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The static and dynamic stability analysis of a three-layered, tapered and symmetric sandwich beam resting on a
variable Pasternak foundation and undergoing a periodic axial load has been carried out for two different boundary
conditions by using a computational method. The governing equation of motion has been derived by using Hamil-
ton’s principle along with generalized Galerkin’s method. The effects of elastic foundation parameter, core-loss
factor, the ratio of length of the beam to the thickness of the elastic layer, the ratio of thickness of shear-layer of
Pasternak foundation to the length of the beam, different modulus ratios, taper parameter, core thickness parameter,
core-density parameter and geometric parameter on the non-dimensional static buckling load and on the regions of
parametric instability are studied. This type of study will help the designers to achieve a system with high strength
to weight ratio and better stability which are the desirable parameters for many modern engineering applications,
such as in the attitude stability of spinning satellites, stability of helicopter components, stability of space vehicles
etc.

NOMENCLATURE

Af Areas of cross section of a face layer,
B Width of beam,
Ef Young’s modulus of face layers,
GS Modulus of the shear layer of a Pasternak

foundation,
GS/Ef The ratio of modulus of the shear layer of

a Pasternak foundation to Young’s modulus
of the elastic layer,

G∗2 G2(1 + jη), complex shear modulus of core,
G2/Ef The ratio of in-phase shear modulus of the

viscoelastic core to Young’s modulus of the
elastic layer,

g∗ g (1 + jη), complex shear parameter,
g Shear parameter,
If Second moments of the area of cross section

about a relevant axis of face layer,
l Beam length,
lhf0

l/hf0 ,
m Mass/unit length of beam,
P1 Nondimensional amplitude for the

dynamic loading,
t Time,
t Nondimensional time,
u(x, t),U1(x, t) Axial displacement at the middle of

the top layer of a beam,
w(x, t) Transverse deflection of a beam,
w′ ∂w

∂x ,
w” ∂2w

∂x2 ,
Y Geometric parameter,
w′tt

∂2w

∂t
2 ,

Ui,x
∂Ui

∂x (here, i = 1, 3),
δ Thickness of the shear layer of

a Pasternak foundation,

ρf Density of face layers,
ρc Density of the core layer,
ω Frequency of the forcing function,
ω Nondimensional forcing frequency,
α Taper parameter,
B Core thickness parameter,
µ Core density parameter.

1. INTRODUCTION

The study of the vibration and stability of sandwich beams
has attained great importance with their use in space vehicles,
aeroplanes, military aircraft, and ships as a load-carrying mem-
ber with a high strength-to-weight ratio. In mechanical engi-
neering, there are many applications for beams on elastic foun-
dations. An extensive study of stability analysis of beams on
elastic foundations has been carried out by a number of inves-
tigators. The concept was discussed in detail by Heteny.1 The
frequency response curves of a non-uniform beam undergoing
nonlinear oscillations analytically by the multiple time scale
method were determined by Clementi et al.2 Chonan studied
the vibration and stability of sandwich beams with elastic3 and
imperfect4 bonding under conservative and non-conservative
axial forces. Asani and Nakra investigated the vibration damp-
ing characteristics5, 6 and performed forced vibration analy-
sis7 of multi-layered beams with viscoelastic cores. The pri-
mary resonance of forced and undamped bending vibrations
of a non-uniform beam with constant width, rectangular cross-
section, and convex parabolic thickness variation were investi-
gated by Caruntu.8 Kar and Sujata9 studied the dynamic sta-
bility of a tapered symmetric sandwich beam under a pulsating
axial force and obtained the parametric instability regions. The
effect of shear parameter, core thickness, and core loss factors
on regions of parametric instability of sandwich beams with
viscoelastic cores for various boundary conditions were inves-
tigated by Ray and Kar.10 The same authors studied the para-
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metric instability of multi-layered symmetric sandwich beams
with alternate elastic and viscoelastic layers subjected to a pe-
riodic axial load.11 Rao12 derived a sixth-order differential
equation of motion by using the energy method for sandwich
beams under various boundary conditions using the classical
sandwich beam theory. A general analysis of damping by a
damping constrained viscoelastic layer was presented by Ker-
win.13 The response of viscoelastically supported beams was
studied by Saito and Otomi.14 The mathematical hypothesis
that a beam on equidistant elastic supports can be considered
as a beam on an elastic foundation in static and free vibration
problems was presented by Sato et al.15 The nonlinear vibra-
tion and parametric instability of the inextensional beam on an
elastic foundation was investigated by Wang et al.16 Again,
Wang et al.17 obtained the nonlinear equation of motion of
a beam on an elastic foundation by using Newton’s second
law of motion. The multi-frequency excitation of a magne-
torheological elastomer-based sandwich beam with conductive
skins was carried out by Nayak et al.18 The same authors stud-
ied the dynamic stability of a magnetorheological elastomer-
based adaptive sandwich beam with conductive skins.19 Lenci
and Clementi20 studied the linear dynamics of a two-layered
beam considering the effects of shear stiffness, rotary and ax-
ial inertia, and interface stiffness. The same authors obtained
the natural frequencies of a two-layered beam with an elas-
tic interface.21 The stability of an asymmetric sandwich beam
resting on a Pasternak foundation was investigated by Dash et
al.22 Lenci et al.23 investigated the nonlinear free vibration
of a two-layered elastic composite beam, both symmetric and
non-symmetric with respect to the beam midpoint. The ap-
proximate analytical expressions for the natural frequencies of
non-uniform cables and beams by using the asymptotic devel-
opment method was obtained by the same authors.24 Babilio25

investigated the dynamics of a simply supported beam made
of an axially functionally graded material under an axial time-
dependent load. Ko26 investigated the flexural behaviour of
a rotating non-symmetric tapered sandwich beam under uni-
formly and linearly distributed loads. The damping effective-
ness of clamped-free and hinged-hinged tapered symmetric
sandwich beams was studied by Rao and Stuhler.27 Ahuja
and Duffield28 obtained theoretical and experimental results
for the steady-state response and the instability boundaries of a
variable cross-section beam on an elastic foundation. Szekre-
myes29 examined the free vibration of delaminated composite
beams.

From the available literature, it is seen that some works have
been carried out on the stability of a sandwich beam resting
on a Pasternak foundation. Also it is seen that taper parame-
ter, elastic foundation parameter, and viscoelastic core affect
the stability of the system. But a study of a tapered symmetric
sandwich beam resting on a variable Pasternak foundation sub-
jected to parametric vibration has not been done before now.
As the combination of the above parameters may develop an
economical system with high strength-to-weight ratio and bet-
ter stability, which will be suitable for the base foundations of
multi-storied buildings in earthquake prone areas, heavy ma-
chinery, and aerospace applications, this study has importance.
By making the sandwich beam taper and using the suitable
stiffness value for the spring, material can be saved and si-
multaneously the strength can be increased. This is desirable
for the designer, as strength and economy are important pa-

rameters for the design of any machine component. Hence,
emphasis has been given in this research work to study the ef-
fect of the taper parameter and the spring stiffness parameter
on the stability of the sandwich beam. The present work deals
with the static and dynamic stability of a tapered symmetric
sandwich beam with a viscoelastic core resting on a variable
Pasternak foundation under two different boundary conditions.
The effects of the geometric parameter, core loss factor, mod-
ulus ratios, and shear parameters on the nondimensional static
buckling loads and regions of parametric instability are exam-
ined by computational methods, and the results are presented
graphically.

2. FORMULATION OF THE PROBLEM

Figure 1 shows a tapered symmetric sandwich beam of
length l resting on a variable Pasternak foundation subjected
to a pulsating axial force P (t) = P0+P1 cos(ωt) acting along
its un-deformed axis at one end. P0 and P1 are respectively
the static and dynamic load amplitudes. The face layers are
made of an elastic material with thickness (2hf )0 at one end
and (2hf )l at the other with Young’s modulus Ef . The core
is made of a viscoelastic material with complex shear mod-
ulus G∗2 = G2(1 + jη) and having thicknesses (2hc)0 and
(2hc)l at the ends. The foundation is comprised of equal and
closely placed vertical springs with a variable spring constant
K(x)(N/m/m2), supporting a shear layer of thickness δ, with
a shear modulus of GS .

The following assumptions are made for deriving the equa-
tions of motion.

1. The beam transverse deflection is small, and is the same
everywhere in a given cross section.

2. The metallic layer obeys the Euler-Bernoulli assumption
of beam theory.

3. The layers are perfectly bonded so that displacements are
continuous across the interfaces.

4. Bending and the extensional effects in the core are negli-
gible.

5. Damping in the viscoelastic core is predominantly due to
shear.

6. Rotary inertia effects in layers are negligible.

7. The force resultant in the middle viscoelastic layer is as-
sumed to be negligible as its Young’s modulus is very
small compared to the module of the outer two lay-
ers. Kerwin’s13 assumption is used, according to which
EfAf (x)U1,x + EfAf (x)U3,x = 0.

The expressions for potential energy, kinetic energy, and
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Figure 1. System configuration.

work done are as follows.

V =
1

2

l∫
0

EfAfU
2
1,xdx+

1

2

l∫
0

EfAfU
2
3,xdx+

+

l∫
0

(EfIf )w
2
′xxdx+

1

2
G∗2

l∫
0

Acγ
2
2dx+

+
1

2
GSBδ

l∫
0

w2
′xdx+

B

2

l∫
0

k(x)w2dx; (1)

T =
1

2

l∫
0

mw2
′tdx; (2)

wp =
1

2

l∫
0

p(t)w2
′xdx; (3)

where U1 and U3 are the axial displacements in the top and
bottom layers, w′x = ∂w

∂x , w′t =
∂w
∂t , and γ2 is the shear strain

in the middle layer given by γ2 = U1−U3

2hc
− Cw′x

2hc
. The dis-

placement U3 is eliminated by using Kerwin’s assumption.13

The application of Hamilton’s principle,

δ
t2∫
t1

(T − V + wp) dt = 0, leads to the following nondi-

mensional equations of motion for the coupled axial and
transverse displacement described by U(x, t) and w(x, t).

[2 (1− αx) + µ (β + αx)]w′tt +
[
(1− αx)3 +

3

2
(1− αx) (2 + 2β)

2

]
w′xxxx +

[
3

4
λS

(
l

hf0

)3
]
w−[

3

4

(
GS
Ef

)(
δ

hf0

)(
l

hf0

)2
]
w′xx+

3

2
(2 + 2β)

2
(1− αx) (β + αx)U ′xxx +

P (t)l2

Df0

w′xx = 0;

(4)

(β + αx)U ′xx + w′xxx −
1

2

(
G∗2
Ef

)(
l

hf0

)2

U = 0; (5)

where w′xx = w
l , w′xxxx = ∂4w

∂x4 , w′xxx = ∂3w
∂x3 , w′xx = ∂2w

∂x2 ,

U = U
l , U ′xxx = ∂3U

∂x3 , U ′xx = ∂2U
∂x2 , µ = ρc

ρf
, α =

hf0
−hfl

hf0
,

β =
hc0

hf0
, x = x

l , λs = ksl
Ef

, andDf0 = 2EfIf0 . The following
are the associated boundary conditions to be satisfied at x = 0
and x = l.(

Gs
Ef

)(
δ

hf0

)(
l

hf0

)
w′x +

(
P (t)

EfBhf0

)
l

hf0
w′x = 0;

(6)
or,

w = 0; (7)

1

3

(1− αx)3

(1 + β)2
w′xx + (β + αx)U ′x + w′xx = 0; (8)

or,
w′x = 0; (9)

(β + αx)U ′x + w′xx = 0; (10)

or,
U = 0; (11)

In the above, t = t/t0, t0 =
[
ρfAf0

l4

Ef If0

]1/2
, P 0 = P0l

2

Df0
, P 1 =

P1l
2

Df0
, and P = P 0+P 1 coswt. The various section dependent

parameters are

g∗ =
1

2

(
G∗2
Ef

)(
l

hf0

)2

; (12a)

Y =
EfAf0C

2

2Df0

= 3(1 + β)2; (12b)

C = 2hf0 + 2hc0 ; (12c)

m = 2(1− αx) + µ(β + αx). (12d)
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2.1. Approximate Solution
Solutions of Eq. (4) and Eq. (5) are assumed in the form

w(x, t) =

i=p∑
i=l

wi(x)fi(t); (13)

U(x, t) =

k=2p∑
k=p+1

Uk(x)fk(t). (14)

Here, wi and Uk are the shape functions and fi and fk are
the generalized coordinates. The shape functions wi and Uk
are to be chosen to satisfy as many boundary conditions as
possible.30 The shape functions used for the different boundary
conditions are same as that of Ray and Kar.10

1. For the pinned-pinned (P-P) case, wi(x) = sin(iπx),
Uk(x) = cos(kπx).

2. For the clamped-clamped (C-C) case, wi(x) = x(i+1) −
2x(i+2) + x(i+3), Uk(x) = xk − x(k+1).

Substituting Eq. (13) and Eq. (14) in the energy ex-
pression of V , T and wp, then applying Galerkin method
d
dt [T + V − wp] = 0 yields the following matrix equations
of motion in the generalized coordinates.

[m]{Q̈1}+ [K11]{Q1} − [K12]{Q2} = {0}; (15)

[K21]{Q1}+ [K22]{Q2} = {0}; (16)

or,

{Q2} = −[K22]
−1[K21]{Q1} = −[K22]

−1[K12]
T {Q1}.

(17)
Then, Eq. (15) can be written as

[m]{Q̈1}+ [K11]{Q1} − [K12][K22]
−1[K12]

T {Q1} = {0};
(18)

or,

[m]{Q̈1}+
(
[K11]− [K12][K22]

−1[K12]
T
)
{Q1} = {0};

(19)
where,

{Q1} = {f1, . . . , fp}T ; (20)

{Q2} = {fp+1, . . . , f2p}T ; (21)

also,

Mij =

1∫
0

mwiwjdx; (22)

K11ij =
(
2(1− αx)3 + Y (1− αx)

) 1∫
0

w”iw”jdx+

2λs

(
l

hf0

)3
1∫

0

wiwjdx+

(
Gs
Ef

)(
δ

l

)(
l

hf0

) 1∫
0

w′iw
′
jdx− P (t)

1∫
0

w′iw
′
jdx; (23)

K12jk = K21li = 2Y (1− αx)
1∫

0

w”jU
′
kdx; (24)

K22kl = 2Y (1− αx)(β + αx)2
1∫

0

U ′kU
′
ldx+

2g∗Y

1∫
0

UkUldx; (25)

[K21] = [K12]
T . (26)

The Eq. (15) and Eq. (16) are further simplified to

[m]{Q̈1}+
[
[k]− P 0[H]

]
{Q1}−

P 1 cos
(
ωt
)
[H]{Q1} = {0}; (27)

where
[k] = [k]− [K12][K22]

−1[K12]
T ; (28)

Hij =

1∫
0

w′iw
′
jdx; (29)

and

kij =
(
2(1− αx)3 + Y (1− αx)

) 1∫
0

w”iw”jdx+

2λs

(
l

hf0

)3
1∫

0

wiwjdx+

(
Gs
Ef

)(
δ

l

)(
l

hf0

) 1∫
0

w′iw
′
jdx− P 0

1∫
0

w′iw
′
jdx. (30)

2.2. Static Buckling Loads
The substitution of P 1 = 0 and {Q̈1} = 0 in Eq. (27) leads

to the eigenvalue problem [k]−1[H]{Q1} = 1
P0
{Q1}.The

static buckling loads (P0)crit for the first few modes are ob-
tained as the real parts of the reciprocals of the eigenvalues of
[k]−1[H].

2.3. Regions of Instability
Equation (27) can be re-written in the form

Q̈1 + [L]{Q1}+ 2ε cos
(
ωt
)
[B]{Q1} = {0}; (31)

where [L] = [M ]−1
[
[k]− P 0[H]

]
, [B] =

−[L]−1[M ]−1[H][L] and ε = P 1

2 . The linear transfor-
mation {Q1} = [Z]{U} is introduced in Eq. (31), where
[Z] is a nonsingular matrix such that [Z]−1[L][Z] is a Jordan
canonical form. Multiplying the result by [Z]−1 yields

ÜN + ω∗2N UN + 2ε cosωt

M=p∑
M=1

bNMUM = 0

N = 1, 2, . . . P ; (32)

where bNM = bNM,R+jbNM,I are complex constant and ele-
ments of [B], ω∗N = ωN,R+jωN,I is theN th natural frequency
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of the system. ω∗N are the distinct eigenvalues of the system,
and {U} is a new set of generalized co-ordinates.

The boundaries of the region of instability of the main and
of the combination resonances are obtained using the following
conditions by Saito and Otomi.14

2.3.1. Case (A) Main Resonance

In this case, the regions of instability are given by

∣∣∣∣ω2 − ωµ,R
∣∣∣∣ < 1

4

√√√√√
P 2

1

(
b2µµ,R + b2µµ,I

)
ω2
µ,R

− 16ω2
µ,I

.
(33)

for the damped case and∣∣∣∣ω2 − ωµ,R
∣∣∣∣ < 1

4

∣∣∣∣P 1bµµ,R
ωµ,R

∣∣∣∣ ; (34)

for the un-damped case, µ = 1, 2, . . . , N .

2.3.2. Case (B) Combination Resonance of Sum Type

This type of resonance occurs when µ 6= v, µ > v µ, v =
1, 2, . . . , N and the regions of instability are given by∣∣∣∣ω2 − 1

2
(ωµ,R + ωv,R)

∣∣∣∣ < ωµ,I + ωv,I

8
√
ωµ,Iωv,I

·√ P
2

1

ωµ,Rωv,I
(bµv,Rbvµ,R + bvµ,Ibµv,I)− 16ωµ,Iωv,I

 ;

(35)

for the damped case and,∣∣∣∣ω2 − 1

2
(ωµ,R + ωv,R)

∣∣∣∣ < P 1

4

√
bµv,Rbvµ,R
ωµ,Rωv,R

; (36)

for the un-damped case.

2.3.3. Case (C) combination resonance of difference
type

This type of resonance occurs when µ < v, (µ, v =
1, 2, . . . , N) and the regions of instability are given by∣∣∣∣ω2 − 1

2
(ωv,R − ωµ,R)

∣∣∣∣ <
ωµ,I + ωv,I

8
√
ωµ,I + ωv,I

·√
P

2

1

ωµ,Rωv,R
(−bµv,Rbvµ,R + bµv,Ibvµ − 16ωµ,Iωv,I); (37)

for the damped case and∣∣∣∣ω2 − 1

2
(ωv,R − ωµ,R)

∣∣∣∣ < P 1

4

√
−bµv,Rbvµ,R
ωµ,Rωµ,R

; (38)

for the un-damped case.

Table 1. Comparison of static buckling load.

Static buckling loads
End arrangement of the Present Kar and Sujata9

sandwich beam Mode analysis from figures
2 and 3

(For shear parameter with 1 20.3 20.2
Y = 50,α = 0, g = 0.1) 2 60.15 60

Clamped-free 3 110.2 110
(For taper parameter with 1 20.7 20.5
Y = 50, g = 0.1,α = 0.2) 2 60.15 60

Clamped-free 3 108.6 108.5

Figure 2. Variation of (P 0)crit with δ/l.

3. NUMERICAL RESULTS AND DISCUSSION

The symmetric sandwich beam is assumed to rest on a vari-
able Pasternak foundation with stiffness of the elastic foun-
dation is assumed to have a parabolic variation of the form,
k(x) =

{
1 + 4(1− γe)(x2 − x)

}
, where γe is the elastic

foundation parameter.31

3.1. Validation of the results
Taking the following nondimensional parameters of the

sandwich beam as given in Kar and Sujata,9 the static buck-
ling loads of the sandwich beam without a Pasternak founda-
tion have been determined. The core loss factor ηc = 0.3, core
density parameter µ = 0.05, and shear parameter g = 0.1 have
been considered here. The static buckling loads for clamped-
free end conditions have been determined for the first three
modes as given in Table 1. It may be observed that these re-
sults are in good agreement with those obtained by Kar and
Sujata.9

This was expected as the equation of motion reduces to that
of Kar and Sujata9 in the absence of a Pasternak foundation.
This validates the code developed in the present work using
MATLAB.

As the static buckling loads obtained using the present anal-
ysis are in good agreement with Kar and Sujata,9 the static
buckling loads and regions of instability of the sandwich beam
resting on a variable Pasternak foundation under P-P and C-C
end conditions is discussed in the following section.

3.2. Static figures
Figure 2 shows the effect of δ/l on the static buckling loads.

The buckling loads of all the modes slightly increase with an
increase in the value of δ/l. The buckling loads for the C-C
case are greater than the P-P case for all the modes.

The static buckling loads for varying values of G2/Ef are
shown in Fig. 3. This shows that the static buckling loads
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Table 2. Variation of
(
P 0

)
crit

with GS/Ef .

GS/Ef 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
-C

MODE 1 565.967 566.067 566.167 566.267 566.367 566.467 566.567 566.667 566.767 566.867
MODE 2 1249.3 1249.4 1249.5 1249.6 1249.7 1249.8 1249.9 1250 1250.1 1250.2
MODE 3 2868.1 2868.2 2868.3 2868.4 2868.5 2868.6 2868.7 2868.8 2868.9 2869

P-
P

MODE 1 142.3908 142.4908 142.5908 142.6908 142.7908 142.8908 142.9908 143.0908 143.1908 143.2908
MODE 2 565.1648 565.2648 565.3648 565.4648 565.5648 565.6648 565.7648 565.8648 565.9648 566.0648
MODE 3 1270.8 1270.9 1271 1271.1 1271.2 1271.3 1271.4 1271.5 1271.6 1271.7

Figure 3. Variation of (P 0)crit with G2/Ef .

Figure 4. Variation of (P 0)crit with G2/Ef .

for all three modes increase with an increase in the value of
G2/Ef for both the C-C and P-P cases. The static buckling
loads increase with an increase in the value of G2/Ef , as it
improves the shearing characteristics of the viscoelastic layer
which increases the rigidity of the system, hence indicating
stabilization.

The static buckling loads marginally increase with an in-
crease in the value of Gs/Ef . Because of variation, Table 2
is given instead of a graph. As Gs improves the stiffness of the
system, it increases the stability of the system.

Figure 4 address the effect of lhf0 on the static buckling
loads. An increase in the value of lhf0 increases the buckling
loads of all the modes for both the C-C and P-P boundary con-
ditions. The C-C case has more static buckling load than the
P-P case for all modes.

The static buckling loads are independent of µ and η for
all the modes for both end conditions, so the graphs are not
presented here.

The effect of change in the value of γe on the static buck-
ling loads is shown in Fig. 5. An increase in the value of γe
increases the buckling loads of all the modes for both the C-C
and P-P cases, which is obvious. Table 3 is provided for better
clarity.

Figure 6 shows the variation of static buckling loads with a
change in the value of Y . The static buckling loads increase
linearly with an increase in the value of Y for all the modes for

Table 3. Variation of
(
P 0

)
crit

with γe.

γe 0.01 0.1 1 10 20

C
-C

MODE 1 607.15 607.32 609.08 626.58 645.99
MODE 2 1316.9 1316.9 1317.4 1322.5 1328.1
MODE 3 3061.9 3061.9 3062.6 3068.7 3075.5

P-
P

MODE 1 147.36 147.71 151.21 186.23 225.14
MODE 2 570.82 570.91 571.78 580.54 590.27
MODE 3 1276.6 1276.7 1277 1280.9 1285.3

Figure 5. Variation of (P 0)crit with γe.

Figure 6. Variation of (P 0)crit with Y .

both of the considered boundary conditions. With an increase
in the value of Y , the rigidity of the system increases, so the
static buckling load increases for all the considered cases. The
static buckling load for C-C is greater than that of the P-P case.

The static buckling loads for varying α are plotted in Fig. 7,
which shows that the static buckling loads of all the modes
decrease with an increase in the value of α. The variation is
nonlinear in nature and the nonlinearity is greater in the third
mode for the C-C case.

Figure 8 shows the effects of β on the static buckling loads.
The static buckling load increases with an increase in the value
of β in all three modes for both the C-C and P-P cases. The
C-C has greater static buckling loads than the P-P case.

From Figs. 2 through 8, it is clear that the C-C case is stati-

International Journal of Acoustics and Vibration, Vol. 24, No. 2, 2019 233



M. Pradhan, et al.: STABILITY ANALYSIS OF A TAPERED SYMMETRIC SANDWICH BEAM RESTING ON A VARIABLE PASTERNAK. . .

Figure 7. Variation of (P 0)crit with α.

Figure 8. Variation of (P 0)crit with β.

cally more stable than the P-P case. This is because of greater
rigidity in the C-C case in comparison to the P-P case.

3.3. Dynamic figures
3.3.1. Pinned-Pinned (P-P) case

Figures 9 through 16 display the instability regions with the
change in the value of different parameters for the P-P case.

As shown in Fig. 9, with an increase in the value of α, the
instability zones shift towards lower frequency regions, hence
the destabilization of the system.

The effect of change in the value of β on the instability zones
is depicted in Fig. 10. An increase in the value of β from 1.5
to 2.5 has not only shifted the zones towards higher frequency
regions but has also reduced their areas by improving the sta-
bility of the system.

The effect of δ/l on the zones of instability of the system is
marginal. The zones are shifted towards higher excitation fre-
quencies with an increase in δ/l. Due to very small variations,
it is difficult to distinguish the variation from a graph. For bet-
ter clarity, Table 4 contains the data obtained from MATLAB
programming.

The stability diagram for the varying values of G2/Ef is
shown in Fig. 11. Due to an increase in the value of G2/Ef
from 0.0005 to 0.002, the instability regions move upwards and
shift towards higher frequency regions, thus indicating stabi-
lization of the system.

The effect of Gs/Ef on the instability regions of the sys-
tem and the values obtained are given in Table 5, showing a
stabilizing effect.

The effect of lhf0 upon the instability zones of the system
is considered in Fig. 12. With an increase in the value of lhf0 ,
the system stability improves as the instability zones move up-
wards and shift towards the right.

Figure 13 shows the influence of µ on the parametric insta-
bility. An increase in the value of µ relocates the resonance

zones to lower excitation frequencies, hence indicating desta-
bilization. The stabilizing effect of µ is clear from Table 6.

Figures 14 and 15 depict the effect of change in the value
of γe. The case γe < 1 can be interpreted as a weakening
of the elastic foundation and that of γe > 1 as strengthening
of the foundation as compared to a foundation with a constant
modulus (γe = 1), for γe > 1 improves the stability of the
system as the instability zones shift towards higher excitation
frequencies as shown in Fig. 15. As shown in Fig. 14, has a
destabilizing effect on the system.

Figure 16 reveals that an increase in the value of shifts the
instability zones towards higher excitation frequencies and re-
duces their areas with a constant vertical position, hence im-
proving the stability of the system.

3.3.2. Clamped-clamped (C-C) case

The stability diagrams for β = 1.5 and 2.5 with g = ,
µ = 0.05, Y = 50 are shown in Figs. 17 and 18. An in-
crease in the value of from 1.5 to 2.5 narrows all the zones
and shifts them towards higher excitation frequencies, thus in-
dicating stabilization. A combination resonance of (ω1 + ω3)
and (ω2 + ω4) appears in both the cases.

The instability regions for δ/l = 0.5 and 0.1 with g = 0.1,
µ = 0.05, Y = 50 are shown in Figs. 19 and 20. With an
increase in the value of δ/l from 0.1 to 0.5, all the instability
regions are shifted slightly towards a higher frequency and for
both the cases, a combination resonance of (ω1+ω3) and (ω2+
ω4) appears. Although the variation is marginal, it still has a
stabilizing effect.

Figures 21 and 22 depict the effect of an increase in the value
of G2/Ef from 0.001 to 0.005 for g = 0.1, µ = 0.05, Y = 50.
The stability regions in Fig. 22 are shifted towards the right and
moved upwards in comparison to Fig. 21. The combination
resonance (ω1+ω3) and (ω2+ω4) also shifted towards higher
excitation frequencies, hence indicating stabilization.

The stability diagrams for two different values of Gs/Ef
with g = 0.1, µ = 0.05, Y = 50 are shown in Figs. 23 and 24.
There is a marginal change in the stability of the system due to
a very small movement of the instability regions towards the
right by increasing the value of Gs/Ef from 0.0005 to 0.002.

Figures 25 and 26 show the regions of parametric resonance
with g = 0.1, µ = 0.05, and h1 = 35 and 50 respectively.
The increase in the value of lhf0 from 35 to 50 is observed
to have shifted the instability zones towards higher excitation
frequencies and upwards. Further, the width of most of the
zones are decreased, thus it has a stabilizing effect.

The instability regions with g = 0.1, µ = 0.05, and Y = 15
and 30 are shown in Figs. 27 and 28, respectively. It is ob-
served that with an increase in the value of γ, the resonance
zones are shifted to higher forcing frequencies. Additionally,
the combination resonance (ω2 + ω3) has disappeared due to
the increase in the value of Y , thus indicating the stabilization
of the system.

Figures 29 and 30 show the regions of parametric resonance
with g = 0.1, Y = 50, and µ = 0.5 and 0.9, respectively. The
increase in the value of µ from 0.5 to 0.9 has shifted all the
resonance zones along with the combination resonance zones
to lower excitation frequencies, thus indicating destabilization.
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Table 4. Variation of
(
P 0

)
crit

with δ/l.

Sl δ/l = 0.05 δ/l = 0.5 δ/l = 1
No P1 ωa ωb P1 ωa ωb P1 ωa ωb

M
O

D
E

1 1 0.14 58.909 58.903 0.14 58.9106 58.9043 0.14 58.9125 58.9063
2 0.78 58.982 58.829 0.78 58.9838 58.8311 0.78 58.9857 58.833
3 1.42 59.046 58.765 1.42 59.048 58.7669 1.42 59.0499 58.7689
4 1.74 59.078 58.733 1.74 59.0799 58.7349 1.74 59.0819 58.7369

M
O

D
E

2 1 0.16 231.34 231.32 0.16 231.338 231.323 0.16 231.34 231.325
2 0.8 231.41 231.25 0.8 231.411 231.251 0.8 231.412 231.253
3 1.44 231.47 231.18 1.44 231.476 231.186 1.44 231.478 231.188
4 1.76 231.51 231.15 1.76 231.509 231.153 1.76 231.51 231.155

M
O

D
E

3 1 0.16 518.86 518.85 0.16 518.863 518.848 0.16 518.865 518.85
2 0.8 518.93 518.77 0.8 518.935 518.775 0.8 518.937 518.777
3 1.44 519 518.71 1.44 519.001 518.71 1.44 519.003 518.712
4 1.76 519.03 518.68 1.76 519.034 518.677 1.76 519.035 518.679

M
O

D
E

4 1 0.16 921.41 921.4 0.16 921.417 921.403 0.16 921.419 921.405
2 0.8 921.49 921.33 0.8 921.49 921.33 0.8 921.492 921.332
3 1.44 921.55 921.26 1.44 921.556 921.264 1.44 921.558 921.266
4 1.76 921.59 921.23 1.76 921.588 921.231 1.76 921.59 921.234

Table 5. Variation of
(
P 0

)
crit

with GS/Ef .

Sl GS/Ef = 0.0005 GS/Ef = 0.001 GS/Ef = 0.002
No P1 ωa ωb P1 ωa ωb P1 ωa ωb

M
O

D
E

1 1 0 57.7422 57.7357 0 57.7423 57.7358 0 57.7425 57.736
2 0.7 57.8079 57.67 0.7 57.808 57.6701 0.7 57.8082 57.6703
3 1.3 57.8729 57.6051 1.3 57.873 57.6052 1.3 57.8732 57.6054
4 1.6 57.9053 57.5726 1.6 57.9054 57.5727 1.6 57.9056 57.5729

M
O

D
E

2 1 0 230.126 230.119 0 230.126 230.119 0 230.126 230.119
2 0.7 230.192 230.053 0.7 230.192 230.053 0.7 230.192 230.053
3 1.3 230.257 229.988 1.3 230.257 229.988 1.3 230.257 229.988
4 1.6 230.29 229.956 1.6 230.29 229.956 1.6 230.29 229.956

M
O

D
E

3 1 0 517.643 517.636 0 517.643 517.636 0 517.643 517.636
2 0.7 517.709 517.57 0.7 517.709 517.57 0.7 517.709 517.57
3 1.3 517.774 517.505 1.3 517.774 517.505 1.3 517.774 517.505
4 1.6 517.807 517.473 1.6 517.807 517.473 1.6 517.807 517.473

M
O

D
E

4 1 0 920.195 920.188 0 920.195 920.188 0 920.195 920.188
2 0.7 920.261 920.122 0.7 920.261 920.122 0.7 920.261 920.122
3 1.3 920.326 920.057 1.3 920.326 920.057 1.3 920.326 920.057
4 1.6 920.358 920.024 1.6 920.358 920.024 1.6 920.358 920.024

Table 6. Variation of
(
P 0

)
crit

with η.

Sl η = 0.003 η = 0.01 η = 0.02
No P1 ωa ωb P1 ωa ωb P1 ωa ωb

M
O

D
E

1 1 0.02 111.2352 111.2332 0.04 111.2359 111.2325 0.06 111.2361 111.2322
2 0.66 111.2689 111.1994 0.68 111.27 111.1984 0.7 111.2709 111.1974
3 1.3 111.3026 111.1657 1.32 111.3037 111.1647 1.34 111.3047 111.1637
4 1.62 111.3195 111.1489 1.64 111.3205 111.1478 1.66 111.3215 111.1468

M
O

D
E

2 1 0.02 444.3477 444.3457 0.04 444.3484 444.345 0.06 444.3486 444.3448
2 0.66 444.3815 444.3119 0.68 444.3825 444.3109 0.7 444.3835 444.3099
3 1.3 444.4153 444.2782 1.32 444.4163 444.2771 1.34 444.4173 444.2761
4 1.62 444.4321 444.2613 1.64 444.4332 444.2602 1.66 444.4342 444.2592

M
O

D
E

3 1 0.02 999.6449 999.643 0.04 999.6456 999.6422 0.06 999.6458 999.642
2 0.66 999.6787 999.6091 0.68 999.6798 999.6081 0.7 999.6808 999.6071
3 1.3 999.7125 999.5754 1.32 999.7135 999.5743 1.34 999.7146 999.5733
4 1.62 999.7294 999.5585 1.64 999.7304 999.5575 1.66 999.7314 999.5564

M
O

D
E

4 1 0.02 1777.1 1777.1 0.04 1777.1 1777.1 0.06 1777.1 1777.1
2 0.66 1777.1 1777 0.68 1777.1 1777 0.7 1777.1 1777
3 1.3 1777.1 1777 1.32 1777.1 1777 1.34 1777.1 1777
4 1.62 1777.2 1777 1.64 1777.2 1777 1.66 1777.2 1777
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Figure 9. Effect of α on the instability zones.

Figure 10. Effect of β on the instability zones.

Figure 11. Effect of G2/Ef on the instability zones.

Figures 31 and 32 address the effect of an increase in the
value of η from 0.05 to 0.5 for g=0.1, µ = 0.05, and Y = 50.
All the resonance zones have moved upwards, reducing the
areas, hence improving the stability of the system.

As shown in Figs. 33 and 34, the effect of an increase in the
value of from 0.2 to 2 for g = 0.1, Y = 50, and µ = 0.05 is an
increase in the stability of the system by shifting the resonance
zones to higher excitation frequencies and moving upwards.

Figures 35 and 36 address the effect of an increase in the
value of α from 0.2 to 0.8 for g = 0.1, µ = 0.05, and Y = 50.
All the resonance zones have shifted towards lower excitation
frequencies, hence decreasing the stability of the system.

With an increase in the value of η, δ/l, G2/Ef , GS/Ef ,
lhf0 , γe, Y and β, the value of [k] increases, thus improving
the stability of the system. With the increase in the values of
µ and α, the value of [k] decreases, which worsens the stabil-
ity of the system, hence the results addressing the effects of
various parameters on the static buckling loads and regions of
instability are justified.

4. CONCLUSIONS

The static and dynamic stability of a tapered symmetric
sandwich beam with a viscoelastic core resting on a variable

Pasternak foundation under the action of a pulsating axial load
is investigated for pinned-pinned and clamped-clamped end
conditions by computational analysis. By using Saito-Otomi
conditions, the zones of instability have been obtained. The
results have been compared with results of earlier researchers9

to test the validity of the analysis.
The results reveal that the static buckling loads are almost

independent of η and µ. An increase in the value of α reduces
the static buckling load for both the P-P and C-C cases. Higher
values of G2/Ef , GS/Ef , lhf0 , Y , δ/l, γe, and β improve the
static buckling loads for both the cases considered in the analy-
sis. The static buckling loads for the C-C case are greater than
the P-P case for all the parameters considered in this analysis.

From the analysis it is found that the dynamic stability of
the system increases with an increase in the values of G2/Ef ,
GS/Ef , Y , lhf0 , δ/l, β, and η, with increments of µ and α
worsening the stability of the system. Weakening of the foun-
dation makes the system more susceptible to periodic forces,
while strengthening of the elastic foundation has the reverse
effect. For the P-P case, no combination resonance occurs for
this system, but for the C-C case, a combination resonance of
the sum type occurs for all parameters.
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