11∆θ2 +

1

2
k22∆u2

}∣∣∣∣
x=xc

. (15)

∆θ is the angle rotated by the rotational spring; ∆u is the rel-
ative horizontal displacement at the edge crack section.

Let us assume that n is the number of edge cracks on the
beam. Modeling the problem by means of springs, it would

be the same with axially moving beams carrying multiple con-
centrated masses.30 In order to derive the equations of motion
of the beam-spring system, we use the Hamilton Principle as
seen below:

δ

t2∫
t1

 1

2

n∑
m=0

xm+1∫
xm

ρA

√(dwm+1

dt

)2

+

(
dum+1

dt
+v

)2
2

dx−

1

2

n∑
m=0

xm+1∫
xm

EA

(
u′m+1 +

1

2
w′2m+1

)2

dx−

1

2

n∑
m=0

xm+1∫
xm

EI
(
w′′m+1

)2
dx−

n∑
m=0

{
1

2
(k11)m

(
w′m+1 − w′m

)2
+

1

2
(k22)m (um+1 − um)

2

}∣∣∣∣
x=xm

 dt = 0; (16)

where first terms are kinetic energies of the beam. Other terms
are of potential energy due to stretching, bending and springs.
v is velocity and prime denotes derivative to x. w = w(x, t)
and u = u(x, t) are defined as transversal and longitudinal
displacements, respectively. Other properties of the beam are
such that, ρ is the density, A is the cross sectional area and I
is the moment of inertia of the beam cross-section with respect
to the neutral axis.

Performing necessary calculations in Eq. (16), it was ob-
served that the axial displacement could be eliminated from
the equations.42 Finally, the following equations of motion and
their corresponding conditions could be obtained:

ρA

(
∂2wm+1

∂t2
+ 2

∂2wm+1

∂x∂t
v +

∂2wm+1

∂x2
v2+

∂v

∂t

∂wm+1

∂x

)
+

EI
∂4wm+1

∂x4
=
EA

L

(
1− 1

1 + L
EA (k22)p

)
·1

2

n∑
r=0

xr+1∫
xr

∂wr+1

∂x

2

dx

 ∂2wm+1

∂x2
; (17a)

w1

∣∣
x=x0

= wn+1

∣∣x=xn+1
= EI

∂2w1

∂x2

∣∣∣∣
x=x0

=

− EI ∂
2wn+1

∂x2

∣∣∣∣x=xn+1

= 0;

wp
∣∣
x=xp

= wp+1

∣∣
x=xp

;

EI
∂2wp
∂x2

∣∣∣∣
x=xp

= EI
∂2wp+1

∂x2

∣∣∣∣
x=xp

;

EI
∂2wp+1

∂x2

∣∣∣∣
x=xp

= (k11)p

(
∂wp+1

∂x
− ∂wp

∂x

) ∣∣∣∣
x=xp

;(
EI

∂3wp+1

∂x3
− EI ∂

3wp
∂x3

) ∣∣∣∣
x=xp

=

EA

L

(
1− 1

1 + L
EA (k22)p

)1

2

n∑
r=0

xr+1∫
xr

∂wr+1

∂x

2

dx

 ·
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∂wp+1

∂x
− ∂wp

∂x

) ∣∣∣∣
x=xp

. (17b)

In case of taking the crossover flexibility into account, match-
ing conditions could be seen in Rao.19 From Eqs. (17a–17b),
one would obtain the equations of motion and their corre-
sponding matching conditions for the linear simply supported
beam problem given in Wang and Lee under assumption that
the axial velocity is zero.15 When obtaining differential equa-
tions in their non-dimensional forms, the following quantities
have been used:

I = Aκ2; ŵ(x̂, t̂) =
w(x, t)

κ
; x̂ =

x

L
;

ηp =
xp
L

; αp =
ap
h

; v̂ =
τ

L
v;

t̂ =
t

τ
; τ =

√
ρAL4

EI
; v2

f =
I

AL2
; (18)

where κ is radius of gyration for the beam’s cross section. ηp
and αp are defined as crack’s position and depth, respectively.
They are our control parameters.(
∂2ŵm+1

∂t̂2
+ 2v̂

∂2ŵm+1

∂x̂∂t̂
+
∂2ŵm+1

∂x̂2
v̂2 +

∂v̂

∂t̂

∂ŵm+1

∂x̂

)
+

v2
f

∂4ŵm+1

∂x̂4
= v2

f

(
1− 1

1− 1/(ĉ22)p

)
·1

2

n∑
r=0

x̂r+1∫
x̂r

∂ŵr+1

∂x̂

2

dx̂

 ∂2ŵm+1

∂x̂2
; (19a)

ŵ1

∣∣
x̂=η0

= ŵn+1

∣∣
x̂=ηn+1

=
∂2ŵ1

∂x2

∣∣∣∣
x̂=η0

=

∂2ŵn+1

∂x2

∣∣∣∣
x̂=ηn+1

= 0;

ŵp
∣∣
x̂=ηp

= ŵp+1

∣∣
x̂=ηp

;

∂2ŵ1

∂x2

∣∣∣∣
x̂=ηp

=
∂2ŵp+1

∂x2

∣∣∣∣
x̂=ηp

;

∂2ŵp+1

∂x̂2

∣∣∣∣
x̂=ηp

=
1

(ĉ11)p

(
∂ŵp+1

∂x̂
− ∂ŵp

∂x̂

) ∣∣∣∣
x̂=ηp

;(
∂3ŵp+1

∂x̂3
− ∂3ŵp

∂x̂3

) ∣∣∣∣
x̂=ηp

=

(
1− 1

1− 1/(ĉ22)p

)1

2

n∑
r=0

x̂r+1∫
x̂r

∂ŵr+1

∂x̂

2

dx̂

 ·
(
∂ŵp+1

∂x̂
− ∂ŵp

∂x̂

) ∣∣∣∣
x̂=ηp

; (19b)

where η0 = 0, ηn+1 = 1, p = 1 . . . n.

3. ANALYTICAL SOLUTIONS:
PERTURBATION ANALYSIS

In this section, the approximate solutions are searched for
the Eqs. (19a–19b). In order to tune these integral-partial dif-
ferential equations and their corresponding conditions, we’ve
used following treatment (see Öz et al. for details42)

ŵm+1(x, t; ε) =
√
εw̃m+1. (20)

Substituting Eq. (20) into Eqs. (19a–19b) gives the following
weakly nonlinear system:

∂2w̃m+1

∂t̂2
+ 2v̂

∂2w̃m+1

∂x̂∂t̂
+ v̂2 ∂

2w̃m+1

∂x̂2
+
∂v̂

∂t̂

∂w̃m+1

∂x̂
+

v2
f

∂4w̃m+1

∂x̂4
= εv2

f

(
1− 1

1− 1/(ĉ22)p

)
·1

2

n∑
r=0

ηr+1∫
ηr

∂w̃r+1

∂x̂

2

dx̂

 ∂2w̃m+1

∂x̂2
; (21a)

w̃1

∣∣
x̂=η0

= w̃n+1

∣∣
x̂=ηn+1

=
∂2w̃1

∂x2

∣∣∣∣
x̂=η0

=

∂2w̃n+1

∂x2

∣∣∣∣
x̂=ηn+1

= 0;

w̃p
∣∣
x̂=ηp

= w̃p+1

∣∣
x̂=ηp

;

∂2w̃1

∂x2

∣∣∣∣
x̂=ηp

=
∂2w̃p+1

∂x2

∣∣∣∣
x̂=ηp

;

∂2w̃p+1

∂x̂2

∣∣∣∣
x̂=ηp

=
1

(ĉ11)p

(
∂w̃p+1

∂x̂
− ∂w̃p

∂x̂

) ∣∣∣∣
x̂=ηp

;(
∂3w̃p+1

∂x̂3
− ∂3w̃p

∂x̂3

) ∣∣∣∣
x̂=ηp

=

ε

(
1− 1

1− 1/(ĉ22)p

)1

2

n∑
r=0

ηr+1∫
ηr

∂w̃r+1

∂x̂

2

dx̂

 ·
(
∂w̃p+1

∂x̂
− ∂w̃p

∂x̂

) ∣∣∣∣
x̂=ηp

. (21b)

In order to find approximate solutions, we’ve applied the
Method of Multiple Scales (MMS). We’ve assumed expan-
sions of the forms

w̃m+1(x, t; ε) = w̃1(m+1)(x, T0, T1) + εw̃2(m+1)(x, T0, T1);
(22)

where ε is the book-keeping parameter artificially inserted into
the equations. T0 = t is fast time scale, and T1 = εt is slow
time scale. Time derivatives are written as

d

dt
= D0+εD1+. . . ;

d2

dt2
= D2

0 +2εD0D1+. . . ; (23)

where D0 and D1 indicate the time derivatives with respect to
T0 and T1, respectively.

Let us consider the velocity of the beam varies harmonically
about a constant velocity v̂0 as follows:

v̂ = v̂0 + εv̂1 sin(Ωt); (24)

εv̂1 and Ω is the magnitude and frequency of the harmonically
variation, respectively. Inserting Eqs. (22–24) into Eqs. (21a–
21b), and equating like powers of ε, and omitting the higher
terms of ε in the resulting equations, one obtains a general
form for any power of ε as follows:

order ε(0)

D2
0w̃1(m+1) + 2v̂0D0

∂w̃1(m+1)

∂x̂
+ v̂2

0

∂2w̃1(m+1)

∂x̂2
+
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v2
f

∂4w̃1(m+1)

∂x̂4
= 0; (25a)

w̃11

∣∣
x̂=η0

= w̃1(n+1)

∣∣
x̂=ηn+1

=
∂2w̃11

∂x2

∣∣∣∣
x̂=η0

=

∂2w̃1(n+1)

∂x2

∣∣∣∣
x̂=ηn+1

= 0;

w̃1p

∣∣
x̂=ηp

= w̃1(p+1)

∣∣
x̂=ηp

;

∂2w̃1p

∂x2

∣∣∣∣
x̂=ηp

=
∂2w̃1(p+1)

∂x2

∣∣∣∣
x̂=ηp

;

∂3w̃1p

∂x3

∣∣∣∣
x̂=ηp

=
∂3w̃1(p+1)

∂x3

∣∣∣∣
x̂=ηp

;

∂2w̃1(p+1)

∂x̂2

∣∣∣∣
x̂=ηp

=
1

(ĉ11)p

(
∂w̃1(p+1)

∂x̂
− ∂w̃1p

∂x̂

) ∣∣∣∣
x̂=ηp

;(
∂3w̃1(p+1)

∂x̂3
− ∂3w̃1p

∂x̂3

) ∣∣∣∣
x̂=ηp

= 0; (25b)

order ε(1)

D2
0w̃2(m+1) + 2v̂D0

∂w̃2(m+1)

∂x̂
+ v̂2 ∂

2w̃2(m+1)

∂x̂2
+

v2
f

∂4w̃2(m+1)

∂x̂4
= −

(
2v̂0v̂1 sin(Ωt)

∂2w̃1(m+1)

∂x̂2
+

v̂1Ω cos(Ωt)
∂w̃1(m+1)

∂x̂
+ 2v̂1D0

∂w̃1(m+1)

∂x̂
+

2v̂0D1

∂w̃1(m+1)

∂x̂
+ 2D0D1w̃1(m+1)

)
+

v2
f

(
1− 1

1− 1/(ĉ22)p

)1

2

n∑
r=0

ηr+1∫
ηr

∂w̃1(r+1)

∂x̂

2

dx̂

 ·
∂2w̃1(m+1)

∂x̂2
; (26a)

w̃21

∣∣
x̂=η0

= w̃2(n+1)

∣∣
x̂=ηn+1

=
∂2w̃21

∂x2

∣∣∣∣
x̂=η0

=

∂2w̃2(n+1)

∂x2

∣∣∣∣
x̂=ηn+1

= 0;

w̃2p

∣∣
x̂=ηp

= w̃2(p+1)

∣∣
x̂=ηp

;

∂2w̃2p

∂x2

∣∣∣∣
x̂=ηp

=
∂2w̃2(p+1)

∂x2

∣∣∣∣
x̂=ηp

;

∂2w̃1(p+1)

∂x̂2

∣∣∣∣
x̂=ηp

=
1

(ĉ11)p

(
∂w̃1(p+1)

∂x̂
− ∂w̃1p

∂x̂

) ∣∣∣∣
x̂=ηp

;(
∂3w̃1(p+1)

∂x̂3
− ∂3w̃1p

∂x̂3

) ∣∣∣∣
x̂=ηp

=

(
1− 1

1− 1/(ĉ22)p

)1

2

n∑
r=0

ηr+1∫
ηr

∂w̃1(r+1)

∂x̂

2

dx̂

 ·
(
∂w̃1(p+1)

∂x̂
− ∂w̃1p

∂x̂

) ∣∣∣∣
x̂=ηp

. (26b)

Differential equations corresponding to order ε(0) could be
defined as a linear problem. For these equations with two vari-
ables, we assume the following solution form,

ŵ1(m+1)(x̂, T0, T1) = A(T1)eiωT0Ym+1(x̂) +

A(T1)e−iωT0Y m+1(x̂); (27)

where overbar denotes the complex conjugate of the preced-
ing terms, and Ym+1 is the eigenfunction. Inserting Eq. (27)
into Eqs. (25a–25b), one has the following differential equa-
tion which satisfies mode shapes:

v2
f

∂4Ym+1

∂x̂4
+ v̂2

0

∂2Ym+1

∂x̂2
+ 2iv̂0ω

∂Ym+1

∂x̂
− ω2Ym+1 = 0;

(28a)

Y1

∣∣
x̂=η0

= Yn+1

∣∣
x̂=ηn+1

=
∂2Y1

∂x2

∣∣∣∣
x̂=η0

=

∂2Yn+1

∂x2

∣∣∣∣
x̂=ηn+1

= 0;

Yp
∣∣
x̂=ηp

= Yp+1

∣∣
x̂=ηp

;

∂2Yp
∂x2

∣∣∣∣
x̂=ηp

=
∂2Yp+1

∂x2

∣∣∣∣
x̂=ηp

;(
∂Yp+1

∂x̂
− ∂Yp

∂x̂

) ∣∣∣∣
x̂=ηp

= (ĉ11)p
∂2Yp+1

∂x̂2

∣∣∣∣
x̂=ηp

;(
∂3Yp+1

∂x̂3
− ∂3Yp

∂x̂3

) ∣∣∣∣
x̂=ηp

= 0. (28b)

Solution of the eigenfunction Ym+1(x) can be written as fol-
lows:

Ym+1(x̂) = d(m+1)1e
iβ(m+1)1x̂ + d(m+1)2e

iβ(m+1)2x̂ +

d(m+1)3e
iβ(m+1)3x̂ + d(m+1)4e

iβ(m+1)4x̂; (29)

where d(p+1)j (j = 1 . . . 4) are constants, and are four roots of
the following equation obtained from Eq. (29):

v2
fβ

4
m+1 + v̂2

0β
2
m+1 − 2v̂0ωβm+1 − ω2 = 0. (30)

Second order ε(1) in Eqs. (26a–26b) corresponds to nonlin-
ear problem. Inserting Eq. (27) in the second order gives the
following equations:

D2
0w̃2(m+1) + 2v̂0D0

∂w̃2(m+1)

∂x̂
+ v̂2

0

∂2w̃2(m+1)

∂x̂2
+

v2
f

∂4w̃2(m+1)

∂x̂4
= −

(
− v̂0v̂1iAe

i(Ω+ω)T0
∂2Ym+1

∂x̂2
−

v̂0v̂1iAe
i(Ω−ω)T0

∂2Y m+1

∂x̂2

)
−(

v̂0v̂1iAe
−i(Ω−ω)T0

∂2Ym+1

∂x̂2
+

v̂0v̂1iAe
−i(Ω+ω)T0

∂2Y m+1

∂x̂2

)
−(

1

2
v̂1ΩAei(Ω+ω)T0

∂Ym+1

∂x̂
+

1

2
v̂1ΩAei(Ω−ω)T0

∂Y m+1

∂x̂

)
−

2v̂1iωAe
iωT0

∂Ym+1

∂x̂
−
(

1

2
v̂1ΩAe−i(Ω−ω)T0

∂Ym+1

∂x̂
+

1

2
v̂1ΩAe−i(Ω+ω)T0

∂Y m+1

∂x̂

)
+ 2v̂1iωAe

−iωT0
∂Y m+1

∂x̂
+

v2
f

(
1− 1

1− 1/(ĉ22)p

)
·
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2
A3e3iωT0

 n∑
r=0

ηr+1∫
ηr

∂Yr+1

∂x̂

2

dx̂

+

1

2
A

2
Ae−iωT0

 n∑
r=0

ηr+1∫
ηr

∂Y r+1

∂x̂

2

dx̂

+

A2AeiωT0

 n∑
r=0

ηr+1∫
ηr

∂Yr+1

∂x̂

∂Y r+1

∂x̂
dx̂


 ∂2Ym+1

∂x̂2
−

(
2v̂D1Ae

iωT0
∂Ym+1

∂x̂
+ 2v̂D1Ae

−iωT0
∂Y m+1

∂x̂

)
+

v2
f

(
1− 1

1− 1/(ĉ22)p

)
·AA2

e−iωT0

 n∑
r=0

ηr+1∫
ηr

∂Yr+1

∂x̂

∂Y r+1

∂x̂
dx̂

+

1

2
A

3
e−3iωT0

 n∑
r=0

ηr+1∫
ηr

∂Y r+1

∂x̂

2

dx̂

+

1

2
A2AeiωT0

 n∑
r=0

ηr+1∫
ηr

∂Yr+1

∂x̂

2

dx̂


 ∂2Y m+1

∂x̂2
−

(
2iωD1Ae

iωT0Ym+1 − 2iωD1Ae
−iωT0Y m+1

)
; (31a)

w̃21

∣∣
x̂=η0

= w̃2(n+1)

∣∣
x̂=ηn+1

=
∂2w̃21

∂x2

∣∣∣∣
x̂=η0

=

∂2w̃2(n+1)

∂x2

∣∣∣∣
x̂=ηn+1

= 0;

w̃2p

∣∣
x̂=ηp

= w̃2(p+1)

∣∣
x̂=ηp

;

∂2w̃2p

∂x2

∣∣∣∣
x̂=ηp

=
∂2w̃2(p+1)

∂x2

∣∣∣∣
x̂=ηp

;(
∂w̃1(p+1)

∂x̂
− ∂w̃1p

∂x̂

) ∣∣∣∣
x̂=ηp

= (ĉ11)p
∂2w̃1(p+1)

∂x̂2

∣∣∣∣
x̂=ηp

;(
∂3w̃1(p+1)

∂x̂3
− ∂3w̃1p

∂x̂3

) ∣∣∣∣
x̂=ηp

=

(
1− 1

1− 1/(ĉ22)p

)
·1

2
A3e3iωT0

 n∑
r=0

ηr+1∫
ηr

∂Yr+1

∂x̂

2

dx̂

+

1

2
A

2
Ae−iωT0

 n∑
r=0

ηr+1∫
ηr

∂Y r+1

∂x̂

2

dx̂

+

A2AeiωT0

 n∑
r=0

ηr+1∫
ηr

∂Yr+1

∂x̂

∂Y r+1

∂x̂
dx̂


 ·(

∂Yp+1

∂x̂
− ∂Yp

∂x̂

) ∣∣∣∣
x̂=ηp

+

(
1− 1

1− 1/(ĉ22)p

)
·AA2

e−iωT0

 n∑
r=0

ηr+1∫
ηr

∂Yr+1

∂x̂

∂Y r+1

∂x̂
dx̂

+

1

2
A

3
e−3iωT0

 n∑
r=0

ηr+1∫
ηr

∂Y r+1

∂x̂

2

dx̂

+

1

2
A2AeiωT0

 n∑
r=0

ηr+1∫
ηr

∂Yr+1

∂x̂

2

dx̂


 ·(

∂Y p+1

∂x̂
− ∂Y p

∂x̂

) ∣∣∣∣
x̂=ηp

. (31b)

For principal parametric resonance, the following assumption
is used:

Ω = 2ω + εσ. (32)
By inserting this assumption and doing necessary calculations,
the following solution form has been proposed:

w̃2(m+1) = eiωT0ϑm+1 +Wm+1 + cc; (33)

where ϑ and W denote secular and non-secular terms, respec-
tively. After removing non-secular terms, corresponding non-
linear problems could be obtained:

− ω2ϑm+1 + 2iωv̂0
∂ϑm+1

∂x̂
+ v̂2

0

∂2ϑm+1

∂x̂2
+ v2

f

∂4ϑm+1

∂x̂4
=

−

D1A

(
2ωv̂0

∂Ym+1

∂x̂
+ 2iωYm+1

)
+ 2v̂1iωA

∂Ym+1

∂x̂
+

AeiσT1 v̂1

(
−v̂0i

∂2Y m+1

∂x̂2
+ ω

∂Y m+1

∂x̂

)
−

A2Av2
f

(
1− 1

1− 1/(ĉ22)p

)
· n∑

r=0

ηr+1∫
ηr

∂Yr+1

∂x̂

∂Y r+1

∂x̂
dx̂

 ∂2Ym+1

∂x̂2
+

1

2

 n∑
r=0

ηr+1∫
ηr

∂Yr+1

∂x̂

2

dx̂

 ∂2Y m+1

∂x̂2


 ; (34a)

ϑ1

∣∣
x̂=η0

= ϑn+1

∣∣
x̂=ηn+1

=
∂2ϑ1

∂x2

∣∣∣∣
x̂=η0

=

∂2ϑn+1

∂x2

∣∣∣∣
x̂=ηn+1

= 0;

ϑp
∣∣
x̂=ηp

= ϑp+1

∣∣
x̂=ηp

;

∂2ϑp
∂x2

∣∣∣∣
x̂=ηp

=
∂2ϑp+1

∂x2

∣∣∣∣
x̂=ηp

;(
∂ϑp+1

∂x̂
− ∂ϑp

∂x̂

) ∣∣∣∣
x̂=ηp

= (ĉ11)p
∂2ϑp+1

∂x̂2

∣∣∣∣
x̂=ηp

;(
∂3ϑp+1

∂x̂3
− ∂3ϑp

∂x̂3

) ∣∣∣∣
x̂=ηp

= A2A

(
1− 1

1− 1/(ĉ22)p

)
·

 n∑
r=0

ηr+1∫
ηr

∂Yr+1

∂x̂

∂Y r+1

∂x̂
dx̂

(∂Yp+1

∂x̂
− ∂Yp

∂x̂

) ∣∣∣∣
x̂=ηp

+

1

2

 n∑
r=0

ηr+1∫
ηr

∂Yr+1

∂x̂

2

dx̂

(∂Y p+1

∂x̂
− ∂Y p

∂x̂

) ∣∣∣∣
x̂=ηp

 .

(34b)
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According to MMS, a solvability condition must be found from
the last order.43 Invoking necessary calculations to find solv-
ability conditions and doing some simplifications, the follow-
ing could be obtained:

K1D1A+K2A+K3A
2A+K4Ae

iσT1 = 0; (35)

where

K1 =

n∑
r=0

ηr+1∫
ηr

2Y r+1

(
v̂0
∂Yr+1

∂x̂
+ iωYr+1

)
dx̂;

K2 = 2v̂1iω

n∑
r=0

ηr+1∫
ηr

Y r+1
∂Yr+1

∂x̂
dx̂;

K3 = v2
f

n∑
r=0

(
1− 1

1− 1/(ĉ22)p

)
·

1

2
+

n∑
r=0

ηr+1∫
ηr

∂Yr+1

∂x̂

∂Y r+1

∂x̂
dx̂

 ·
 n∑
r=0

ηr+1∫
ηr

Y r+1
∂2Yr+1

∂x̂2
dx̂

+

 n∑
r=0

ηr+1∫
ηr

∂Yr+1

∂x̂

∂Y r+1

∂x̂
dx̂

(∂Yr+1

∂x̂
− ∂Yr

∂x̂

)
+

1

2

(
∂Y r+1

∂x̂
− ∂Y r

∂x̂

)Y r∣∣x̂=ηr

 ;

K4 = v̂1

n∑
r=0

ηr+1∫
ηr

Y r+1

(
−v̂0i

∂2Yr+1

∂x̂2
+ ω

∂Y r+1

∂x̂

)
dx̂;

n∑
r=0

ηr+1∫
ηr

∂Yr+1

∂x̂

2

dx̂ = 1. (36)

The polar form is introduced as

A =
1

2
aeiθ; θ = θ(T1). (37)

Inserting the polar form into Eq. (35), and separating real and
imaginary parts, the following equations could be obtained:

Kre
1 ȧ+Kim

1

(
1

2
σ − θ̇

)
a+

[
Kre

2 a+
1

4
Kre

3 a3

]
=

−
[
Kre

4 a cos(2γ)−Kim
4 a sin(2γ)

]
;

Kim
1 ȧ−Kre

1

(
1

2
σ − θ̇

)
a+

[
Kim

2 a+
1

4
Kim

3 a3

]
=

−
[
Kim

4 a cos(2γ) +Kre
4 a sin(2γ)

]
; (38)

where γ = σT1/2−θ. a is real amplitude and θ is the phase. re
and im indexes correspond to real and imaginary parts, respec-
tively. By eliminating γ in these equations, equations could be
defined phase-modulation equations.

When analyzing the parametric vibrations, it could be as-
sumed that the system is under the steady-state case during

vibrations. ȧ and θ̇ in Eq. (38) vanish and are taken as zero
denoting no change in amplitude and phase with time. In this
case, a = a0 is a constant and fixed-points could be found.
From Eq. (38), it could be seen that there is one trivial solu-
tion as a0 = 0. For non-trivial solutions, following relation
between the detuning parameter (σ) and the amplitude could
be derived by doing further simplification in Eq. (38):(

1

2
Kim

1 σ +

[
Kre

2 +
1

4
Kre

3 a2
0

])2

+(
−1

2
Kre

1 σ +

[
Kim

2 +
1

4
Kim

3 a2
0

])2

=
[
Kre

4
2 +Kim

4

2
]

;

(39)

σ and a0 could be simultaneously calculated by means of
Eq. (39).

4. RESULTS AND DISCUSSION

Natural frequencies can be calculated numerically by using
Eqs. (27–30). In order to understand well the effects of the
axial velocity as well as geometrical parameters; crack’s depth
(α), and crack’s position (η) on the natural frequencies, these
parameters have been drawn on the same graph. For case of
one crack, the index p was removed. By assigning χ = 1/10,
vf = 0.8, natural frequency-mean axial velocity (v0) curves
drawn in Figs. 4 through 6. First and second modes have been
presented separately in these figures. For every case, it is seen
that frequencies of the first and second modes decrease with
increasing velocity.

In Fig. 4, natural frequency versus axial velocity has been
drawn for different crack’s depths, (α; 0.1, 0.5, 0.7) when
η = 0.5. From these curves, natural frequencies would be-
come at low values if the crack’s depth is large (0.7). In other
means, the beam’s stiffness decreases with increasing crack’s
depth (0.7). Therefore, it was expected low natural frequencies
for big cracks. For the first mode in Fig. 4a, natural frequen-
cies decrease with increasing velocity and approach each other
for different crack depths. This is result of small amplitude
vibrations at high velocities. For the second mode in Fig. 4b,
slow velocities have not any influence on natural frequencies
when comparing the crack depths. Increasing velocity affects
the symmetry of the second mode. Therefore, it is expected
that beam stiffness would show its effect due to larger crack
(0.7) as velocity increases.

In Fig. 5, axial velocity versus natural frequency has been
drawn for the different crack’s position (η; 0.1, 0.5), when
α = 0.3. It could be seen from Fig. 5a that natural frequencies
are low values as the crack takes place at the middle point of
the beam instead of being near end supports. Thus, the stiff-
ness’s reduction of the beam due to the crack is effective on
natural frequencies when crack takes place in the middle of
the beam. This influence vanishes as velocity increases. For
the second mode in Fig. 5b, it could be observed that the crack
replaced in the middle of the beam does not have too much in-
fluence at low velocities. This is related with bending moment
in case of second mode’s symmetry. As velocity increases,
the symmetry will vanish, then second mode will become first
mode at a suitable velocity. See Sarigul and Boyaci30 for fur-
ther details.
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(a)

(b)

Figure 4. Axial velocity versus frequencies for different crack’s depths (α);
η = 0.5. (a) first mode, (b) second mode.

In Fig. 6, axial velocity versus natural frequency has been
drawn for multiple cracks (n; one, five) when αp = 0.1;
p = 1 . . . 5. For case of one crack, it is in the middle of the
beam. For case of multiple cracks, it is assumed that cracks
are distributed with equal spans along the beam. From these
figures, natural frequencies decrease with increasing number
of cracks for both first and second modes. This is a result ex-
pected because the stiffness of the whole spring-beam system
reduces in this case.

By assigning v0 = 0.5, v1 = 0.1, χ = 1/10, vf = 0.8 in
Eq. (39), frequency-response curves have been drawn in Figs. 7
through 9. Because of being well-known phenomenon, trivial
solutions have not plotted in these figures. Different control pa-
rameters have been compared in order to reach a good conclu-
sion. In these figures, the nonlinearity effects bend the curves
to the right causing multi-valued regions of the solutions. This
is well-known phenomenon in the studies done on primary or
internal resonances and is defined as hardening behavior of the
system.

In Fig. 7, the frequency-response curves have been drawn
for different crack depths (α; 0.3, 0.5) when crack position,
η = 0.5. As crack’s depth (α) increases, multi-valued regions
expand, and maximum amplitudes increase. Therefore, nonlin-

(a)

(b)

Figure 5. Axial velocity versus frequencies for different crack positions (η);
α = 0.3. (a) first mode, (b) second mode.

ear effects become more significant when the crack has more
depth.

In Fig. 8, the frequency-response curves have been drawn
for different crack’s position, (η; 0.3, 0.5) when α = 0.3. Max-
imum amplitudes decrease, and multi-valued regions narrow
as the crack takes place at the middle point of the beam. Non-
linear effects are important when considering the beam part:
including crack travels between the end support and middle
point of the beam. Detuning parameter must be tuned to low
values for this case.

In Fig. 9, the frequency-response curves have been drawn
for different numbers of cracks, (n; three, five) when αp =
0.1. As crack’s number (n) increases, maximum amplitudes
increase, and multi-valued regions expand. In other saying,
amplitudes increase with increasing beam’s flexibility.

5. CONCLUSIONS

In this study, vibrations of axially moving beams with edge
cracks were investigated. The cracks are distributed with equal
spans throughout the beam’s x axis. For analysis of the prob-
lem, firstly, the beam has been divided into two parts in num-
ber according to crack tips, and then the parts connected with
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(a)

(b)

Figure 6. Axial velocity versus frequencies for different crack numbers; αp =
0.1. (a) first mode, (b) second mode.

each other by rotational and translational springs. Springs’
stiffness has been obtained by means of Irwin’s linear elas-
tic fracture mechanics approach under static loading case and
Castiglione’s theorem. Secondly, for multiple cracks n, the
beam has been divided into n + 1 parts in number. For
this beam-spring system, equations of motion and their cor-
responding conditions have been derived. Numerical solutions
were searched under parametric resonance case. For axially
moving beam with crack, investigations were based on these
questions: 1) how natural frequencies would change with dif-
ferent control parameters; crack’s depth, location as well as
number, 2) and what kind of vibration behavior system exhibits
under parametric resonance case.

Natural frequencies have been calculated according to crack
depth, position parameters, as well as crack number on the
beam. From figures, it was observed that frequencies of the
first and second modes decrease with the increasing mean ax-
ial velocity. For the first mode, natural frequencies are at low
values when the crack is up close to middle point of the beam.
This case is different for the second mode because this mode
is not symmetric for all velocity. The natural frequencies de-
crease with increasing crack depth. In case of travelling with
high velocities, the effects of crack depth on natural frequen-

Figure 7. First mode force-amplitude curves for different crack depths (α);
η = 0.5.

Figure 8. First mode force-amplitude curves for different crack positions (η);
α = 0.3.

Figure 9. First mode force-amplitude curves for different crack numbers;
αp = 0.1.
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cies vanish. Beams with multiple cracks have low natural fre-
quencies. For high velocities, there is no difference between
one crack and multiple cracks in means of natural frequencies.

Vibration behavior of the system has been examined under
steady state case during vibration. The system has hardening
type behavior for an axially moving beam with edge cracks.
When the beam part including cracks approaches the middle
point of the beam, hardening behavior would lose its effects.
Additionally, it could be concluded that the multi-valued re-
gion expands and maximum amplitude increases in the case of
the crack depth being large and having multiple cracks. Detun-
ing parameter must be tuned to the low values for these cases.
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havior from string to beam for an axially accelerating ma-
terial, Journal of Sound and Vibration, 215 (3), 571–576,
(1998). https://dx.doi.org/10.1006/jsvi.1998.1572

30 Sarigul, M. and Boyaci, H. Nonlinear vibrations of
axially moving beams with multiple concentrated
masses Part I: Primary resonance, Structural Engi-
neering and Mechanics, 36 (2), 149–163, (2010).
https://dx.doi.org/10.12989/sem.2010.36.2.149
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