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Position and velocity feedback controllers are applied in this work to reduce the oscillations of a rotating blade
dynamical system running at an unsteady rotating speed. Both the primary resonance and the principal parametric
resonance are controlled as they are the worst cases that were verified numerically. The two modes of vibrations
are found to be powerfully linearly coupled, so we have applied the controller to only one mode and the other,
coupled mode follows it. The overall nonlinear behaviour of the system with and without control is investigated
through the multiple time scales method. Time history and different response curves of the controlled system are
included to show the controller effect.

NOMENCLATURE
p̈, ṗ, p Acceleration, velocity and posi-

tion of the system first mode
q̈, q̇, q Acceleration, velocity and posi-

tion of the system second mode
µ1, µ2 Damping parameters of the sys-

tem modes
ω System modes natural frequency
β11, β21, β13, β22, β5 Coupling factors between the sys-

tem modes
β5 Cubic nonlinearity factor of the

system modes
β14, β24 Parametric excitation parameters
f0, f Constant rotating speed and mag-

nitude of variable rotating speed
Ω Excitation frequency
k1, k2 Position and velocity feedback

gains
σ1, σ2 Detuning parameters
ε Small Perturbation Parameter.

1. INTRODUCTION

Vibration mitigation is an extremely important goal for
longer lifetimes of structures and mechanical systems. These
systems suffer from nonlinear vibrations due to different rea-
sons, for example: geometric nonlinearities, nonlinear proper-
ties of materials, and nonlinear excitation forces. In the case of
enrolling such a system in a main resonance state, it may pro-
duce large amplitudes, which lead to it damaging itself, or pos-
sibly damaging the adjacent systems. One of the systems that
has unwanted vibrations is the rotating beam. Rotating beams
are dynamical systems that are modelled as cantilever beams
with many uses in robot manipulators, helicopter blades, and
compressor blades. In addition, the rotating blades may suf-
fer from large amplitude vibrations, resulting in catastrophic
results, especially when operating at high speeds, which leads
to huge centrifugal force. Yoo et al. established the model
for pre-twisted rotating blades and made an analysis to clar-

ify the characteristics of vibration when a concentrated mass
is attached to it.1 Sinha investigated the characteristic dy-
namics of the same model, but with a radial blade and con-
sidering a Coulomb damping with centrifugal force affecting
the whole system.2 Fazelzadeh et al. adopted the differen-
tial quadrature method, first-order shear deformation theory,
and Galerkin’s technique to canvass on a rotating blade, which
was thin-walled under a supersonic gas flow with a high tem-
perature.3 Yao et al. utilized the Hamilton’s principle and
isotropic constitutive law to conclude the governing equations
of the beam.4, 5 They analysed the dynamics of the beam at
varying speeds under a supersonic gas flow and a high tem-
perature, considering the internal resonances 1:1 and 2:1, re-
spectively. Theoretical and experimental investigations of the
rotating blades response are conducted to eliminate or sup-
press the vibrations that could seriously destroy the reported
structure. Vadiraja and Sahasrabudhe applied macro fibre com-
posite (MFC) actuators and sensors and adopted the higher
shear deformation theory to suppress the vibrations of a ro-
tating beam.6 Younesian and Esmailzadeh reduced the vibra-
tions of a rotating beam by about 50% by applying an inter-
nal (time-increasing) tensile force.7 They adopted Hamilton’s
principle for deriving the bending and longitudinal equations
of a rotating blade. Other active control techniques have been
applied to nonlinear dynamical systems and were very useful
in reducing the vibrations. Fey et al. applied proportional and
derivative feedback on a piecewise linear beam system with a
one-sided spring element (flushing) for the steady-state oscilla-
tion reduction.8 They minimized the beam midpoint transver-
sal amplitude at the primary resonance in a larger bandwidth
of excitation. Warminski et al. analysed the use of suggested
control algorithms to suppress the vibrations of a nonlinear
composite beam and one of those algorithms was the posi-
tion controller, which was terrific in reducing the vibrations.9

Muhammad et al. proposed a flexible manipulator (single-link)
using the strategies, proportional derivative, and active force
controllers.10 Eissa et al. studied the active vibration suppres-
sion of a nonlinear dynamical system via applying proportional
and derivative controllers with and without the time delay ef-
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Figure 1. Rotating compressor blade model, (a) thin-walled pre-twisted blade,
(b) blade cross section, and (c) block diagram of control process.

fect.11, 12 They investigated the controller parameters and their
effects on the output amplitude and also studied the stable re-
gion for the time delay to stay within for a better performance.
In this paper, the adopted model is our case of study, as shown
in Fig.1a–b, and its derivation is included in-brief in Appendix
B.4, 5 The vertical and horizontal displacements of the blade
cross section can be measured or sensed via sensors fixed on
each blade. The measured signals will be sent back to the com-
puter to analyse it and compute the control signal depending on
it. Once the control signal is calculated, it is passed through the
conditioning circuit and then it is applied on a compression rod
inserted into the rotating beam’s rotation axis.7 The compres-
sion rod presses the end of the blade to modify its position and
reduce its vibration. The whole operation continues until the
steady state amplitudes become smaller compared to those be-
fore the control. The multiple time scales method is conducted
to derive the steady state equations and the results are verified
by numerical simulations.

2. MULTIPLE TIME SCALES ANALYSIS

We have applied the control algorithm to the uncontrolled
system model to have the modified equations as is follows:4, 5

p̈+ 2µ1ṗ+ ω2p+ β13q̇ + β5pq
2 + β5p

3 =

2f0fβ14p cos(Ωt) + f2 cos2(Ωt) + fβ16Ω sin(Ωt)−
k1p− k2ṗ,

q̈ + 2µ2q̇ + ω2q + β22ṗ+ β21p+ β5p
2q + β5q

3 =

2f0fβ24q cos(Ωt) + f2β24q cos2(Ωt). (1)

The following parameters are suitably scaled such that:

β11 = εβ̂11, β13 = εβ̂13, β14 = εβ̂14, β16 = εβ̂16,

β21 = εβ̂21, β22 = εβ̂22, β24 = εβ̂24, β5 = εβ̂5,

k1 = εk̂1, k2 = εk̂2, µ1 = εµ̂1, µ2 = εµ̂2. (2)

Applying the multiple time scales method, an asymptotic ex-
pansion is sought as:13

p(T0, T1; ε) = p0(T0, T1) + εp1(T0, T1) +O(ε2),

q(T0, T1; ε) = q0(T0, T1) + εq1(T0, T1) +O(ε2), (3)

where T0 = t, T1 = εt are the time scales. The time deriva-
tives will be converted to:

d

dt
= D0 +εD1 +O(ε2),

d2

dt2
= D2

0 +2εD1D0 +O(ε2), (4)

where Di = ∂
∂Ti

, i = 0, 1.
Inserting Eqs. (2) to (4) into Eqs. (1) then equating like pow-

ers of ε coefficients, the following are obtained:

O(ε0) :

D2
0p0 + ω2p0 = 0,

D2
0q0 + ω2q0 = 0. (5)

O(ε) :

D2
0p1 + ω2p1 = −2D1D0p0 − 2µ̂1D0p0 − β̂13D0q0−

β̂11q0 − β̂5p0q
2
0 − β̂5p

3
0 + f0fβ̂14p0(eiΩT0 + e−iΩT0)+

f2β̂14

4
p0(eiΩT0 + e−iΩT0)2 − if β̂16Ω

2
(eiΩT0 − e−iΩT0)−

k̂1p0 − k̂2D0p0,

D2
0q1 + ω2q1 = −2D1D0q0 − 2µ̂2D0q0 − β̂22D0p0−

β̂21p0 − β̂5p
2
0q0 − β̂5q

3
0 + f0fβ̂24q0(eiΩT0 + e−iΩT0)+

f2β̂24

4
q0(eiΩT0 + e−iΩT0)2. (6)

The complex form solutions of Eqs. 5 are expressed as is fol-
lows:

p0 = A1e
iωT0 + Ā1e

−iωT0 ,

q0 = A2e
iωT0 + Ā2e

−iωT0 , (7)

where the coefficients A1, A2 are functions of T1 and their
complex conjugates were over barred.

2.1. Primary Resonance
The primary resonance detuning should be represented by

variable σ1 in the following relation:

Ω = ω + σ1 = ω + εσ̂1. (8)

Getting the solvability conditions by combining Eqs. 7 and 8
into Eqs. 6, and scaling every parameter back to its original
value, we get:

−2iωA1 − 2iµ1ωA1 − β11A2 − iωβ13A2 − 2β5A1A2Ā2−

3β5A
2
1Ā1 − β5Ā1A

2
2 +

β14f
2

2
A1 +

β14f
2

4
Ā1e

2iσ1t−

i

2
β16Ωfeiσ1t − k1A1 − ik2ωA1 = 0,

−2iωA2 − 2iµ2ωA2 − β21A1 − iωβ22A1 − 2β5A1Ā1A2−

3β5A
2
2Ā2 − β5A

2
1Ā2 +

β24f
2

2
A2 +

β24f
2

4
Ā2e

2iσ1t = 0.

(9)
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Expressing A1, A2 in the polar form to be the following:

A1 =
1

2
a1e

iβ1 ⇒ Ȧ1 =
ȧ1

2
eiβ1 + i

a1

2
β̇1e

iβ1 ,

A2 =
1

2
a2e

iβ2 ⇒ Ȧ2 =
ȧ2

2
eiβ2 + i

a2

2
β̇2e

iβ2 , (10)

where am, βm(m = 1, 2) are amplitudes and phases of system
modes.

Inserting Eqs. 10 into Eqs. 9, and after some mathemati-
cal manipulations, we get the following first-order autonomous
differential equations:

ȧ1 = µ1a1 −
β13

2
a2 cosφ2 −

β5

8ω
a1a

2
2 sin(2φ2)−

β11

2ω
a2 sinφ2 +

β14f
2

8ω
a1 sin(2φ2)− β16Ωf

2ω
cosφ1 −

k2

2
a1,

φ̇1 = σ1 +
β13

2

a2

a1
sinφ2 −

β5

8ω
a2

2 cos(2φ2)−

β11

2ω

a2

a1
cosφ2 −

β5

4ω
a2

2 −
3β5

8ω
a2

1 +
β14f

2

4ω
+

β14f
2

4ω
cos(2φ1) +

β16Ωf

2ω

1

a1
sinφ1 −

k1

2ω
,

ȧ2 = µ2a2 −
β22

2
a1 cosφ2 −

β5

8ω
a2

1a2 sin(2φ2)+

β21

2ω
a1 sinφ2 +

β24f
2

8ω
a2 sin(2φ1 − 2φ2),

φ̇2 =
β22

2

a1

a2
sinφ2 +

β21

2ω

a1

a2
cosφ2 +

β5

4ω
a2

1+

β5

8ω
a2

1 cos(2φ2) +
3β5

8ω
a2

2 −
β24f

2

8ω
cos(2φ1 − 2φ2)− β24f

2

4ω
+

β13

2

a2

a1
sinφ2 −

β11

2ω

a2

a1
cosφ2 −

β5

4ω
a2

2 −
β5

8ω
a2

2 cos(2φ2)−

3β5

8ω
a2

1 +
β14f

2

8ω
cos(2φ1) +

β16Ωf

2ω

1

a1
sinφ1 +

β14f
2

4ω
− k1

2ω
,

(11)

where:

{
φ1 = σ1t− β1 ⇒ φ̇1 = σ1 − β̇1

φ2 = β2 − β1 ⇒ φ̇2 = β̇2 − β̇1.

}
(12)

Putting ȧ1 = ȧ2 = φ̇1 = φ̇2 = 0 into Eqs. 11 to get the steady

state equations as is follows:

µ1a1 = −β13

2
a2 cosφ2 −

β11

2ω
a2 sinφ2 −

β5

8ω
a1a

2
2 sin(2φ2)+

β14f
2

8ω
a1 sin(2φ1)− β16Ωf

2ω
cosφ1 −

k2

2
a1,

−σ1a1 =
β13

2
a2 sinφ2 −

β11

2ω
a2 cosφ2 −

β5

4ω
a1a

2
2−

β5

8ω
a1a

2
2 cos(2φ2)− 3β5

8ω
a3

1 +
β14f

2

8ω
a1 cos(2φ1)+

β16Ωf

2ω
sinφ1 +

β14f
2

4ω
a1 −

k1

2ω
,

µ2a2 = −β22

2
a1 cosφ2 +

β21

2ω
a1 sinφ2 +

β5

8ω
a2

1a2 sin(2φ2)+

β24f
2

8ω
a2 sin(2φ1 − 2φ2),

σ1a1 =
β22

2
a1 sinφ2 +

β21

2ω
a1 cosφ2 +

β5

4ω
a2

1a2+

β5

8ω
a2

1a2 cos(2φ2) +
3β5

8ω
a3

2 −
β24f

2

8ω
a2 cos(2φ1 − 2φ2)−

β24f
2

4ω
a2. (13)

Equations 2.1 are solved simultaneously by applying mathe-
matical continuation methods via MATLAB software for ob-
taining the steady state amplitudes and phases. The stability of
these solutions is analysed by the Lyapunov first method as is
follows:

ȧ1

φ̇1

ȧ2

φ̇2

 =


υ11 υ12 υ13 υ14

υ21 υ22 υ23 υ24

υ31 υ32 υ33 υ34

υ41 υ42 υ43 υ44




a1

φ1

a2

φ2

 , (14)

where the entries υij{i, j = 1, 2, 3, 4} are included in Ap-
pendix A.

2.2. Principal Parametric Resonance

The principal parametric resonance detuning should be de-
picted by the variable σ2 into the following relation:

Ω = 2ω + σ2 = 2ω + εσ̂2 (15)

Similarly, as in subsection 2.1, we get:

−2iωA1 − 2iµ1ωA1 − iωβ13A2 − β11A2 − 2β5A1A2Ā2−

β5Ā1A
2
2 − 3β5A

2
1Ā1 +

β14f
2

2
A1 + f0fβ14Ā1e

iσ2t−

k1A1 − ik2ωA1 = 0,

−2iωA2 − 2iµ2ωA2 − iωβ22A1 − β21A1 − 2β5A1Ā1A2−

β5A
2
1Ā2 − 3β5A

2
2Ā2 +

β24f
2

2
A2 + f0fβ24Ā2e

iσ2t = 0.

(16)
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Substituting the quantitiesA1, A2 from Eqs. 10 into Eqs. 2.2,
and after some mathematical manipulations, we get the follow-
ing first-order autonomous differential equations:

ȧ1 = −µ1a1 −
β13

2
a2 cosφ2 −

β11

2ω
a2 sinφ2−

β5

8ω
a1a

2
2 sin(2φ2) +

f0fβ14

2ω
a1 sinφ1 −

k2

2
a1 ,

φ̇1 = σ2 + β13
a2

a1
sinφ2 −

β11

ω

a2

a1
cosφ2 −

β5

2ω
a2

2−

β5

4ω
a2

2 cos(2φ2)− 3β5

4ω
a2

1 +
β14f

2

2ω
+
f0fβ14

ω
cosφ1 −

k1

ω
,

ȧ2 = −µ2a2 −
β22

2
a1 cosφ2 +

β21

2ω
a1 sinφ2+

β5

8ω
a2

1a2 sin(2φ2) +
f0fβ24

2ω
a2 sin(φ1 − 2φ2) ,

φ̇2 =
β22

2

a1

a2
sinφ2 +

β21

2ω

a1

a2
cosφ2 +

β5

4ω
a2

1 +

β5

8ω
a2

1 cos(2φ2) +
3β5

8ω
a2

2 −
f0fβ24

2ω
cos(φ1 − 2φ2)−

β24f
2

4ω
+
β13

2

a2

a1
sinφ2 −

β11

2ω

a2

a1
cosφ2 −

β5

4ω
a2

2−

β5

8ω
a2

2 cos(2φ2)− 3β5

8ω
a2

1 +
f0fβ14

2ω
cosφ1 +

β14f
2

4ω
− k1

2ω
,

(17)

where {
φ1 = σ2t− β1 ⇒ φ̇1 = σ2 − 2β̇1

φ2 = β2 − β1 ⇒ φ̇2 = β̇2 − β̇1.

}
(18)

Putting ȧ1 = ȧ2 = φ̇1 = φ̇2 = 0 into Eqs. 17 to get the steady
state equations as is follows:

µ1a1 = −β13

2
a2 cosφ2 −

β11

2ω
a2 sinφ2−

β5

8ω
a1a

2
2 sin(2φ2) +

f0fβ14

2ω
a1 sinφ1 −

k2

2
a1 ,

−σ2

2
a1 =

β13

2
a2 sinφ2 −

β11

2ω
a2 cosφ2−

β5

8ω
a1a

2
2 cos(2φ2) +

f0fβ14

2ω
a1 cosφ1 −

β5

4ω
a1a

2
2−

3β5

8ω
a3

1 +
β14f

2

4ω
a1 −

k1

2ω
a1 ,

µ2a2 = −β22

2
a1 cosφ2 +

β21

2ω
a1 sinφ2+

β5

8ω
a2

1a2 sin(2φ2) +
f0fβ24

2ω
a2 sin(φ1 − 2φ2) ,

σ2

2
a2 =

β22

2
a1 sinφ2 +

β21

2ω
a1 cosφ2 +

β5

8ω
a2

1a2 cos(2φ2)− f0fβ24

2ω
a2 cos(φ1 − 2φ2)+

β5

4ω
a2

1a2 +
3β5

8ω
a3

2 −
β24f

2

4ω
a2 . (19)

Figure 2. Frequency response curves of system modes before and after control

Equations 19 are solved simultaneously by applying mathe-
matical continuation methods via MATLAB software for ob-
taining the steady state amplitudes and phases. The stability
of these solutions is analysed by Lyapunov first method as is
follows:

ȧ1

φ̇1

ȧ2

φ̇2

 =


δ11 δ12 δ13 δ14

δ21 δ22 δ23 δ24

δ31 δ32 δ33 δ34

δ41 δ42 δ43 δ44




a1

φ1

a2

φ2

 , (20)

where the entries δij , {i, j = 1, 2, 3, 4} are included in Ap-
pendix A.

3. PERTURBATION CURVES

All the resulted perturbation curves are plotted and dis-
cussed in this section. The stable solutions are denoted by
solid lines, while the unstable solutions are denoted by dashed
ones. The asterisks denote the bifurcation points (SN stands
for Saddle-Node, H stands for Hopf, and PF stands for Pitch-
fork).

3.1. Primary Resonance
In the primary resonance case, the parameters values for

plotting the curves are given by: µ1 = µ2 = 0.5,Ω =
ω = 100, β13 = −0.82, β11 = −0, 003, β14 = 0.55, β5 =
0.9, β16 = 6.55, β22 = −0.82, β21 = −0.001, β24 =
0.5, f0 = 7, f = 2, k1 = 1000, k2 = 1, σ1 = 0. In Fig. 2, the
system modes amplitudes are plotted as functions of the fre-
quency detuning σ1. It shows that the system before the con-
trol (black lines) suffers from jump phenomena, saddle node
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Figure 3. Various k1 with frequency response curves

bifurcation points, and Hopf bifurcation points. After the con-
trol (blue lines), the jump phenomena, saddle-node, and Hopf
bifurcations have been eliminated and the system modes am-
plitudes have been suppressed to low levels.

Figure 3 demonstrates the effect of varying the position
feedback gain k1 on the frequency response curves. For the
system’s first mode, increasing k1 shifts the whole curve to the
right because the natural frequency ω has been raised. For the
system’s second mode, increasing k1 reduces the peak value
and slightly raises another peak to the right of the old one.

Figure 4 demonstrates the effect of varying the velocity
feedback gain k2 on the frequency response curves. For the
system’s first mode, increasing k2 suppresses the peak value,
as it acts as a damping term. For the system’s second mode,
increasing k2 reduces the new appeared peak value.

Figures 5 and 6 declare the response curves and response
curves. It is noticeable from Fig. 5) that increasing or decreas-
ing reduces the system’s modes amplitudes with shifting the
frequency response curves to the right or the left depending on
the gain sign. Also, in Fig. 6, increasing reduces the system’s
modes amplitudes as it acts as an external damping quantity.
Decreasing k2 adds energy to the system and forces it to pass
through the Hopf bifurcation to produce unstable motions.

Figure 7 depicts the output amplitudes as functions of the
excitation force. It is observed that increasing the excitation
force slightly (before the control) generates large output am-
plitudes but the relation became linear with a decreased slope
(after the control).

Figure 4. Various k2 with frequency response curves

Figure 5. k1 response curves
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Figure 6. k2 response curves

Figure 7. Force response curves at σ1 = 0

Figure 8. System modes frequency response curves before control

3.2. Principal Parametric Resonance
In the principal parametric resonance case, all the parame-

ters values for plotting the curves are given by: µ1 = µ2 =
0.5,Ω = ω = 200, β13 = −0.82, β11 = −0, 003, β14 =
0.55, β5 = 0.9, β16 = 6.55, β22 = −0.82, β21 =
−0.001, β24 = 0.5, f0 = 7, f = 2, k1 = 1000, k2 = 1, σ2 =
0. In Fig. 7, the system’s modes amplitudes are trivial (zero
solution), then the frequency increases and the system passes
through a super-critical pitchfork bifurcation, changing its path
to the nontrivial amplitudes (non-zero solution). After reach-
ing a given point on the nontrivial path, the system jumps down
to the sub-critical pitchfork bifurcation to return back the triv-
ial one.

After the control in Fig. 9, the controller has eliminated the
two pitchfork points and remains only the trivial solution.

Figures 10 and 11 show how k1 and k2 affect the output am-
plitudes. We can see that the output amplitudes are inversely
proportional to the factor k1 in the range −169 ≤ k1 ≤ 175,
but outside that range, the system returns to the trivial solution.
In Fig. 11, k2 is directly proportional to the first mode ampli-
tude, but inversely proportional to the second mode amplitude
in the range −0.3 ≤ k1 ≤ 1. For k1 ≥ 1, the system returns to
the trivial solution.

Figures 12 to 15 show affecting the output amplitudes with
varying excitation force, with and without control. Before the
control, it is clear in Fig. 12 that the output amplitudes are
trivial until a given force value is reached (super-critical pitch-
fork), then the output amplitudes are nontrivial. In Fig. 14, a
saddle-node bifurcation point faces the system when changing
the initial conditions to make the system jump suddenly from
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Figure 9. System modes frequency response curves after control

Figure 10. k1 response curves

Figure 11. k2 response curves

the trivial solution to the nontrivial one. After the control in
Figs. 13 and 15, the bifurcation points vanish and the trivial
output amplitudes remain.

4. TIME HISTORY

4.1. Primary Resonance
The time history before the control is shown in Fig. 16 and

after the control in Fig. 17 with the same conditions (rest case).
From the figures, we see that the output’s steady amplitudes
have been suppressed from about 9.29 and 6.96 to about 1.29
and 1.05, respectively. The proposed controller has an effec-
tiveness Ea (Ea = amplitude without controller / amplitude
with controller) which is about 7 and 6 for the first and second
modes, respectively.

4.2. Principal Parametric Resonance
The time history before the control is shown in Fig. 18 and

after the control in Fig. 19, with the same conditions (rest
case). From the figures we see that the output’s steady am-
plitudes have been suppressed from about 8.78 and 8.49 to
about 0.66 and 0.004, respectively, to show an effectiveness
Ea, which is about 13 and 2122 for the first and second modes,
respectively.

5. VALIDATION CURVES

The validation curves are plotted using the fourth-order
Runge-Kutta technique to integrate Eqs. 1 numerically. The
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Figure 12. Force response curves at σ2 = −0.1 (before the control)

Figure 13. Force response curves at σ2 = −0.1 (after the control)

Figure 14. Force response curves at σ2 = −0.1 (before the control)

Figure 15. Force response curves at σ2 = −0.1 (after the control)
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Figure 16. Time history before the control at zero initial conditions

Figure 17. Time history after the control at zero initial conditions

Figure 18. Time history before the control at zero initial conditions

Figure 19. Time history after the control at zero initial conditions
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Figure 20. Verification of frequency response curves before and after the con-
trol (primary resonance)

lines refer to perturbation solutions, while the circles denote
the ones resulted from the numerical integration. The follow-
ing figures show the closeness between the numerical integra-
tion solutions and the approximate solutions before and after
the control.

6. CONCLUSIONS

In this research, an active position and velocity feedback
controller was applied to the compressor blade system, which
was subjected to either primary excitation or principal para-
metric excitation. The approximate solutions of this combina-
tion were concluded using multiple time scales method. The
Lyapunov first method was adopted to achieve a stability anal-
ysis for plotting the bifurcation diagrams. Eventually, the fol-
lowing can be concluded:

1. Primary resonance: The controller eliminated the
saddle-node and Hopf bifurcation points and the curve
had been suppressed to acceptable levels. Increasing k1

and k2 reduced the output amplitudes to achieve con-
troller effectiveness Ea, about 7 and 6 for the first and
second modes, respectively. The slope of the relation
between the output amplitudes and excitation force de-
creased.

2. Principal parametric resonance: The controller elim-
inated the pitchfork bifurcation points and the system
passed only through the trivial path. For k1 ≥ 175 and
k2 ≥ 1, the trivial output could be guaranteed to achieve
controller effectiveness Ea, about 13 and 2122 for the

Figure 21. Verification of k1 response curves (primary resonance)

Figure 22. Verification of k2 response curves (primary resonance)
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Figure 23. Verification of force response curves before and after the control
(primary resonance)

Figure 24. Verification of time history before the control (primary resonance)

Figure 25. Verification of time history after the control (primary resonance)

Figure 26. Verification of frequency response curves before the control (para-
metric resonance)
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Figure 27. Verification of frequency response curves after the control (para-
metric resonance)

Figure 28. Verification of k1 response curves (parametric resonance)

Figure 29. Verification of k2 response curves (parametric resonance)

Figure 30. Verification of force response curves before the control (parametric
resonance)
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Figure 31. Verification of force response curves after the control (parametric
resonance)

first and second modes, respectively. The force response
curves had also changed after the control to pass through
the trivial path only.

On the past work of controlling the compressor blade vi-
brations, Younesian and Esmailzadeh reduced the vibrations
of the rotating beam using a time-increasing internal tensile
force.7 They showed that the suppression system could effec-
tively reduce vibration by about 50% (Ea = 2). In this paper,
an active position and velocity feedback controller was applied
to the compressor blade system subjected to either primary or
parametric excitations. Upon the mentioned parameters in this
paper, it was noticed that the controller effectiveness Ea was
about 7 and 6 for the first and second modes (primary), and was
about 13 and 2122 for the first and second modes (parametric).
This means that the controller reduced the vibrations of both
modes to about 14% and 16% (primary), 7% and 0.05% (para-
metric).
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APPENDIX B

Figure 34. Rotating compressor blade model, (a) pre-twisted thin-walled
blade, and (b) blade cross section

The following derivation was explained in-detail in Yao et
al.4, 5 As in Fig. 34, consider a pre-twisted flexible cantilever
blade with length L mounted on a rigid hub with radius R0.
The blade rotates at a varying rotating speed about its polar
axis, as shown in Fig. 34a. It is assumed that the rotating speed
is represented as a periodic rotating speed f cos Ωt on a steady
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state rotating speed f0, namely, F = f0 + f cos Ωt. The blade
is allowed to vibrate flexurally in the plane that makes an angle
γ, which is considered to be the setting angle with the plane
of rotation. The rotating blade is treated as a pre-twist, pre-
setting, thin-walled rotating cantilever beam. The thickness of
the thin-walled beam is h, and the length and the width of the
cross section of the beam are a and b, respectively. To derive
the analytical model of the thin-walled beam, the following
assumptions are made:

• The shape of the cross section and all of its geometrical
dimensions remain invariant in its plane. Cross sections
of the beam are assumed rigid in their own planes.

• Compared to the unity, the ratio h
r is negligibly small.

The wall thickness of the beam is h, and the radius of
curvature is r at any point of the beam wall.

• Considering that the thin beam model is adopted in this
paper, the transverse shear effect is neglected.

• The axial displacement w is much smaller than u or v so
that the derivatives of w can be neglected in the strain-
displacement relations.

The origin of the rotating coordinate systems (x, y, z) is lo-
cated at the blade root. The local coordinates (xp, yp, zp) are
defined, where xp and yp are the principal axes of an arbi-
trary beam cross section as shown in Fig. 34b. The transfor-
mation formulas between two coordinate systems (x, y, z) and
(xp, yp, zp) are presented as follows:

x = xp cos(γ + β(z))− yp sin(γ + β(z)), (21)

y = xp sin(γ + β(z)) + yp cos(γ + β(z)), (22)

z = zp, (23)

where β(z) = β0z
L denotes the pre-twist angle of a current

beam cross section, and β0 is the pre-twist at the beam tip.
The Hamilton principle is employed to derive the equation

of motion for the rotating blade. The Hamilton principle is
stated as

t∫
0

(δK − δU + δW ) dt = 0, (24)

whereK and U , respectively, denote the kinetic energy and the
strain energy, W is the virtual work of external forces, t de-
notes time, and δ is the variation operator. Yao et al. have done
detailed mathematical derivations to get the non-dimensional
governing equations of the nonlinear vibration for the rotating
blade as follows:4, 5
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+ py, (25)

where the dots and primes, respectively, represent partial dif-
ferentiation with respect to t and z. Galerkin’s approach is
used to truncate (25) to obtain a two-degree-of-freedom non-
linear ordinary system of differential equations under high-
temperature supersonic gas flow and varying rotating speed.
By the idea of a one-term Galerkin truncation, the modes of
the rotating blade can be cast into the form:

v0 = q(t)G(z) and v0 = q(t)G(z), (26)

where function G(z) is a linear mode of the free vibration for
the cantilever beam, which has the following form:

G(z) = cosh(rz)− cos(rz)−[
cosh(r) + cos(r)

sinh(r) + sin(r)

]
[sinh(rz)− sin(rz)] , (27)

where the coefficient r is the root of cosh(r) cos(r) + 1 = 0.
The mode considered here is the typical form of the free vi-
bration for the cantilever beam. Since the problem here is a
weak nonlinear case, the mode of the free vibration can be
considered as an approximation to the mode of the weak non-
linear system, and hence the convergence is guaranteed. Based
on the experimented observations, the first-order mode makes
the major contribution to the vibration responses of a dynamic
system. Therefore, in order to qualitatively study the nonlin-
ear behaviours of the rotating thin-walled blade, the first-order
mode function is taken to discretize the governing equation by
applying Galerkin’s approach.

Substituting (26) and (27) into (25), multiplying (25) by
G(z) and integrating to z from 0 to 1, a two-degree-of-freedom
nonlinear ordinary system of differential equations under high-
temperature supersonic gas flow and varying rotating speed is
obtained as:

α5p̈+ α11ṗ+ α2q̇ + (α13 + α17 − α10f
2
0 )p+

(α14 + α8)q − 2α10pf0f cos(Ωt)− α10pf
2cos2(Ωt)

+α6p
3 + α6pq

2 = α9Ωf sin(Ωt),

α5q̈ + α21q̇ + α2ṗ+ (α23 + α8)p+

(α24 + α27 − α20f
2
0 )q − 2α20qf0f cos(Ωt)−

α20qf
2cos2(Ωt) + α6q

3 + α6p
2q = 0. (28)

Dividing by α5 yields

p̈+ 2µ1 ṗ+ ω2p+ β13 q̇ + β11q + β5pq
2 + β5p

3 =

2f0fβ14p cos(Ωt) + f2β14pcos2(Ωt) + fβ16 Ω sin(Ωt),

q̈ + 2µ2 q̇ + ω2q + β22 ṗ+ β21 p+ β5 p
2q + β5 q

3 =

2f0 f β24 q cos (Ω t) + f2β24 qcos2 (Ω t) , (29)

where the coefficients of Eqs. 25, 28 and 29 are given in detail
in refs.4, 5
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