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Considering frequency domain energy distribution differences of bearing vibration signal in the different failure
modes, a rolling bearing fault pattern recognition method is proposed based on orthogonal wavelet packet decom-
position and Gaussian Mixture Model-Hidden Markov Model (GMM-HMM). The orthogonal three-layer wavelet
packet decomposition is used to obtain wavelet packet decomposition coefficients from low frequency to high fre-
quency. Rolling bearing raw vibration signals are firstly decomposed into the wavelet signals of different frequency
bands, then different frequency band signals are reconstructed respectively to extract energy features, which form
feature vectors as the model input of GMM-HMM. A large number of samples are trained to get model parameters
for different bearing faults, then several groups of test data are adopted to verify GMM-HMMs so different fault
types of rolling bearings are recognized. By calculating the current state appearance probability of monitoring data
in GMM-HMMs, different failure patterns are recognized and evaluated from the maximum probability. Similarly,
we establish GMM-HMMs for different grade fault samples and evaluated the performance degradation state. Test
results show that the proposed fault diagnosis approach can identify accurately the fault pattern of rolling bearings
and evaluate performance degradation of bearings.

1. INTRODUCTION

Safe and reliable operation of the mechanical equipment has
aroused wide attention and great interest of researchers in re-
cent years, so we usually carry on condition monitoring, fault
diagnosis of early stages, and failure identification and predic-
tion to ensure safe and reliable operation of the mechanical
equipment. Rolling bearings are key components of rotating
machinery; the fault and failure of rolling bearings can cause
abnormal vibration and noise, even direct destruction for me-
chanical equipment, and affect safe and reliable operation. Ac-
cording to statistics, among the rotating machinery about 30%
of mechanical failures are associated with rolling bearing dam-
ages.1 The diagnosis technology on rolling bearing fault has
always been a hot spot for many research scholars. Xia Rui-
hua applied time domain analysis method to feature vector ex-
traction of rolling bearing vibration signal and developed fault
diagnosis technology for rolling bearings.2 Huang Zhonghua
proposed a fault diagnosis method of rolling bearings with

Hilbert transformation considering the modulation feature of
vibration signal.3 In order to solve the application problem
of traditional resonance demodulation technique, which is se-
riously impacted by the low signal to noise ratio of rolling
bearing original vibration and the choice of filter parameters
depending on manipulator’s subjective experience, Zhou Zhi
presented the method of combining adaptive noise reduction
with adaptive resonance demodulation.4 These studies have
made some progress, but they still fail to break through these
disadvantages of time domain analysis, which has lower fre-
quency resolution at high frequencies and has poor temporal
resolution at low frequencies.5 Wavelet analysis is a localized
method of time frequency analysis, and it can gradually make
the signal refined on multi-scale by the telescopic pan opera-
tions and ultimately achieve time segments at high frequency
and frequency segments at low frequency, which can automat-
ically adapt to the requirements of frequency signal analysis.6

With strict data structure and reliable computing capabil-

International Journal of Acoustics and Vibration, Vol. 24, No. 2, 2019 (pp. 199–209) https://doi.org/10.20855/ijav.2019.24.21120 199



L. Huang, et al.: A FAULT DIAGNOSIS APPROACH FOR ROLLING BEARING BASED ON WAVELET PACKET DECOMPOSITION AND. . .

ity, Hidden Markov Model (HMM) has been widely applied
in speech recognition, mouth recognition, face detection, and
other fields. In recent years, some researchers have begun to
introduce HMM to fault diagnosis and condition monitoring.7

Xiao Wenbin proposed a method to assess performance degra-
dation of bearings using Wavelet transform and HMM.8 This
method used wavelet transform to analyze the bearing vibra-
tion signal, extract the total node energy as a feature, estab-
lish a performance degradation assessment model, and make
a quantitative assessment about the extent of degradation of
the bearing. S.S.H. Zaidi used the time-frequency features ex-
tracted from the motor current as machine health indicators
and predicted the future state of fault severity using HMMs.9

Jianbo Yu proposed an adaptive learning method for machine
faulty detection and health degradation monitoring, and adap-
tive HMM is used for online learning the dynamic health
changes of machines in their full life.10 Mitchell Yuwono, et
al. proposed an automatic bearing defect diagnosis method
based on Swarm Rapid Centroid Estimation and HMM using
the defect frequency signatures extracted with Wavelet Kur-
togram and Cepstral Liftering.11 Haitao Zhou, et al. developed
a fault diagnosis model for rolling element bearings based on
shift-invariant dictionary learning and HMM.12 Zefang Li de-
veloped a likelihood-based Continuous Hidden Markov Model
(CHMM) for averaging estimator, and bearing fault diagno-
sis is effectively performed.13 Omid Geramifard introduced a
semi-nonparametric approach based on HMM for fault detec-
tion and diagnosis in synchronous motors.14 V. Purushotham
presented a new method for detecting localized bearing defects
based on wavelet transform.15 Bearing race faults have been
detected by using discrete wavelet transform.

However, these studies do not deeply reveal the inherent
regularity and particularity of HMM in mechanical fault diag-
nosis, especially for Gaussian Mixture Model-Hidden Markov
Model (GMM-HMM). In this paper, we present a rolling bear-
ing fault pattern recognition method based on wavelet packet
decomposition and GMM-HMM. Because the energy features
for vibration signals of different faults have differences in
different frequency bands, wavelet packet decomposition al-
gorithms are proposed to extracted energy feature vectors of
rolling bearings, which provide input feature vectors of GMM-
HMM. After model train and verification, fault pattern recog-
nition and degradation evaluation of rolling bearings can be
effectively realized.

2. THEORETICAL FOUNDATION

2.1. Wavelet Packet Decomposition
Algorithm

The basic idea of wavelet packet analysis is as follows:16

assuming that the discrete approximation Ajf(t) has been cal-
culated for the signal f(t) ∈ L2(R) in the resolution of 2j and
the discrete approximation Aj−1f(t) of f(t) in the resolution
of 2j−1 can be obtained from Ajf(t) by discrete low-pass fil-
ter H , according to Mallet algorithm, Ajf(t) is decomposed

into rough image Aj−1f(t) and detail Dj−1f(t),

Ajf(t) = Aj−1f(t) +Dj−1f(t). (1)

Once the scaling function φ(t) is determined for multi-
resolution analysis, the wavelet function ψ(t) can also be con-
structed. If the scaling function is orthogonal, this multi-
resolution analysis is called orthogonal analysis. Mallet algo-
rithm is based on orthogonal multi-resolution analysis. Dis-
crete approximation Ajf(t) and detail Djf(t) can be ex-
pressed as:

Ajf(t) =

+∞∑
k=−∞

cj,kφj,k(t); (2)

Dj−1f(t) =

+∞∑
k=−∞

dj,kψj,k(t); (3)

where cj,k and dj,k are respectively scale coefficients and
wavelet coefficients.

According to the scalability and inclusiveness of multi-
resolution analysis, two-scale equation scaling function and
wavelet function can be obtained:

φ(t) =
√
2

+∞∑
k=−∞

hkφ(2t− k); (4)

ψ(t) =
√
2

+∞∑
k=−∞

gkφ(2t− k). (5)

In Eq. (4), hk is two-scale expansion coefficients of scal-
ing function, also known as the low-pass filter coefficients.
In Eq. (5), gk is two-scale equation wavelet expansion coef-
ficients, also known as a high-pass filter coefficients. The rela-
tionship of gk and hk can be expressed as:

gk = (−1)k−1h1−k, k ∈ Z. (6)

The method of wavelet packet decomposition divides the
frequency band into a multilayer structure, and it allows the
high frequency part to make further decomposition, which is
not required in normal multi-resolution analysis or wavelet
analysis. Moreover, according to the analysis of signal fea-
tures, it can select adaptively the appropriate frequency band
to match the signal spectrum, thus improving the resolution of
time-frequency analysis.17 Wavelet packet decomposition and
reconstruction formulas are as follows:

cj−1,k =

+∞∑
m=−∞

ĥm−2kcj,m; (7)

dj−1,k =

+∞∑
m=−∞

ĝm−2kcj,m. (8)

In Eq. (7) and (8), ĥk, ĝk respectively represent conjugate
coefficients of low-pass and high-pass orthogonal filters, and
cj,k, dj,k are scale coefficients and wavelet coefficients.
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The wavelet packet decomposition algorithm can be ex-
pressed as:

cj,k =

+∞∑
m=−∞

hk−2mcj−1,m +

+∞∑
m=−∞

gk−2mdj−1,m; (9)

where hk, gk are the coefficients of low-pass and high-pass
orthogonal filters.

The wavelet packet reconstruction formula can be expressed
as:

cj,k =

+∞∑
m=−∞

hk−2mcj−1,m +

+∞∑
m=−∞

gk−2mdj−1,m. (10)

For the discrete original signals, the wavelet packet de-
composition and reconstruction algorithms are used to obtain
wavelet signals of some certain frequency or several frequency
bands. In this paper, according to the corresponding relation
between rolling bearing fault states and feature vectors, origi-
nal vibration signals are decomposed and reconstructed to ob-
tain wavelet signals of eight frequency bands, then the energy
feature vectors are extracted from different frequency band sig-
nals.

2.2. GMM-HMM
In GMM-HMM, HMM is the main model. The parameters

of HMM are defined as follows:18

1. N , the number of states in the model. Set S =

{s1, s2, . . . , sN} consists of the individual states, if the
state is qt at t time, qt ∈ {s1, s2, . . . , sN};

2. M , the number of distinct observation symbols per state.
The individual observation symbols are denoted as V =

{v1, v2, . . . , v<}. If the observation symbol is ot at t time,
ot ∈ {v1, v2, . . . , vM};

3. A, the state transition probability matrix. A = (aij)N×N
where aij = P [qt+1 = sj |qt = si], 1≤ i, j ≤ N ;

4. B, the observation probability matrix B = (bjk)N×M
where bjk indicates observation symbol probability dis-
tribution in state sj , bjk = P (ot = vk|qt = sj),
1≤ k ≤M ;

5. π, the initial state distribution. π = (π1, π2, . . . , πN )

where πt = P (q1 = st), 1< i < N .

Typically, HMM assumes that the observation symbols in
per state are discrete values and uses the method of discrete
probability density to build a model for transition probabilities
and observation probabilities. However, in the actual process
of condition monitoring and fault diagnosis, the observation
symbols of a characteristic signal are usually continuous vari-
ations, not a few definite values. Although a continuous signal
can be processed with a variety of discrete ways, such as vec-
tor quantization, the process may cause great loss of effective
information. Therefore, in the process of condition monitoring

and fault diagnosis, using HMMs with continuous observation
probability distribution will have more advantages than to use
HMMs with discrete observation symbols. The actual fault
characteristic signals are often multidimensional feature vec-
tors, and the multi-dimensional characteristic signal of contin-
uous variation can be mixed with several probability density
functions to characterize. Since the GMM can be infinitely
close to arbitrary distribution, GMM is used to fit the probabil-
ity density function of observation vector in each state, namely,

bjm(ot) =

M∑
m=1

wjmGjm(ot) =

M∑
m=1

wjmN(ot, µjm, cjm), 1 ≤ m ≤M ; (11)

where M is the Gaussian component number of the state sj ,
equivalent to the number of observation symbols correspond-
ing to each state in the discrete HMM. wjm is the weights
of the m-th Gaussian distribution of the state sj , µjm and
cjm are mean vector, and the covariance matrix of the m-
th Gaussian distribution in the state sj , Gjm(ot) is the m-th
Gaussian distribution of state sj . This distribution is a multi-
dimensional normal random variable probability density func-
tion, and its dimension D is the dimension of feature vector.
According to the analysis of multi-dimensional feature vector,
multi-dimensional normal random variable probability density
functions are:19

Gjm(ot) = N(ot, µjm, Cjm) =

1√
(2π)D|Cjm|

exp

(
−1

2
(ot − µm)C−1jm(ot − µjm)

)
. (12)

From the above analysis, the observations matrix B of
GMM-HMM is the use of multi-dimensional Gaussian density
function to model, which uses mean vector µjm, covariance
matrix Cjm, and mixing coefficients (weights) wjm to charac-
terize bj(ot).

2.3. GMM-HMM Parameter Revaluation
In GMM-HMM, forward-backward algorithm, Viterbi algo-

rithm, and Baum-Welch algorithm are basically the same as
discrete HMM.20 However, when calculating and revaluating
the probability distribution matrix B, the former is more com-
plex than the latter. Suppose the model parameters λ and the
sequence of observations o is given, γt(j,m) is defined as the
joint probability of the m-th Gaussian distribution when the
state is qt at t time is sj :

γt(j,m) = P (qt = sj , xj,t = Xj,m|O, λ); (13)

where xj,t stands for the Gaussian distribution of sj at time
t and Xj,m stands for the m-th Gaussian distribution of
sj , γt(j,m), can be obtained by forward variable αt(i) and
backward variable βt(i) ,

γt(j,m) =
αt(j)βt(j)
n∑

i=1

αt(i)βt(i)
× wj,mN(ot, µj,m, Cj,m)

Mj∑
j,n

wj,nN(ot, µj,n, Cj,n)

. (14)
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Then, according to γt(j,m), weights wj,m, mean vector
µj,m, and covariance matrix Cj,m are revalued as follows:

ŵj,m =

T∑
t=1

γ(j,m)

T∑
t=1

M∑
n=1

γt(j, n)

; (15)

µ̂j,m =

T∑
t=1

γt(j, n)ot

T∑
t=1

γt(j,m)

; (16)

Cj,m =

T∑
t=1

γt(j,m)(ot − µj,m)(ot − µj,m)T

T∑
t=1

γt(j,m)

. (17)

3. FAULT DIAGNOSIS BASED ON GMM-HMM

In the classic study case on HMM, these hermits used wet
degrees of the seaweed (four observation symbols of soggy,
damp, dryish, dry) to predict the states of weather (four hidden
states of sunny, cloudy, rain, heavy rain). The HMM predic-
tion model library established they are not the same in different
seasons, and the prediction results are different. Fault diagno-
sis method based on GMM-HMM can use this classic case to
illustrate. For example, the vibration signals of rolling bear-
ings are classified into four modes (normal, inner ring fault,
rolling body faults, and outer fault), which is similar to the sea-
sons spring, summer, autumn and winter in the weather predic-
tion case; according to feature vectors of four different failure
modes, the HMM model library including four modes is estab-
lished. In the forecast of weather, the Markov chain consists of
four weather conditions (sunny, cloudy, rain, and heavy rain),
which can transform into each other.

In the process of fault diagnosis and prognosis, Markov
chains are generally set the left-right type, which includes four
states (s1, s2, s3, s4). The four hidden states do not seem to
have clear meaning on the surface, but they often can be char-
acterized by the damage degree of components in some fail-
ure mode. For example, the bearing crack failures are divided
into four hidden states according to the length of the crack.
Four hidden states can be considered as the internal mecha-
nism of bearing which can generate different vibration signals,
and these vibration signals are extracted to feature vendors to
input HMM as an observation symbol. Usually, the fault diag-
nosis signals collected are not discrete values but continuous,
so continuous HMM would have a better advantage.

Figure 1 is the flow chart of GMM-HMM fault diagnosis
and prediction, the prognosis process includes two parts: of-
fline training and online test. The work of offline training
is to build the GMM-HMM model library by means of fault
samples. The original data signals sampled by the sensor are
pretreated, using Wavelet Packet Decomposition (WPD) to ex-
tract feature vendors, namely, the n-th layer node energies after
WPD. Then node energies as observation symbols are used to
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Figure 1. The flow chart of GMM-HMM fault diagnosis and prediction.

train and revalue the model parameters of GMM-HMM. Dur-
ing the course of establishing the model library, the parame-
ters of each GMM-HMM are learned and trained by using the
Baum-Welch algorithm.

The online test involves signal process, fault diagnosis and
prediction aiming at online test data. Wavelet packet analysis is
adopted to extract feature vectors of the current condition mon-
itoring data, which is the observation vector of GMM-HMM.
Forward algorithm is used to calculate probability P (O|λ) of
the current observation vector in the GMM-HMM model li-
brary, and Viterbi algorithm is adopted to determine the ob-
servation sequence of optimal path and to calculate maximum
probability; then, according to the maximum probability of
failure, different failure mode and damage degree of the com-
ponents can be recognized and evaluated.

4. APPLICATION AND RESULTS

4.1. Test Systems and Data Acquisition
In order to verify the effectiveness of this fault diagnosis

method presented previously, rolling bearing is selected as the
object to carry out test research. The raw data of test re-
search come from the rolling bearing experimental platform
provided by Case Western Reserve University.21, 22 As shown
in Fig. 2 below, the test platform consists of a 2 hp motor,
a torque transducer, a dynamometer, and control electronics.
The test bearings support the motor shaft. Single point faults
were introduced to the test bearings using electro-discharge
machining with fault diameters of 0.007 inches, 0.014 inches,
0.021 inches, and 0.028 inches. Normal fault data of fan end
are acquired at 12 kHz frequency; bearing failure of drive end
is collected at 12 kHz frequency data, but also at 48 kHz fre-
quency to acquire.
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Figure 2. The test platform for rolling bearing faults.

Figure 3. Raw signals for bearing inner ring fault.

In this paper, the experimental data selected is drive end
data whose sampling frequency data is 12 kHz, fault diame-
ter is 0.021 inches, motor speed is 1750 rpm, and motor load
is 2 horsepower. The types of data are classified by normal,
inner ring fault, balls fault, and outer ring fault. Among these
data, 20 samples are used to train the GMM-HMM model li-
brary and 10 samples as model test and validation. Addition-
ally, in order to verify the feasibility of this approach in eval-
uation of part degradation, we select four different grades data
for the same type of fault bearings, which are inner ring fault
bearings with fault diameters of 0.007 inches, 0.014 inches,
0.021 inches, and 0.028 inches.

4.2. Feature Extraction of Vibration Signal

The different fault vibration signals of rolling bearings are
sampled by the sensor. The raw fault signals of bearing in-
ner ring are shown in Fig. 3. Figure 4 is the spectrum of fault
signals for bearing inner ring. Seen from Fig. 4, there are sev-
eral peaks at some frequencies, but the fault features of inner
ring are not very obvious, so that inner ring fault of rolling
bearing corresponding to characteristic frequencies cannot be
accurately identified.

According to the wavelet package algorithm previously, the

Figure 4. Spectrum of bearing inner ring fault signals.

Figure 5. Wavelet reconstruction s30-s33 for inner ring fault.

fault signals are decomposed into a three-layer wavelet packet
to effectively extract the fault feature.23, 24 After wavelet de-
composition and reconstruction, 8 band signals are shown in
Fig. 5 and Fig. 6.

As shown from Fig. 5 and Fig. 6, compared to the origi-
nal signals, each node signal was more moderate and clear by
means of three layer wavelet decomposition and reconstruc-
tion, which achieves the purpose of eliminating noise. Through
analysis of different frequency band wavelet signals, we can
obtain dynamic behavior characteristics of vibration signals in
each frequency band. After reconstructed signal s3j(t) in each
band is further processed, node energy E3j is given below:

E3j =

∫
|s3j(t)|2dt =

n∑
k=1

|xjk|2; (18)

where xjk(j = 0, 1, . . . , 7, k = 1, 2, . . . , n) denotes the mag-
nitude of n discrete points in the reconstructed signal s3j , and
the third WPD node energy for inner ring fault is shown in
Fig. 7.

In order to improve the clustering of feature vectors, fea-
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Figure 6. Wavelet reconstruction s34–s37 for inner ring fault.

Figure 7. The histogram of node energy for bearing inner fault.

ture vectors need to be normalized to facilitate network in-
put and recognition. Among the normalized feature vector
S3j = [s30, s31, . . . , s37], the range of each element s3j is be-
tween 0 and 1. The normalization method is expressed as

s3j =
e3j −max(E3j)

max(E3j)−min(E3j)
. (19)

4.3. Diagnosis of Different Fault Bearings

4.3.1. GMM-HMM for Different Faults

Aiming at four different fault features of rolling bearings,
including normal, inner ring, rolling body fault, and outer ring
fault, there was a total of 80 groups of sample data. Twenty
groups of each type of fault data were selected for model learn-
ing and parameter training of the GMM-HMM library. After
sub-frame processing and wavelet packet feature extraction,
the original signals are converted into feature vectors to input
GMM-HMMs as observation symbols. The K-means cluster-
ing algorithm is used to estimate an initial set of model param-
eters, then Baum-Welch algorithm is adapted to train model

parameters and to obtain fault feature GMM-HMM model li-
brary.

The GMM-HMM train processes of different modes are
shown in Fig. 8. As can be seen from Fig. 8, corresponding
to rolling bearing four different sample data (normal, inner
ring fault, rolling element fault, and outer ring fault), we es-
tablished four GMM-HMMs. The number of training and the
convergence degree of each model is not consistent. The train-
ing numbers of four GMM-HMMs are respectively 22, 32, 15,
and 19 times. Through the above study and training, we can
obtain four different types of rolling bearing GMM-HMM li-
brary for normal, inner ring fault, rolling body fault, and outer
ring fault.

Due to space limitations, this article only gives model pa-
rameters of GMM-HMM for the inner fault. Initial probability
π of GMM-HMM is given as π = (1, 0, 0, 0)′. After model
training and parameters revaluation, the state transition matrix
A of GMM-HMM for the inner ring fault is shown as follows:

A =


0.9687 0.0313 0 0

0 0.7627 0.2373 0

0 0 0 0.9959 0.0041

0 0 0 1.0000

 (20)

When we use GMM to approximate the probability density
function bjm(ot) of observation vector in each implied state,
the assumptions are as follows:

1. there are 4 hidden states sj , j = 1, 2, 3, 4 in each fault
mode;

2. after these observation vectors are clustered to three
datasets, which are respectively subject to three Gaussian
probability distribution functions in each hidden state.

By means of parameter revaluation, we obtained the param-
eters of Gaussian mixture distribution bjm(ot) for the inner
ring fault of rolling bearings. Mean vectors µj,m are listed in
Table 1, covariance matrices Cj,m are listed in Table 2, and
weights wj,m are listed in Table 3.

4.3.2. Model Verification and Fault Recognition

In order to verify the performance of GMM-HMM apply-
ing in fault diagnosis and failure pattern recognition, a total
40 groups of sample data (10 groups for each type, normal,
inner ring fault, balls fault, and outer ring fault) are selected
to make fault prognosis. Based on the GMM-HMM library,
we can calculate the maximum probability of test data that ap-
pears in the HMM database by Vertibi algorithm, and we can
deduce which GMM-HMM these test data belong to. Further-
more, online diagnosis and prognosis can be realized. The test
results of different faults are shown in Fig. 9.

Figure 9 shows that the fault diagnosis method based on
GMM-HMM is feasible, and all test results are accurate with-
out mistaken judgment. Moreover, the diagnosis and recogni-
tion processes have a fast computing speed and high recogni-
tion rates. Meanwhile, this demonstrates that the fault diagno-
sis method using GMM-HMM has higher recognition accuracy
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a) The iterative process of normal bearing. b) The iterative process of inner ring fault.

c) The iterative process of rolling body fault. d) The iterative process of outer ring fault.

Figure 8. GMM-HMM train processes for different faults.

Table 1. GMM-HMM revaluation parameter µj,m.

0.1010 0.1112 0.7389 0.1498 0.0423 0.0445 0.6247 0.1117
µ1,m 0.1442 0.1365 0.5267 0.1388 0.0411 0.0426 0.7997 0.1331

0.1580 0.1476 0.6299 0.1512 0.0403 0.0508 0.7146 0.1257
0.1604 0.1591 0.5275 0.1488 0.0440 0.0485 0.7894 0.1394

µ2,m 0.1569 0.1542 0.5943 0.1554 0.0426 0.0488 0.7413 0.1352
0.1591 0.1621 0.6479 0.1622 0.0424 0.0452 0.6934 0.1243
0.1636 0.1676 0.6640 0.1659 0.0403 0.0484 0.6741 0.1210

µ3,m 0.1342 0.1178 0.5448 0.1291 0.0418 0.0429 0.7938 0.1372
0.1214 0.1179 0.6177 0.1384 0.0380 0.0429 0.7419 0.1201
0.1397 0.1348 0.5750 0.1426 0.0405 0.0422 0.7678 0.1297

µ4,m 0.1705 0.1754 0.5677 0.1578 0.0449 0.0503 0.7522 0.1347
0.1362 0.1346 0.6445 0.1504 0.0402 0.0425 0.7108 0.1216

compared to the method proposed by literature.5 The output of
the RBF network was 0.945, 0.983, 0.969, and 0.932.

4.4. Performance Degradation State
Evaluation for the Same Fault Bearings

4.4.1. GMM-HMM for Different Grades

The failure of the mechanical part is the process of perfor-
mance degradation, which can appear as different faults, or be-

have as different grades for the same fault. Here we choose the
inner ring fault to characterize the deterioration degree of bear-
ing performance, and the inner ring fault bearings are divided
into different grades according to the size of the machining
fault diameter (0.007 inches, 0.014 inches, 0.021 inches, and
0.028 inches). For the convenience of description, the data of
inner ring fault are abbreviated as IR007, IR014, IR021, and
IR028. A total 80 groups of test data for four different grades,
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Table 2. GMM-HMM revaluation parameter Cj,m.

0.0002 0.0008 0.0007 0.0003 0.0000 0.00001 0.0005 0.00001
C1,m 0.0004 0.0005 0.0013 0.0001 0.0000 0.00001 0.0004 0.0003

0.0005 0.0007 0.0006 0.0004 0.0000 0.0001 0.0006 0.0001
0.0003 0.0004 0.0005 0.0001 0.00001 0.00002 0.0002 0.00004

C2,m 0.0006 0.0005 0.0004 0.00004 0.00002 0.00003 0.00033 0.00004
0.00031 0.00032 0.00051 0.00035 0.00002 0.00005 0.00005 0.00011
0.0005 0.0004 0.0013 0.0003 0.00001 0.00001 0.0011 0.0001

C3,m 0.0001 0.0002 0.0012 0.0001 0.0000 0.00001 0.0005 0.0001
0.0003 0.0004 0.0009 0.0002 0.0000 0.00001 0.0006 0.0001
0.0002 0.0003 0.0005 0.0001 0.0000 0.00001 0.0003 0.0001

C4,m 0.0005 0.0006 0.0019 0.0002 0.0000 0.00001 0.0012 0.0001
0.0003 0.0003 0.0005 0.0002 0.0000 0.00001 0.0004 0.0001

Table 3. GMM-HMM revaluation parameter weight wj,m.

0.1080 0.2614 0.3553 0.3388
w1,m 0.3953 w2,m 0.4773 w3,m 0.2355 w4,m 0.4072

0.4967 0.2614 0.4091 0.2540

a) Recognition process for normal samples. b) Recognition process for inner ring fault samples.

c) Recognition process for ball fault samples. d) Recognition process for outer ring fault samples.

Figure 9. The test results of different faults.
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20 groups of each type of fault data, were selected for model
learning and parameter training of the GMM-HMM library.

Similarly, these raw signals are converted to feature vector to
input GMM-HMM as observation symbols, the K-means clus-
tering algorithm is used to estimate an initial set of model pa-
rameters, and Baum-Welch algorithm is adapted to train model
parameters and to obtain the GMM-HMM library for differ-
ent grade fault features. The GMM-HMM train processes are
shown in Fig. 10. As can be seen from Fig. 10, corresponding
to four different grade sample data of 0.007, 0.014, 0.021, and
0.028 for inner ring fault bearings, we established four GMM-
HMMs. Obviously, the number of training and convergence
degree of four models is different. The training numbers of
four models are respectively 40, 38, 15, and 18 times. As space
is limited, all model parameters of GMM-HMMs for different
grades are not listed.

4.4.2. Model verification and Degradation Evaluation

In the same way, a total 40 groups of sample data (10 groups
for each grade, 0.007, 0.014, 0.021, and 0.028 ) were se-
lected to verify the performance of GMM-HMM. Utilizing the
above-trained four-model library, we can calculate the max-
imum probability of the test data that appears in the GMM-
HMM database and determine which model these test data are
subject to. Furthermore, the performance degradation state of
rolling bearing can be judged and evaluated. The test results of
the different grade fault samples are shown in Fig. 11.

As can be seen from Fig. 11, the evaluation method of the
degradation state is feasible and effective for different grade
fault rolling bearings based on GMM-HMM, which have the
same fault pattern with inner ring. Moreover, all test results
are accurate without mistaken judgment, and the evaluation
and recognition processes have fast computing speed and high
recognition rates.

5. CONCLUSIONS

In this paper, we put forward fault diagnosis and pattern
recognition technology combining wavelet packet decomposi-
tion with GMM-HMM. Using WPD to extract energy feature
vectors can eliminate noise effectively from raw signals. The
method of using GMM to approximate observation probability
density function of the feature vector can avoid losing effective
information. The experimental results show that fault prog-
nosis and state evaluation based on GMM-HMM have higher
identification accuracy and fast speed for fault pattern recogni-
tion and degradation state judgment of rolling bearings.

From above studies, whether training sample data or test
sample data are from the laboratory and sample data are con-
centrated and have less interference factors, the recognition
rate of test samples are very high. In the follow-up study, ac-
cording to the different damage degree of components, we will
select as many as possible training and testing samples to train
and verify GMM-HMM and consider the impact of interfering
factors in the field environment. In addition, we will extend our

research based on GMM-HMM from rolling bearings to other
mechanical parts and from fault diagnosis to pattern recogni-
tion, life prediction and other fields.
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