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This paper derives a comprehensive analytical dynamic model of a T-shaped beam that includes in-plane and out-
of-plane vibrations for mid-frequency range analysis, defined here as approximately 1 kHz to 10 kHz. The web,
right part of the flange, and left part of the flange of the T-beam are modelled independently with two-dimensional
elasticity equations for the in-plane motion and the classical flexural plate equation for the out-of-plane motion.
The differential equations are solved with unknown wave propagation coefficients multiplied by circular spatial
domain functions, which are inserted into equilibrium and continuity equations at the intersection of the web and
flange and into boundary conditions at the edges of the system resulting in 24 algebraic equations. These equations
are solved to yield the wave propagation coefficients and this produces a solution to the displacement field in all
three dimensions. An example problem is formulated and compared to solutions from Bickford beam theory and
finite element analysis. Higher order branch waves are discussed and a simplified symmetric model is presented.

1. INTRODUCTION

Beams have numerous applications in the aerospace, mar-
itime, automotive, building, and mining industries. They are
typically structural members and are designed to resist an ex-
ternal force either applied directly or applied to a body that
they are supporting. They provide a concentrated stiffness at
one or more locations in a mechanical system that has various
design objectives. There is an extremely large body of ana-
lytical and experimental papers that model and analyse various
types of beams. The first equation of motion of a beam was de-
veloped by Bernoulli and Euler and this equation is presented
in almost every text on mechanical vibrations.1 This theory
uses the assumption that all sections rotate orthogonal to the
neutral axis of the beam. Timoshenko revised this equation
so that the rotation angle was a function of the polar inertia
of the beam.2 Beam theory has been made more accurate by
the inclusion of higher order displacement functions, usually
in the axial direction. Bickford used a third-order polynomial
through the thickness of the beam to model the in-plane dis-
placement field.3 Karama et al. used an exponential function
to model the shear distribution in the beam.4 Other functional
distributions are possible and have also been similarly applied
to plate theory.5, 6

Over the years, beams have become more geometrically di-
verse and their shapes have been modified from rectangular
to L-, T-, I-, and H-shaped, channel-shaped, and hollow box
designs. Park et al. studied longitudinal wave motion of finite
coupled thin plates.7 Kessissoglou added the flexural motion to
the previous reference so that a full three-dimensional analysis
of an L-shaped finite plate became possible.8 Du et al. investi-
gated free vibration of coupled rectangular plates with general
boundary conditions, using energy methods to derive the dif-

Figure 1. Three inverted T-beams supporting a plate.

ferential equations of motion.9 Chen et al. analysed vibrations
in box type plate structures.10 Wang addressed the problem
of finite coupled plates whose intersection contained a mass.11

T-shaped beams have had some investigations, generally ap-
plied to concrete or reinforced concrete structures where static
analysis and ultimate strength are the major focal points of the
research.12, 13 Langley and Heron derived a method to calculate
wave transmission coefficients of plate and beam junctions.14

Keir et al. investigated coupled rectangular plates with an em-
phasis on the effect of active control of these systems.15 Mitrou
et al. researched wave transmission in two-dimensional struc-
tures using a mixed finite element and wave and finite element
methods.16

Beam reinforced structures have been analysed for many
years. A typical example is shown in Fig. 1. Fluid-loaded
stiffened plates have been researched using flexural wave plate
models by Mace17, 18 and Lin and Hayek19 with a general em-
phasis on structural acoustic responses. The plate governing
equations in a stiffened plate analysis has been extended to ad-
mit fully elastic wave propagation by Hull and Welch and this
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Figure 2. Inverted T-beam with dimensions and a normal pressure excitation.

allows much higher frequency studies compared to previous
flexural wave models.20 Models of these structures typically
have an infinite length assumption as the energy propagates
down the length of the structure and due to the large spatial
lengths and slight damping present does not form a standing
wave pattern. The model of the beam reinforcement has typ-
ically been an infinite length Bernoulli-Euler or Timoshenko
model which has low- to mid-frequency range limitations.

This paper develops an analytical model of a T-shaped beam
for mid-frequency range analysis. In this model, the web and
flange of the T-beam are modelled independently with two-
dimensional elasticity accounting for the in-plane motion and
the classical flexural plate equation accounting for the out-
of-plane motion. The method presented here combines six
in-plane components and three out-of-plane components into
a single model that can predict the response of a T-beam to
various external loads. The web and flange are joined by
twelve constraint equations and the free and forced edges are
modelled with twelve additional force and moment equations.
Modelling the beam in this manner allows the web and flange
equations of motion to incorporate coupled in-plane and out-
of-plane plate responses, and these equations make the model
much more accurate compared to previous shear deformation
models.4, 5 For the specific example presented in this paper, the
three-dimensional displacement fields are studied with respect
to independent loads in the three primary axes of the Carte-
sian coordinate system. Model comparisons are made to the
Bickford beam model and a finite element model. It is shown
that for the specific example presented here, the accurate fre-
quency region of the normal displacement divided by normal
pressure is increased from 1 kHz of the Bickford beam model
to about 8 kHz for the new beam model. The new model ad-
mits higher order branch wave propagation modes and the lo-
cations of these modes in the wavenumber-frequency plane are
analytically calculated.

2. SYSTEM MODEL

The system under consideration is an inverted T-beam with
continuous spatial and time harmonic excitation on the top of
the structure. A schematic of this system is shown in Fig. 2.
The narrow top portion is called the web and the wide lower
portion is called the flange. Usually this type of beam is sym-
metric about the mid plane of the web, but this is not a nec-
essary condition for the model, as the model presented in this

Figure 3. Diagram of T-beam with component coordinate systems.

section will capture the dynamics of an asymmetric beam. The
problem is analytically modelled using the two-dimensional
plane stress elastic equations for in-plane motions of the web
and the flange and classical plate equations for the out-of-plane
motion of the web and the flange. This model is an extension
of a previous model, where two finite plates were oriented in
an L-shaped configuration and the power transmission of the
structure caused by transverse loading on one of the plates
was studied.8 The model derived here varies from the previ-
ous model in that it is an infinite beam, so that the differential
equations and boundary conditions admit different functions
than that of a finite plate, a flange has been added to make it a
T-configuration rather than an L-configuration and loading and
analysis are in all three directions of the coordinate system,
so that the beam is excited by normal pressure, axial pressure,
and transverse pressure, all represented by continuous analyti-
cal functions.

The model uses the following assumptions: (1) the system
has infinite spatial extent in the y-direction, (2) the excita-
tion is at a fixed frequency and fixed wavenumber in the y-
direction, (3) the angle at the intersection of the web and the
flange is always a right angle, (4) the material properties of
the web and flange are identical, and (5) the particle motion
is linear. The model is developed by analysing the system as
three separate components: the web, the left part of the flange,
and the right part of the flange. For all three components,
the two-dimensional elasticity equations of motion are used
for the in-plane motion and classical plate equations are used
for out-of-plane motion. The equations modelling the in-plane
motion of the web and flange begin with the Navier-Cauchy
fully elastic equations of motion.21 These are reduced to two-
dimensional plane stress equations of motion, the first one is in
the x-direction and is written as

E

1− ν2
∂2un(xn, y, t)

∂x2n
+

E

2(1− ν)

∂2vn(xn, y, t)

∂xn∂y
+

G
∂2un(xn, y, t)

∂y2
= ρ

∂2un(xn, y, t)

∂t2
; (1)
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and the second one is in the y-direction and is written as

E

1− ν2
∂2vn(xn, y, t)

∂x2n
+

E

2(1− ν)

∂2un(xn, y, t)

∂xn∂y
+

G
∂2vn(xn, y, t)

∂y2
= ρ

∂2vn(xn, y, t)

∂t2
; (2)

where un(xn, y, t) is the in-plane displacement in the x-
direction, vn(xn, y, t) is the in-plane displacement in the y-
direction, ρ is density, E is Young’s modulus, G is the shear
modulus, ν is Poisson’s ratio, and the subscript n denotes ei-
ther the web (n = w), left flange (n = fl) or right flange
(n = fr). The specific orientations of the three coordinate
systems to the three components of the model are depicted in
Fig. 3. Note that they all share a common y-axis. The equa-
tion modelling the out-of-plane motion of the components in
the transverse z-direction is the classical plate theory derived
by Love and Kirchhoff.22 This equation is written as

Dn

(
∂4wn(xn, y, t)

∂x4n
+ 2

∂4wn(xn, y, t)

∂x2n∂y
2

+
∂4wn(xn, y, t)

∂y4

)
+

ρtn
∂2wn(xn, y, t)

∂t2
= 0;

(3)

where wn(xn, y, t) is the out-of-plane displacement, tn is the
thickness, and Dn is the flexural rigidity and is equal to23

Dn =
Et3n

12(1− ν2)
; (4)

and it is noted that tw = bw and tfl = tfr = hf .
The solutions to Eqs. (1) and (2) for the in-plane motion

are24

un(xn, y, t) = Un(xn) exp(ikyy) exp(iωt); (5)

and
vn(xn, y, t) = Vn(xn) exp(ikyy) exp(iωt); (6)

where

Uw(xw) = C1α cos(αxw)− C2α sin(αxw) +

C3iky sin(βxw) + C4iky cos(βxw); (7)

Ufl(xfl) = C9α cos(αxfl)− C10α sin(αxfl) +

C11iky sin(βxfl) + C12iky cos(βxfl); (8)

Ufr(xfr) = C17α cos(αxfr)− C18α sin(αxfr) +

C19iky sin(βxfr) + C20iky cos(βxfr); (9)

Vw(xw) = C1iky sin(αxw) + C2iky cos(αxw)−
C3β cos(βxw) + C4β sin(βxw); (10)

Vfl(xfl) = C9iky sin(αxfl) + C10iky cos(αxfl)−
C11β cos(βxfl) + C12β sin(βxfl); (11)

and

Vfr(xfr) = C17iky sin(αxfr) + C18iky cos(αxfr)−
C19β cos(βxfr) + C20β sin(βxfr). (12)

In Eqs. (7)–(12), α and β are modified wavenumbers and are
equal to24

α =
√
k2p − k2y; (13)

and
β =

√
k2s − k2y; (14)

where kp is the plate wavenumber expressed as

kp =
ω

cp
=

ω√
E

(1−ν2)ρ

; (15)

and ks is the shear wavenumber expressed as

ks =
ω

cs
=

ω√
G
ρ

; (16)

and the constants Ci in Eqs. (7)–(12) are in-plane wave propa-
gation coefficients and are determined from the boundary con-
ditions of the system.

The solutions to Eq. (3) for the out-of-plane motion are24

wn(xn, y, t) = Wn(xn) exp(ikyy) exp(iωt); (17)

where

Ww(xw) = C5 sin(ξ1xw) + C6 cos(ξ1xw) +

C7 sinh(ξ2xw) + C8 cosh(ξ2xw); (18)

Wfl(xfl) = C13 sin(ξ3xfl) + C14 cos(ξ3xfl) +

C15 sinh(ξ4xfl) + C16 cosh(ξ4xfl); (19)

and

Wfr(xfr) = C21 sin(ξ3xfr) + C22 cos(ξ3xfr) +

C23 sinh(ξ4xfr) + C24 cosh(ξ4xfr). (20)

In Eqs. (18)–(20), the ξi’s are plate wavenumbers and are
equal to

ξ1 =

√ρbwω2

Dw
− k2y

 1
2

; (21)

ξ2 =

√ρbwω2

Dw
+ k2y

 1
2

; (22)

ξ3 =

(√
ρhflω2

Dfl
− k2y

) 1
2

=

(√
ρhfrω2

Dfr
− k2y

) 1
2

; (23)

and

ξ4 =

(√
ρhflω2

Dfl
+ k2y

) 1
2

=

(√
ρhfrω2

Dfr
+ k2y

) 1
2

. (24)

Note that the solution to the plate equations assume
ρtnω

2/Dn 6= k2y . When the quartic equation ρtnω2/Dn = k2y
is satisfied, a different solution to Eq. (3) will result. How-
ever, in the unlikely event this occurs, a very small value can
be added or subtracted to one of the wavenumbers to make
Eqs. (18)–(20) the admissible solution. The constants Ci in
Eqs. (18)–(20) are out-of-plane wave propagation coefficients
and are also determined from the boundary conditions of the
system.
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The various forces of the structure are now mathematically
defined. These will be used in the force and moment balance
equations to solve for the Ci’s. The normal in-plane forces are
determined using23

N (n)
xx (xn) =

Etn
1− ν2

[
dUn(xn)

dxn
+ ikyνVn(xn)

]
; (25)

and the shear in-plane forces are23

N (n)
xy (xn) =

Etn
2(1 + ν)

[
ikyUn(xn) +

dVn(xn)

dxn

]
. (26)

The shear out-of-plane forces are calculated using25

V (n)
x (xn) = −Dn

[
d3Wn(xn)

dx3n
− (2− ν)k2y

dWn(xn)

dxn

]
;

(27)
and the moments are determined with25

M (n)
xx (xn) = −Dn

[
d2Wn(xn)

dx2n
− νk2yWn(xn)

]
. (28)

There are 24 equations that constitute the boundary condi-
tions of this system. The boundary conditions at the top of the
web (xw = hw) are

N (w)
xx (hw) = −bwP0; (29)

N (w)
xy (hw) = −bwF0; (30)

V (w)
x (hw) = −bwQ0; (31)

and

M (w)
xx (hw) = 0; (32)

where P0 is the normal external pressure acting in the x-
direction of the web, F0 is the axial external pressure acting
in the y-direction of the web, and Q0 is the transverse external
pressure acting in the z-direction of the web. Implicit in these
pressure loads is the multiplication of exponential functions in
y-direction wavenumber and frequency. In general, the most
important loading quantity is the normal pressure. Note that
these forcing functions act on the top of the web, as this model
allows the beam to be loaded at a location other than the neu-
tral axis of the beam, and this corresponds more closely to the
actual physical problem than loading the beam on its neutral
axis. A moment load is also possible but was not investigated
in this work because it is not of interest to the particular prob-
lem being solved. The four boundary conditions at the free end
of the left flange (xfl = a) are

N (fl)
xx (a) = N (fl)

xy (a) = V (fl)
x (a) = M (fl)

xx (a) = 0; (33)

where it is noted that a < 0. Similarly, the four boundary
conditions at the free end of the right flange (xfl = b) are

N (fr)
xx (b) = N (fr)

xy (b) = V (fr)
x (b) = M (fr)

xx (b) = 0. (34)

There are three force balances at the intersection of the web
and flange (xw = xfl = xfr = 0) and these are written as

N (w)
xx (0)− V (fl)

x (0) + V (fr)
x (0) = 0; (35)

V (w)
x (0) +N (fl)

xx (0)−N (fr)
xx (0) = 0; (36)

and

N (w)
xy (0)−N (fl)

xy (0) +N (fr)
xy (0) = 0; (37)

and there is a moment balance at this location, written as

M (w)
xx (0)−M (fl)

xx (0) +M (fr)
xx (0) = 0. (38)

Note that these force and moment equations converge on a line
along the y-axis of the structure where the web, left flange,
and right flange intersect. In an actual beam, these forces are
distributed over a small volume of the material at this loca-
tion. There are eight continuity equations at the intersection
and these are written as

uw(0) = wfl(0) = wfr(0); (39)

ww(0) = −ufl(0) = −ufr(0); (40)

vw(0) = vfl(0) = vfr(0); (41)

and

dww(0)

dxw
=
dwfl(0)

dxfl
=
dwfr(0)

dxfr
. (42)

Inserting Eqs. (7)–(12) and (18)–(20) into Eqs. (29)–(42)
produces a 24 by 24 algebraic matrix equation given by

[A]{x} = {b}; (43)

where the entries of [A] are in Appendix A as Eqs. (A.1) to
(A.104), the vector {x} is

{x} =
{
C1 C2 . . . C23 C24

}T
; (44)

and the {b} vector is

{b} =
{
−bwP0 −bwF0 −bwQ0 0 0 . . . 0 0

}T
.

(45)
The solution to the wave propagation coefficients Ci in
Eq. (43) is found using

{x} = [A]−1{b}; (46)

and once these are known, they can be inserted into Eqs. (7),
(10), and (18) and the displacement response of the web for
external loading in three dimensions can be calculated. Addi-
tionally, the displacement of the flange can also be calculated,
but it is typically not a quantity of interest.

To integrate this beam model into a reinforced structural
model, the dynamic stiffness components of the beam are typ-
ically calculated and used. For a symmetric T-beam, there are
four unique and nonzero terms. The first term is the dynamic
stiffness of the normal displacement to normal pressure and is
written as

Kzz =
−bwP0

Uw(hw)
; (47)

the second term is the dynamic stiffness of normal displace-
ment to axial pressure (and equal to axial displacement to nor-
mal pressure), and is written as

Kzy = Kyz =
−bwF0

Uw(hw)
=
−bwP0

Vw(hw)
; (48)
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the third term is the dynamic stiffness of axial displacement to
axial pressure, and is written as

Kyy =
−bwF0

Vw(hw)
; (49)

and the fourth term is the dynamic stiffness of transverse dis-
placement to transverse pressure, and is written as

Kxx =
−bwQ0

Ww(hw)
; (50)

where the units of Eqs. (47)–(50) are stiffness per unit length.
Finally, it is noted that if a second flange is present on the top
of the beam, i.e. an I- or an H-beam design, this dynamic con-
tribution can be added to the model in the same method as the
bottom flange equations.

3. REDUCED MODEL

The complexity of the model derived in Section 2 can be re-
duced considerably if the beam is symmetric and only in-plane
loading is of interest. The flexural wave motion component of
the web is zero and the flange contributions can be rewritten as
forces acting on the web equations of motion at the intersec-
tion of the web and flange. This will produce a four by four
system of equations written as

a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
b3,1 a13,2 a13,3 b3,4
a15,1 b4,2 b4,3 a15,4



C1

C2

C3

C4

 =


−bwP0

−bwF0

0
0

 ; (51)

where

b3,1 = 2Dfrαξ
2
3ξ

2
4

(
ξ23 + ξ24

)[
ξ3 sin(ξ3b) cosh(ξ4b) +

ξ4 cos(ξ3b) sinh(ξ4b)
]
/∆z; (52)

b3,4 = 2Dfrikyξ
2
3ξ

2
4

(
ξ23 + ξ24

)[
ξ3 sin(ξ3b) cosh(ξ4b) +

ξ4 cos(ξ3b) sinh(ξ4b)
]
/∆z; (53)

b4,2 =
E

1 + ν
hfαiky

(
β2 + k2y

)
sin(αb) sin(βb)/∆x; (54)

b4,3 =
−E

1 + ν
hfαβ

(
β2 + k2y

)
sin(αb) sin(βb)/∆x; (55)

∆z = ξ43 + ξ44 +
(
ξ33ξ4 − ξ3ξ34

)
sin(ξ3b) sinh(ξ4b) +

2ξ23ξ
2
4 cos(ξ3b) cosh(ξ4b); (56)

and

∆x = k2y cos(αb) sin(βb) + αβ sin(αb) cos(βb). (57)

Equations (7) and (10) are used to calculate the in-plane normal
and in-plane axial displacement of the web, respectively, and
the out-of-plane transverse displacement is not calculated (or
is set to zero) as the symmetric model cannot admit torsional
motion. The reduced model will produce identical normal and
axial results compared to the full model derived in Section 2
for symmetric beams. Note that if the flange is absent, the
beam can still be modelled by setting the matrix elements b3,1,
b3,4, b4,2, and b4,3 to zero.

4. EXAMPLE PROBLEM

The model is now analysed using an example problem,
where the beam has material and geometric properties that are
consistent with an application to underwater structures. The T-
beam has the following physical dimensions: height of the web
hw = 0.2032 m (8.0 in), width of the web bw = 0.0127 m
(0.5 in), height of the flange hf = 0.0064 m (0.25 in), and
width of the flange bf = 0.127 m (5.0 in), which results in
the left flange free end at a = −bf/2 = −0.0635 m and the
right flange free end at b = bf/2 = 0.0635 m. The beam
is made of steel which has the following mechanical proper-
ties: Young’s modulus E = 200× 109 N m−2, shear modulus
G = 76.92 × 109 N m−2, Poisson’s ratio ν = 0.30, and den-
sity ρ = 7800 kg m−3. The beam is independently loaded on
its top surface with three separate loads that correspond to nor-
mal (web in-plane), axial (web in-plane), and transverse (web
out-of-plane) pressure. Although any location of the beam can
be chosen for the displacement output, the top of the web is in-
vestigated here because this location is pertinent to the analysis
of reinforced structures. This allows the dynamic stiffness of
the beam to be calculated and subsequently used in the anal-
ysis of beams attached to plates or elastic bodies. Thus, the
output of the model is the normal, axial, and transverse beam
displacement at the top of the web. It is noted, however, that
by far the most important model output is the normal displace-
ment divided by normal pressure, as this corresponds to the
main design objective of most beams. Plots of the other out-
puts are included for completeness. Performance metrics in
the form of displacement comparisons that are included later
in this section are calculated for normal displacement divided
by normal pressure.

There are nine combinations of displacements divided by
pressures. Figure 4 is a plot of normal displacement divided
by normal pressure versus axial (ky) wavenumber at 5 kHz.
The solid line is the model developed in Section 2, the dashed
line is the Bickford beam model and the × markers are results
from finite element analysis. The Bickford beam results were
found solving the differential equations that Bickford derived
to correspond to an infinite length beam and calculating the
normal displacement response and a condensed set of these
equations are presented in Appendix B.3 The Bickford beam
results (in Fig. 4) are for a beam geometry that contains both
the web and the flange. The finite element model results were
produced using COMSOL 5.2a, using a model that consisted
of 1850 quadratic serendipity hexahedral elements and a to-
tal of 42,234 degrees of freedom. As these elements are con-
tinuum elements, the response of the finite element model is
fully elastic. Figure 5 is a plot of axial displacement divided
by normal pressure versus axial wavenumber. In this plot, the
axial displacement is zero at zero wavenumber because nor-
mal pressure (when ky = 0) is spatially invariant and this can
only result in a displacement field that is normal translation,
i.e. the axial translation is zero. Figure 6 is a plot of axial dis-
placement divided by axial pressure versus axial wavenumber.
The plot of normal displacement divided by axial pressure is
not included as it is identical to Fig. 5. Figure 7 is a plot of
transverse displacement divided by transverse pressure versus
axial wavenumber. In this plot, the analytical model results are

International Journal of Acoustics and Vibration, Vol. 24, No. 1, 2019 143



A. J. Hull, et al.: A COMPREHENSIVE ANALYTICAL DYNAMIC MODEL OF A T-BEAM

Figure 4. Normal displacement divided by normal pressure versus wavenum-
ber at 5 kHz. The solid line is the new model, the dashed line is the Bickford
beam model, and the × markers are finite element results.

Figure 5. Axial displacement divided by normal pressure versus wavenumber
at 5 kHz. The solid line is the new model and the × markers are finite element
results.

stiffer than the finite element results, which is expected, be-
cause most of the energy is flexural wave motion and the clas-
sical plate equation results in a model that is somewhat too stiff
at these frequencies. In Figs. 5, 6, and 7, the solid line is the
new model and the × markers are results from finite element
analysis. The model results of normal displacement divided by
transverse pressure, axial displacement divided by transverse
pressure, transverse displacement divided by normal pressure,
and transverse displacement divided by axial pressure are not
shown, as they are all zero or extremely close to zero. In
Figs. 4–7, the peak displacement values occur when an excita-
tion wavenumber and frequency match a resonant condition in
the beam and the result is an unbounded response. Mathemati-
cally, this corresponds to det[A] = 0 in Eq. (43). These peaks
do not always occur at the same wavenumbers in the different
plots because the in-plane resonant waves are not coupled to
the out-of-plane resonant waves in this model.

The response of the system is also studied for zero ax-
ial wavenumber response. Figure 8 is a plot of normal dis-
placement divided by normal pressure versus frequency at zero
wavenumber. The solid line is the new model, the dashed
line is the Bickford beam model, and the × markers are re-
sults from finite element analysis. Although the Bickford beam
model can predict the flexural wave resonant response, it does

Figure 6. Axial displacement divided by axial pressure versus wavenumber at
5 kHz. The solid line is the new model and the × markers are finite element
results.

Figure 7. Transverse displacement divided by transverse pressure versus
wavenumber at 5 kHz. The solid line is the new model and the × markers
are finite element results.

not have the degrees of freedom necessary to incorporate the
higher order wave dynamics that are present across the web of
the beam that are exhibited in the new model and finite element
response, present in Fig. 8 at frequencies of approximately 1.5
and 8.2 kHz. Furthermore, the Bickford beam model does not
have the proper phase angle response at higher frequencies,
and this effect is clearly visible above 5.7 kHz. The diver-
gence of the analytical model and the finite element model at
approximately 8 kHz is due to increased out-of-plane dynam-
ics interacting with the in-plane dynamics; the out-of-plane
model is (slightly) too stiff at these frequencies. Figure 9 is
a plot of axial displacement divided by axial pressure versus
frequency and Fig. 10 is a plot of transverse displacement di-
vided by transverse pressure versus frequency. In Figs. 9 and
10, the solid line is the new model and the × markers are re-
sults from finite element analysis. As the structure is under-
going extensive out-of-plane motion in the loading associated
with Fig. 10, the analytical model begins to diverge from the fi-
nite element results around 6 kHz. The resonances around 1.5
and 8.2 kHz in Fig. 8 are higher order branch modes that have
cut-off frequencies similar to higher order plate modes. This
is illustrated in Fig. 11, which is a plot of the flexural wave lo-
cation of the beam in the wavenumber-frequency plane, where
the solid line is the new beam model, the dashed line is the

144 International Journal of Acoustics and Vibration, Vol. 24, No. 1, 2019



A. J. Hull, et al.: A COMPREHENSIVE ANALYTICAL DYNAMIC MODEL OF A T-BEAM

Figure 8. Normal displacement divided by normal pressure magnitude (top)
and phase angle (bottom) versus frequency at zero wavenumber. The solid line
is the new beam model, the dashed line is the Bickford beam model, and the
× markers are the finite element results.

Bickford beam model, and the×markers are finite element re-
sults. These cut-off frequencies can be predicted at ky = 0 by
setting the determinant of the matrix in Eq. (51), denoted B,
equal to zero, given by the equation

det[B(ky = 0)] = 0; (58)

which results in

Kfcp cos

(
ωhw
cp

)
+

(
E

1− ν2

)
ω sin

(
ωhw
cp

)
= 0; (59)

and

bw cos

(
ωb

cs

)
sin

(
ωhw
cs

)
+ 2hf sin

(
ωb

cs

)
cos

(
ωhw
cs

)
= 0;

(60)
where

Kf =
2Dfrξ

3[cos(ξb) sinh(ξb) + cosh(ξb) sin(ξb)]

cos(ξb) cosh(ξb) + 1
; (61)

and

ξ =

(
ρhfω

2

Dfr

) 1
4

. (62)

A higher order wave at a corresponding cut-off frequency for
normal motion occurs when the function in Eq. (59) is equal
to zero, and for this beam, these frequencies are at 1.46 and
8.24 kHz in the frequency range from 0 to 10 kHz. Similarly,
a higher order wave at a corresponding cut-off frequency for
axial motion occurs when the function in Eq. (60) is equal to
zero, and for this beam, this frequency is at 5.88 kHz in the
frequency range from 0 to 10 kHz.

The new model has compared very favourably to the solu-
tion generated using finite element analysis for the example
problem. The smallest deviation between the new model and

Figure 9. Axial displacement divided by axial pressure magnitude (top) and
phase angle (bottom) versus frequency at zero wavenumber. The solid line is
the new beam model and the × markers are the finite element results.

the finite element results is axial displacement divided by axial
force, shown in Fig. 9. This is due to the wave propagation
of the flange and web which is restricted to in-plane motion
and this is very accurately modelled by the two-dimensional
equations of elasticity in both beam sections in the model. The
next smallest deviation is the normal displacement divided by
normal force, shown in Fig. 8. For this model output, the
motion in the web is in-plane and the motion in the flange
is predominantly out-of-plane. The out-of-plane equation of
motion has lower frequency limits on its accuracy than the in-
plane equations of motion and this effect is observed around
8.4 kHz, where the new model is beginning to become stiffer
than the finite element model, specifically due to the Love-
Kirchhoff plate model that is used in this analysis. The trans-
verse displacement divided by transverse pressure model com-
pares favourably to the finite element results to about 6 kHz,
and then some divergence is noted. This displacement is typ-
ically much less important in beam design than the normal
displacement, however, if this is an important quantity, then
a higher order model, such as a Mindlin plate or a Reddy plate,
can be used instead of a Love-Kirchhoff plate. Inclusion of
these thick plate models will increase complexity of the new
model.

The results are now examined using a comparison of the
wavenumber locations of the flexural resonant peaks and the
responses of displacement at zero wavenumber at ten frequen-
cies. Table 1 is a comparison of the flexural wavenumber dif-
ferences between the new beam model and the Bickford beam
model, compared to the finite element model calculated using
the equation

P1(f) =
kFEM − kM

kFEM
· 100%; (63)

where P1(f) is the normalized difference in flexural wave lo-
cations expressed in percent, kFEM is the flexural wavenum-
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Figure 10. Transverse displacement divided by transverse pressure magnitude
(top) and phase angle (bottom) versus frequency at zero wavenumber. The
solid line is the new beam model and the × markers are the finite element
results.

ber of the finite element model, and kM is the flexural
wavenumber of the analytical models. Using this equation pro-
duces positive values from smaller (stiffer system response)
flexural wavenumbers and negative values from larger (softer
system response) flexural wavenumbers. Table 2 is a compari-
son of web normal displacement divided by normal pressure at
zero wavenumber between the new beam model and the Bick-
ford beam model, compared to the finite element model calcu-
lated using the equation

P2(f) =
[Uw(hw)/P0]FEM − [Uw(hw)/P0]M

[Uw(hw)/P0]FEM
·100%; (64)

where P2(f) is the normalized difference of zero wavenum-
ber amplitude expressed in percent, [Uw(hw)/P0]FEM is the
amplitude of the finite element model and [Uw(hw)/P0]M is
the amplitude of the analytical models. Using this equation
produces positive values from smaller (softer system response)
amplitudes and negative values from larger (stiffer system re-
sponse) amplitudes.

5. CONCLUSIONS

An analytical beam model for a T-shaped beam was derived
and compared to a Bickford beam model and a finite element
model. This new model was constructed with two-dimensional
elastic equations for the in-plane motion and classical plate
equations for the out-of-plane motion. This allows for a rel-
atively elastic response of the entire system. It was shown that
this model increases the frequency range analysis by a factor of
eight, compared to the Bickford beam model for the example
presented here. This upper-frequency range could be increased
by replacing the classical plate equations by higher order plate
equations. The application of this model to a reinforced struc-
ture is discussed. A simplified version of the model for a sym-

Figure 11. Location of the flexural wave in the wavenumber-frequency plane.
The solid line is the new beam model, the dashed line is the Bickford beam
model, and the × markers are the finite element results.

metric structure with normal and axial web in-plane loading is
presented. It is recommended that future work apply this new
beam model to the problem of analysis of a reinforced plate.
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Exercices de Mathématiques, 2, 42–56, (1827).

22 Love, A. E. H. The small free vibrations and deforma-
tion of a thin elastic shell, Philosophical Transactions of
the Royal Society of London (A), 179, 491–549, (1888).
https://dx.doi.org/10.1098/rsta.1888.0016

23 Soedel, W. Vibrations of Shells and Plates, Third Edition,
Revised and Expanded, Marcel Dekker, Inc., New York,
(2004).

24 Graff, K. F. Wave Motion in Elastic Solids, Dover Publica-
tions, Inc., New York, (1975).

25 Leissa, A. NASA Technical Report SP-160, Vibration of
Plates, Washington, DC, (1969).

International Journal of Acoustics and Vibration, Vol. 24, No. 1, 2019 147

http://dx.doi.org/10.1016/0022-460X(85)90383-9
http://dx.doi.org/10.1006/jsvi.2000.3517
http://dx.doi.org/10.1121/1.1635415
http://dx.doi.org/10.1016/j.jsv.2010.08.044
http://dx.doi.org/10.1016/j.jsv.2011.10.002
http://dx.doi.org/10.1115/1.4034251
http://dx.doi.org/10.1016/S0958-9465(99)00009-8
http://dx.doi.org/10.14359/18770
http://dx.doi.org/10.1016/0022-460X(90)90953-W
http://dx.doi.org/10.1016/S0022-460X(03)00285-2
http://dx.doi.org/10.1016/j.jsv.2016.09.032
http://dx.doi.org/10.1016/0022-460X(80)90662-8
http://dx.doi.org/10.1016/0022-460X(80)90663-X
http://dx.doi.org/10.1121/1.381506
http://dx.doi.org/10.1016/j.jsv.2010.04.012
http://dx.doi.org/10.1098/rsta.1888.0016


A. J. Hull, et al.: A COMPREHENSIVE ANALYTICAL DYNAMIC MODEL OF A T-BEAM

APPENDIX A—MATRIX ENTRIES

The nonzero entries to the [A] matrix in Eq. (43) are

a1,1 =
−E

1− ν2
bw
(
α2 + νk2y

)
sin(αhw); (A.1)

a1,2 =
−E

1− ν2
bw
(
α2 + νk2y

)
cos(αhw); (A.2)

a1,3 =
E

1 + ν
bwβiky cos(βhw); (A.3)

a1,4 =
−E

1 + ν
bwβiky sin(βhw); (A.4)

a2,1 =
E

1 + ν
bwαiky cos(αhw); (A.5)

a2,2 =
−E

1 + ν
bwαiky sin(αhw); (A.6)

a2,3 =
E

2(1 + ν)
bw
(
β2 − k2y

)
sin(βhw); (A.7)

a2,4 =
E

2(1 + ν)
bw
(
β2 − k2y

)
cos(βhw); (A.8)

a3,5 = Dwξ1
(
ξ21 − νk2y + 2k2y

)
cos(ξ1hw); (A.9)

a3,6 = −Dwξ1
(
ξ21 − νk2y + 2k2y

)
sin(ξ1hw); (A.10)

a3,7 = −Dwξ2
(
ξ22 + νk2y − 2k2y

)
cosh(ξ2hw); (A.11)

a3,8 = −Dwξ2
(
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)
sinh(ξ2hw); (A.12)

a4,5 = Dw
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a4,7 = Dw

(
−ξ22 + νk2y

)
sinh(ξ2hw); (A.15)

a4,8 = Dw

(
−ξ22 + νk2y

)
cosh(ξ2hw); (A.16)

a5,9 =
−E

1− ν2
hf
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APPENDIX B—BICKFORD BEAM

The mathematical model of a Bickford beam begins with the
assumption that the beam has an in-plane displacement distri-
bution that is a third order function, with respect to the depth
of the beam. The displacement field of this beam is written as

u(y, z, t) = zφ(y, t)− 4z3

3h2

(
φ(y, t) +

∂w0(y, t)

∂y

)
; (B.1)

and
w(y, z, t) = w0(y, t); (B.2)

where y is the coordinate along the axis of the beam, z is the
coordinate transverse to the beam, with z = 0 located at the
neutral axis, t is time, u(y, z, t) is the displacement field in
the axial direction, w(y, z, t) is the displacement field in the
transverse direction, φ(y, t) is the rotation of the beam at the
neutral axis, and h is the total height of the beam. As the beam
is infinitely long, the normal displacement and rotation of the
beam are written as exponential functions in space and time as

w0(y, t) = W exp(ikyy) exp(iωt); (B.3)

and
φ(y, t) = X exp(ikyy) exp(iωt); (B.4)

where W and X are unknown wave propagation coefficients.
Using the principal of virtual displacement, the wave propaga-
tion coefficients can be determined with[

a11 a12
a21 a22

]{
X
W

}
=

{
0
P0

}
. (B.5)

For a rectangular beam with dimensions base b and height h,
the matrix entries are

a11 =
−17ρω2bh3

315
+

17k2yEbh
3

315
+

8Gbh

15
; (B.6)

a12 =
4ikyρω

2bh3

315
+
−4ik3yEbh

3

315
+

8ikyGbh

15
; (B.7)

a21 =
4ikyρω

2bh3

315
+
−4ik3yEbh

3

315
+

8ikyGbh

15
; (B.8)

and

a22 =
k2yρω

2bh3

252
+ ρω2bh+

−k4yEbh3

252
+
−8k2yGbh

15
.

(B.9)

For a T-shaped beam, these entries are much longer and are not
included for brevity. They are, however, calculated in the exact
same manner as Eqs. (B.1)–(B.5). The normal displacement
field can be determined from Eq. (B.5) and is

W =
a11P0

a11a22 − a12a21
. (B.10)
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