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Protein microtubules are one of the most effective intracellular components. The microtubules structure is in a
manner that their behaviour is similar to that of the orthotropic materials. Therefore, in this paper, size-dependent
vibration of the anisotropic protein microtubule is studied. For this purpose, using a first shear deformable shell
model and based on couple stress theory, new equations are developed for the dynamic behavior of anisotropic
protein microtubule. After solving the governing equations of microtubule motion, the effects of cytoplasm en-
vironment, microtubule dimensions and its mechanical properties, and material length scale parameters on the
natural frequency of microtubules are investigated.

1. INTRODUCTION

Protein microtubules (MTs) are cylindrical bio structures
which exist inside the eukaryotic cells and in the neurons of
nerve cells. Microtubules are effective in the majority of in-
tracellular interactions. Thus, to understand and prognosticate
their behaviour in the face of external excitation is important.
Moreover, microtubules are studied in laboratory conditions as
well. MTs are the strongest intercellular elements and provide
the majority of cell stiffness. Structurally, MTs are made of
a peripheral connection of long fibers called protofilaments.
Protofilaments, in turn, are made of a consecutive linkage of
fine particles named α and β tubulins. In fact, the building of
MTs is similar to a cylinder to the wall of which the α and β
tubulins are attached. Generally, microtubules are represented
by N −S indices. N represents the number of protofilaments,
which build microtubules and the higher this index, the longer
the microtubule diameter. In addition, S indicates the start he-
lix, which causes variability in tubulin arrangement in different
microtubules. In fact, this index represents the angle between
the protofilament axis and microtubule’s central axis. Micro-
tubules have been observed in the range of 10 nanometers to
100 microns, in terms of longitudinal dimension, and in the
range of 15 to 30 nanometers, in terms of diameter. Besides,
the equivalent thickness of MTs is measured as 2.7 nanome-
ters.1–10 Considering that in the eukaryotic cells microtubules
are located inside the cytoplasm environment, the surrounding
cytoplasm affects the MTs’ behavior. To evaluate the cyto-
plasm effects on the MTs behavior, the cytoplasm is modelled
as a Pasternak foundation.11, 12 Considering the MT dimen-
sions, the size effect parameter must be taken into account in
MT analysis.13–29 Couple stress theory is one of the higher
order continuum theories capable of calculating small size ef-
fects. This theory was first presented by Mindlin and Tier-
sten.30 Many researchers have used couple stress theory in
their studies to analyse.31–36 For instance Al-Basyouni et al.

used in in order to investigate of the bending and vibration
characteristic of a micro-FGM beam used couple stress scale
parameters.33 So far, using different beam and cylindrical shell
models, numerous studies have been conducted on the free vi-
bration of MTs. Using a nonlocal Euler-Bernoulli beam model,
Civalek, et al. investigated the free vibration of MTs.37 Us-
ing the modified strain gradient theory, Karimi and Tadi stud-
ied the effect of MT dimensions and environmental condi-
tions on the natural frequency of MTs modelled as an Euler-
Bernoulli beam.38 The vibration of MTs based on the nonlo-
cal Timoshenko beam model was investigated by Heireche, et
al.39 They studied the significance of the small-scale effects,
shear effects, and rotary inertia on MTs vibrations. Tounsi,
et al. studied the vibration and flexural rigidity of MTs using
a parabolic beam model.40 They showed that the results ob-
tained from the parabolic shear deformation beam model had a
good agreement with the experimental results. Shen presented
a non-linear model for the vibration analysis of MTs based on
nonlocal theory.11 Tadi and Karimi analysed the vibration be-
havior of MTs using an isotropic shell model.12 They showed
that the scale parameter in the shell model had a stronger effect
on the results compared to than in the beam model. Also, by
considering the shear effects and the use of couple stress the-
ory, Baninajarian and Tadi examined the vibration characteris-
tics and flexural rigidity of MTs.41 Reviews have demonstrated
that the MTs properties in the longitudinal direction are much
stronger than those in the other.42–44 Thus, in order to conduct
detailed MT analysis, it is better to use anisotropic models.
Wang, et al. studied the vibration of orthotropic microtubules
without considering the scale parameters, while, according to
the MT dimensions, the material scale parameter should have
been considered.45 Recently, in order to analyse the wave
propagation of MTs, Taj and Zhang presented the non-local or-
thotropic shell model.46 Moreover, some researchers examined
MTs free vibration, based on the molecular dynamics method.
Examples of those studies include the work done by Xiang and
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Liew.47 They studied MT vibration using molecular dynamics
techniques. As mentioned above, MT properties vary across
directions and MTs should be modelled as a size dependent
anisotropic shell. According to the nature of MT structure, four
characteristics affecting MT behaviour can be determined. The
first characteristic is the size dependence of MTs. The second
characteristic is the anisotropic behaviour of MTs. The third
condition the is cylindrical shape of MTs, which cause beam-
like models not to present the correct results for MTs. The
fourth parameter is the shear effect in MT thickness. In fact,
it can be said that due to its ignoring of shear effects, a thin
shell is not a suitable model for MTs. In analytical studies,
in order to consider the shear effects, there should be use of
shear models, such as first shear deformation theory (FSDT).
Also, in order to increase accuracy in the calculating of shear
effects, researchers can make use of higher order shear defor-
mation theory (HSDT).48–52 In recent years, a HSDT model
was used by many analytical researchers.53–60 In the present
work, a FSDT model is used, based on the MTs thickness to
radius ratio. As mentioned in the introduction of the previous
work, researchers have used different models to analyse MTs’
free vibration. Initially, microtubules were modelled as macro-
scale cylindrical shells.6 But, these models are incapable to
count the small size effects. Afterwards, researchers have used
size dependent isotropic beamlike models to analyse micro-
tubules.38 While, according to the MTs natural shape, a beam
model is not appropriate for a MTs simulation. Then, in order
to improve the results, nanoscale isotropic cylindrical shells
were employed.12 Whereas the realistic behaviour of MTs is
similar to anisotropic material. It can be said that in previ-
ous research conducted on MTs, only rarely have all the four
conditions of size dependency, anisotropy, shear effects, and
MT cylindrical shape been considered. In recent years, in or-
der to obtain more realistic solutions, the nanoscale orthotropic
shell was introduced, in which nanoscale effects are measured
based on nonlocal theory. In the present work, attempts have
been made to provide a comprehensive model of MTs. The
differentiating feature of the model presented in this work is
that in addition to considering the three conditions of natural
MT cylindrical shape, anisotropy, and shear effects on the MT
thickness, it also investigates the impact of the small-scale ef-
fects based on couple stress theory. So far, few studies have
been conducted on the application of couple stress theory for
anisotropic materials. Chen and Yang developed a new model
to analyse a laminated composite based on couple stress the-
ory.29 In the present work, a new model of orthotropic cylindri-
cal shell is provided based on couple stress theory, and, by us-
ing this model, MT vibration is analysed. Thus, in this article,
first, based on the energy method, and by using the calculus
of variations method, the motion equations of orthotropic MTs
are extracted. Afterwards, these equations are solved for MTs
and in the special case of a simply-supported boundary con-
dition, and the effects of MT mechanical properties and MT
dimension ratio on the MTs natural frequency are investigated.

2. MOTION EQUATIONS FOR SIZE
DEPENDENT ANISOTROPIC MTS

As mentioned in the previous section, MTs have a hollow
cylindrical shape surrounded by cytoplasm environments in the
eukaryotic cells. In physical studies, this elastic environment

Figure 1. Protein microtubule model inside the cytoplasm.

is modelled as a Pasternak foundation, which includes linear
stiffness (k1) and shear stiffness (k2) coefficients. In the cylin-
drical shell model, the origin of the coordinate system matches
the middle cylindrical surface (z = 0) and the shell is con-
figured by using the orthogonal axes x, z, and θ. These axes
represent the longitudinal, thickness and circumferential direc-
tions, respectively (Fig. 1).

Considering the ratio of MT thickness to MT radius, the
FSDT model is suitable for analysis of these biostructures. In
this case, the displacement field of FSDT is defined as follows:

ux = u(x, θ, t) + zφx(x, θ, t); (1a)

uθ = v(x, θ, t) + zφθ(x, θ, t); (1b)

uz = w(x, θ, t). (1c)

In the above equation u, v, and w indicate the in-plane dis-
placements. Also, φx and φθ represent rotation around the x
and θ axes. Based on energy methods, Hamilton’s principle is
used to develop the motion equations. According to this princi-
ple, variation of the system energy in a period of time is equal
to zero as follows:

δ

t∫
0

[K − U +Wext] dt = 0. (2)

In the above equation, U expresses MTs strain energy, K
indicates the MTs kinetic energy, and Wext is the work done
by external forces on the MTs. Based on couple stress theory,
strain energy of MTs is obtained through following integration:

U =
1

2

∫
Ω

[σ : ε+m : χ] dV ; (3)

where ε, σ, χ, and m represent strain tensor, Cauchy’s stress
tensor, rotation gradient tensor and higher order stress tensor,
respectively. Based on the equations of a general curvilinear
coordinate system, the strain and rotation gradient tensors are
defined as follows:

ε =
1

2

[
ui
∣∣
j

+ uj
∣∣
i

]
; (4)

χ =
1

2

[(
ui,j − Γipju

p
) eijt√

g

]∣∣∣∣
k

. (5)

In the above equations (,) represents the ordinary deriva-
tive and (|) denotes the covariant derivative. Also, gij , Γijk,
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and eijk represent the metric tensor, second kind of Christof-
fel symbol, and permutation tensor, respectively. Covariant
derivative for displacement vector is defined as follows:

ui
∣∣
j

= ui,j + Γilju
l; (6)

For a cylindrical shell, the non-zero components of the met-
ric tensor and the second kind of Christoffel symbol, assuming
R± z = R, are calculated as follows:

gxx = 1; (7a)

gzz = 1; (7b)

gθθ = R2; (7c)

Γθθz =
1

R
; (7d)

Γzθθ = −R. (7e)

In the following sections, the calculation process of classic
and higher-order stresses using ε and χ values is addressed.
For linear elastic materials, the relationship between stress and
strain is expressed as follows:

σ = C : ε. (8)

In the above equation, C indicates the elasticity tensor the
components of which orthotropic behaviour are as follows:

Cij =


C11 C12 0 0 0
C21 C22 0 0 0
0 0 C44 0 0
0 0 0 C55 0
0 0 0 0 C66

 =


Exx

1−νxθνθx
νxθEθθ

1−νxθνθx 0 0 0
νθxExx

1−νxθνθx
Eθθ

1−νxθνθx 0 0 0

0 0 2Gθz 0 0
0 0 0 2Gxz 0
0 0 0 0 2Gxθ

 ; (9)

Besides, the relationship between higher-order stress and rota-
tion gradient is defined as follows:61

m = l2iGijχij + l2jGjiχji. (10)

In the above equation, li represents the material length scale
parameter. With regard to Eq. (1) and by using Eqs. (4) to
(7), components of MT strain and rotation gradient tensors are
derived as follows:

εxx = u,x + zφx,x; (11a)

εθθ =
1

r
(v,θ + zφθ,θ + w) ; (11b)

εxz =
1

2
(φx + w,x) ; (11c)

εxθ =
1

2

(
v,x + zφθ,x +

1

r
(u,θ + zφx,θ)

)
; (11d)

εθz =
1

2

(
φθ +

1

r
(w,θ − v)

)
; (11e)

χxx =
1

2

[
1

r
w,xθ −

1

r
v,x − φθ,x

]
; (12a)

χθθ =
1

2r

[
φx,θ − w,xθ + v,x + zφθ,x −

1

r
u,θ

]
; (12b)

χzz =
1

2

[
φθ,x +

1

r2
u,θ −

1

r
φx,θ

]
; (12c)

χxθ =
1

2r2
[w,θθ − v,θ − rφθ,θ] ; (12d)

χθx =
1

2
[φx,x − w,xx] ; (12e)

χxz =
1

2r2
[v − rφθ − w,θ] ; (12f)

χzx =
1

2

[
v,xx + zφθ,xx −

1

r
(u,xθ + zφx,θx)

]
; (12g)

χzθ =
1

2r

[
v,xθ + zφθ,θx −

1

r
u,θθ

−z
r
φx,θθ − φx + w,x

]
. (12h)

According to Eqs. (8) to (10), and by using components of
strain and rotation gradient tensors, which were obtained in the
Eqs. (11) and (12), components of both classical and higher
order stresses are obtained as follows:

σxx =
Exx

1− νxθνθx
[u,x + zφx,x]

+
νxθEθθ

1− νxθνθx

[
1

r
(v,θ + zφθ,θ + w)

]
; (13a)

σθθ =
Eθθ

1− νxθνθx

(
1

r
(v,θ + zφθ,θ + w)

)
+

νθxExx
1− νxθνθx

(u,x + zφx,x) ; (13b)

σxz = σzx = Gxz (φx + w,x) ; (13c)

σxθ = σθx

= Gxθ

(
v,x + zφθ,x +

1

r
(u,θ + zφx,θ)

)
; (13d)

σθz = σzθ = Gθz

(
φθ +

1

r
(w,θ − v)

)
; (13e)

mxx = l2xGxx

[
1

r
w,xθ −

1

r
v,x − φθ,x

]
; (14a)

mθθ =
l2θGθθ
r

[
φx,θ − w,xθ + v,x + zφθ,x −

1

r
u,θ

]
; (14b)

mzz = l2zGzz

[
φθ,x +

1

r2
u,θ −

1

r
φx,θ

]
; (14c)

mxθ = mθx =
l2xGxθ
2r2

[w,θθ − v,θ − rφθ,θ]

+
l2θGθx

2
[φx,x − w,xx] ; (14d)

mxz = mzx =
l2xGxz
2r2

[v − rφθ − w,θ]

+
l2zGzx

2

[
v,xx + zφθ,xx −

1

r
(u,xθ + zφx,θx)

]
; (14e)
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mzθ = mθz =
l2zGzθ

2r

[
v,xθ + zφθ,θx −

1

r
u,θθ

−z
r
φx,θθ − φx + w,x

]
; (14f)

Finally, by substituting Eqs. (11), (12), (13), and (14) into
Eq. (3), MT strain energy is obtained as in Eq. (15) (see on
the next page).

After determining the MT strain energy, the kinetic energy
of MTs is calculated. Using the time derivative on the FSDT
displacement vector, the MT kinetic energy is computed as fol-
lows:

K =
ρ

2

∫∫∫
V

{
u2
,t + z2φ2

x,t + 2zφx,tu,t + v2
,t

+z2φ2
θ,t + 2zφθ,tv,t + w2

,t

}
dV. (16)

Now the work done by external forces on the MTs is cal-
culated. Due to radialy displacement, the cytoplasm creates
a reaction force. As mentioned in the introduction section, in
order to study the cytoplasm effect on MT behavior, the cy-
toplasm medium is modelled as a Pasternak foundation. Re-
searchers have demonstrated that, due to radial displacement
(w), a Pasternak foundation creates a reaction pressure on the
body the amount of which is determined through following
equation:11, 12

fpas.foun = k1w − k2∇2w; (17)

Consequently, the amount of work done by external forces on
the MTs can be computed as follows:

Wext =
1

2

∫
V

[−fpas.founwRdθdx] . (18)

By substituting Eqs. (15), (16) and (18) into Eq. (1), and by
using heavy simplifications, the motion equations of the new
MTs model are developed as follows:

A1U,xx +A2U,xxθθ +A3U,θθ +A4U,θθθθ

+A5V,xxxθ +A6V,θx +A7V,xθθθ +A8W,x

+A9W,xθθ +A10φθ,xθ +A11φx,θθ + ρhu,tt = 0; (19)

B1V,xxxx +B2V,xx +B3V,θθ +B4V,xxθθ +B5V

+B6U,xxxθ +B7U,xθθθ +B8U,xθ +B9W,xxθ

+B10W,θθθ +B11W,θ +B12φθ,θθ

+B13ψx,xθ +B14φθ,xx +B15φθ + ρhV,tt = 0; (20)

F1W,xxxx + F2W,xx + F3W,xxθθ + F4W,θθθθ

+F5W,θθ + F6W + F7U,x + F8V,θθθ + F9ψθ,θθθ

+F10U,xθθ + F11V,xxθ + F12V,θ + F13φx,xxx

+F14φx,x + F15φx,xθθ + F16φθ,θ + F17φθ,xxθ

+K1W −K2W,xx −
1

R2
K2W,θθ + ρhW,tt = 0; (21)

D1φx,xx +D2φx,xxθθ +D3φx,θθθθ +D4W,xxx

+D5φx,θθ +D6φx +D7φθ,xθ +D8φθ,xθθθ

+D9φθ,xxxθ +D10U,θθ +D11W,x +D12W,xθθ

+D13V,xθ + ρh3φx,tt = 0; (22)

E1φθ,xxxx + E2φθ,xx + E3φθ,xxθθ + E4φθ,θθ

+E5φx,xθθθ + E6φx,xxxθ + E7φx,xθ + E8U,xθ

+E9V + E10W,θθθ + E11V,xx + E12W,xxθ

+E13W,θ + E14V,θθ + E15φθ + ρh3φθ,tt = 0. (23)

Coefficients Aij , Bij , Fij , Dij , and Eij that can be seen in
the above equations are a function of the material scale param-
eter and MT mechanical properties and are provided in Ap-
pendix A.

Furthermore, during the calculus of variations, the following
boundary conditions have been made on the MTs boundaries.

δ u|l0 = 0 or
[
a1 +

b7,θ
2R

]∣∣∣∣l
0

= 0; (24a)

δ v|l0 = 0 or[
a5 −

b1
2R

+
b2
2R
− b7,x

2
− b9,θ

2R

]∣∣∣∣l
0

= 0; (24b)

δ w|l0 = 0 or[
a4 −

b1,θ
2R

+
b2,θ
2R

+
b5,x
2

+
b9
2R

]∣∣∣∣l
0

= 0; (24c)

δ φx|l0 = 0 or
[
za1 +

b5
2

+
zb7,θ
2R

]∣∣∣∣l
0

= 0; (24d)

δ φθ|l0 = 0 or[
za5 −

b1
2

+
zb2
2R

+
b3
2
− zb9,θ

2R
− zb7,x

2

]∣∣∣∣l
0

= 0; (24e)

δ w,x|l0 = 0 or
[
−b5

2

]∣∣∣∣l
0

= 0; (24f)

δ v,x|l0 = 0 or
[
b7
2

]∣∣∣∣l
0

= 0; (24g)

δ φθ,x|l0 = 0 or
[
zb7
2

]∣∣∣∣l
0

= 0. (24h)

Coefficients ai and bi are presented in Appendix B.

3. SOLVING METHOD

Based on the Navier solution method and according to
FSDT cylindrical shell model, for simply supported ends, the
MT displacement field solutions are considered as follows:32, 62

u = U cos
(mπ
L
x
)

cos (nθ) eiωt; (25a)

v = V sin
(mπ
L
x
)

sin (nθ) eiωt; (25b)

w = W sin
(mπ
L
x
)

cos (nθ) eiωt; (25c)

φx = Φx cos
(mπ
L
x
)

cos (nθ) eiωt; (25d)

φθ = Φθ sin
(mπ
L
x
)

sin (nθ) eiωt. (25e)
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U =

∫
V

{
Exx(u,x + zφx,x)2

2(1− νxθνθx)
+
Eθθ(v,θ + zφθ,θ + w)2

2r2(1− νxθνθx)

+
1

2r

[
νxθEθθ

1− νxθνθx
+

νθxExx
1− νxθνθx

]
(u,x + zφx,x)(v,θ + zφθ,θ + w) +

1

4
Gθz

(
φθ +

1

r
(w,θ − v)

)2

+
1

4
Gxθ

(
v,x + zφθ,x +

1

r
(u,θ + zφx,θ)

)2

+
1

4
Gxz(φx + w,x)2 +

1

4
l2xGxx

[
1

r
w,xθ −

1

r
v,x − φθ,x

]2

+
1

4r2
l2θGθθ

[
φx,θ − w,xθ + v,x + zφθ,x −

1

r
u,θ

]2

+
1

4
l2zGzz

[
φθ,x +

1

r2
u,θ −

1

r
φx,θ

]2

+
1

2
l2xGxθ

([
1

2r2
(w,θθ − v,θ − rφθ,θ)

]2

+

[
1

4r2
(w,θθ − v,θ − rφθ,θ)(φx,x − w,xx)

])

+
1

2
l2θGθx

([
1

2
(φx,x − w,xx)

]2

+

[
1

4r2
(w,θθ − v,θ − rφθ,θ)(φx,x − w,xx)

])

+
1

2
l2xGxz

([
1

2r2
(v − rφθ − w,θ)

]2

+

[
1

4r2
(v − rφθ − w,θ)

(
v,xx + zφθ,xx −

1

r
(u,xθ + zφx,θx)

)])

+
1

2
l2zGzx

([
1

2

(
v,xx + zφθ,xx −

1

r
(u,xθ + zφx,θx)

)]2

+

[
1

4r2
(v − rφθ − w,θ)

(
v,xx + zφθ,xx −

1

r
(u,xθ + zφx,θx)

)])
+

1

2
l2zGzθ

([
1

2r

(
v,xθ + zφθ,θx −

1

r
u,θθ −

z

r
φx,θθ − φx + w,x

)]2

+

[
1

8r2

(
v,xθ + zφθ,θx −

1

r
u,θθ −

z

r
φx,θθ − φx + w,x

)(
v,rθ +

1

r
(v,θ − u,θθ)

)])
+

1

2
l2zGzθ

[
1

2r

(
v,xθ + zφθ,θx −

1

r
u,θθ −

z

r
φx,θθ − φx + w,x

)]2
}
dV. (15)

In the above equation, ω is the MT vibration frequency.
Also, U , V , W , Φx, and Φθ represent the vibration amplitude
for each of the variables. Moreover, m and n represent the
longitudinal mode number and circumferential mode number,
respectively. It should be mentioned that if the relationships
expressed in Eq. (25) substitute into the boundary conditions
created on the MTs boundaries, the boundary conditions will
be satisfied. This confirms the accuracy of solutions consid-
ered in Eq. (25). By substituting Eq. (25) into the motion equa-
tions, the motion equations are converted to following matrix
form:

[S]{A}+ [M ]{Ä} = 0. (26)

In the above equation, S and M represent MT stiffness and
MT mass matrices, respectively. Also, A and Ä represent the
MT displacement vector and MT acceleration respectively. Us-
ing a derivative operation, Eq. (26) can be rewritten as follows:

[S + IMω2]{A} = 0. (27)

According to the above equation, it is clear that the vector
A = 0 satisfies Eq. (27). This solution, of course, is the trivial
solution. For a comprehensive analysis of this matrix equation,
however, it is necessary to seek nontrivial solutions. According
to Eq. (27), it is clear that to extract non-zero solutions the
following conditions must be established:

det[S + IMω2] = 0. (28)

After solving Eq. (28), the MT natural frequency is ob-
tained, which will be discussed in detail in the next section.

4. RESULTS AND DISCUSSION
In this section, the vibration of a simply supported micro-

tubule embedded in surrounding elastic medium is investi-
gated using the orthotropic shell model. In order to illustrate
the validity of the current study, the results obtained by the
present model are compared with those available in the liter-
ature. Afterwards, various numerical examples are proposed
to investigate the influence of geometrical and material prop-
erties on the vibration behaviour of microtubules. The mate-
rial and geometrical properties of a microtubule are given in
Table 1. Besides, the material length scale parameter is as-
sumed as lx = lθ = lz = l and considered only theoretically
in the interval of 0 to 5h in the numerical examples proposed
here and the radius is assumed to be 12.8 nm, Ex = 1 GPa,
α = Eθ/Ex = νθ/νx = 0.001, and β = Gxθ/Ex varying
between 0.000001 and 0.001, and shear correction factor, ks,
considered 5/6. Moreover, mπR/L is considered as a variable
between 0.001 and 0.1 since the MTs usually have a length
ranging from a few microns to a few tens of microns.

4.1. Comparison Studies
In order to verify the correctness of the current model, since

no study to date has been carried out on the vibration of MTs
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Table 1. The values of orthotropic elastic constants for MTs.42–45

Parameters Values
Longitudinal modulus Ex 0.5–2 GPa

Circumferential modulus Eθ 1–4 MPa
Shear modulus of microtubules Gxθ 1 KPa–1 MPa
Poisson’s ratio in axial direction νx 0.3

Mass density per unit volume ρ 1.47 g/cm3

Equivalent thickness h 2.7 nm
Effective thickness for bending h0 1.6 nm

Figure 2. Comparison of the frequency of the simply supported isotropic shell.

on the basis of the new modified couple stress theory using the
orthotropic shell model, the frequency response of isotropic
MT is shown based on the classical continuum theory, which
the equilibrium equations and boundary conditions are derived
by setting the material length scale parameter to zero (l = 0).
Therefore, the frequency of the MTs are shown in Fig. 2 and
a good consistency between the obtained results and those of
Xian and Liew is illustrated in this comparison.47 Since the
flexural rigidity ratio as a mechanical property of MTs can be
obtained through the free vibration of MTs, using the present
model, the flexural rigidity ratio is compared with that of Gu,
et al.9 and Pampaloni, et al.63 in Fig. 3. As it is visible, a good
consistency between the obtained results and those of Gu, et
al.9 and Pampaloni, et al.63 is illustrated in this comparison;
besides, the results corresponding to l = 3h are the most ac-
curate ones compared to the experimental data. Therefore, the
current model has supremacy rather than the previous FSDT
shell and Timoshenko beam models, as it can fill the gaps be-
tween the analytical and experimental data at the nano scale of
MTs.

4.2. Effects of the Shear Modulus on the Fre-
quency

Figure 4 shows the natural frequencies of an isolated MT
given by orthotropic shell model for variable shear modulus
ratio. As it can be seen, the frequency increases by increasing
the shear modulus ratio, with regard to the changing of the
(mπR/L) of the MT. Moreover, the increase of the frequencies
is intensified by the increase in (mπR/L). On the other hand,
if β = 0.0001 and (mπR/L) is less than 0.01, the frequencies
predicted by β = 0.0001 and β = 0.001 are very close to each
other. This concludes that, if β = 0.0001 frequencies predicted
by the orthotropic shell model are similar to that of β = 0.001
for sufficiently long MTs ((mπR/L) ¡ 0.01, or L > 4m µm).

Figure 3. Comparison between the flexural rigidity ratio- length relations of
an isolated microtubule given by FSDT based on NMCST in current study and
FSDT shell model, Timoshenko beam model and experimental data.

Figure 4. Dispersion relation of an isolated MT given by orthotropic shell
model for different shear modulus ratio.

Figure 5. Length dependence of frequency of an isolated MT, given by or-
thotropic shell model.

4.3. Effects of Length on Frequency

To illustrate the influence of length on the frequencies of
MT, Figs. 5 and 6 plot the frequency with respect to length
for different shear modulus ratios and length scale parameters,
respectively. As is visible, the increase in length leads to a
decrease in MT stiffness and consequently, reduces the fre-
quency; in addition, the decrease in frequency is intensified
by an increase in shear modulus and material length scale pa-
rameters. Such that, in l = 5h, the reduced rate of frequency
is 0.93; while in l = 0 this rate is about 0.079.
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Figure 6. Frequency for an isolated MT given by orthotropic shell model in
different length scale parameters.

a)

b)

Figure 7. The dispersion curves of the microtubule frequencies for different
length scale parameter, a) β = 0.00001, b) β = 0.001.

4.4. Effects of the Material Length Scale
Parameter on the Frequency

Figures 7(a–b) illustrate the influence of material length
scale parameter on the frequency of MT through (mπR/L)
distribution for β = 0.00001 and β = 0.001, respectively. As
it can be seen, the frequency is size dependent; such that, an in-
crease in the material length scale parameter increases the fre-
quency. Besides, according to both illustrations, the increasing
effect of the material length scale parameter on the frequency
is intensified by an increase in (mπR/L). So that, the size ef-
fect is more significant for L < 4m or (mπR/L) > 0.01 in
β = 0.00001 and for L < 1.2m or (mπR/L) > 0.0325 in
β = 0.001, according to Figs. 6(a-b).

Figure 8. Variation in frequency with vibrational mode numbers (m) for MTs
for different shear modulus ratio.

Table 2. Vibration frequency (MHz) for different environmental condition.

(kw, kg) = (0,0) (kw, kg) = (2.7,0.27)
β l/h l/h

0 3 5 0 3 5
0.000001 0.9598 0.9616 0.9641 90.935 90.936 90.937
0.00001 2.7131 2.8125 2.9032 90.972 90.983 90.996
0.0001 7.4701 8.3533 8.9168 91.256 91.403 91.548
0.0001 21.943 24.752 26.388 93.731 94.894 95.682

4.5. Effects of the Mode Number
on the Frequency

The frequency versus mode numbers of MT is plotted for
different shear modulus ratio in Fig. 8. Clearly, the frequency
value increases when the mode number increases; moreover,
by an increase in the shear modulus ratio, the influence of
the mode number on the frequency becomes more and more
prominent. So that, when β = 0.001, the frequency increases
from 0.69 to 9.88 MHz; however, if β = 0.000001 the fre-
quency changes from 0.076 to 0.45 MHz.

4.6. Effects of the Cytoplasm Medium on the
Frequency

As mentioned previously, the Pasternak foundation is uti-
lized to investigate the effect of the elastic medium surround-
ing MT. Table 2 shows the frequency of the MT being outside
cytoplasm more (kw, kg) = (0,0) and inside Pasternak cyto-
plasm (kw, kg) = (2.7 KPa/nm, 0.27 KPa·nm). The results
are also listed for MT in Table 2. It is found that the elastic
medium surrounding the MT increases the MT stiffness and
consequently increases the frequency of the MT inside the cy-
toplasm more than the MT outside the cytoplasm. Through
Table 3, the influence of the length scale parameter on the
frequency of MTs, with respect to foundation parameters and
mode numbers is illustrated in detail. This table has a trend
similar to Fig. 6, as such an increase in the length scale param-
eter increases frequency of MTs and as it is visible, increasing
the effect of the length scale parameter on the frequency is in-
tensified in higher mode numbers, in spite of the foundation
parameter, which doesn’t increase the influence of the length
scale parameter on the frequency of MTs significantly.
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Table 3. Vibration frequency (MHz) for different environmental condition in
higher mode numbers.

(kw, kg) = (0,0) (kw, kg) = (2.7,0.27)
l/h (m,n) (m,n)

(1,1) (2,2) (3,3) (1,1) (2,2) (3,3)
0 2.7131 20.740 50.340 90.972 118.71 134.04
1 2.7274 25.974 63.737 90.973 119.73 139.71
2 2.7646 36.335 88.306 90.977 122.37 152.59
3 2.8125 46.822 110.83 90.983 125.82 166.60

5. CONCLUSIONS

In this paper, the free vibration of protein microtubule in-
side the cytoplasm was examined. For this purpose, the MT
is modelled as FSDT. Also, the couple stress theory was em-
ployed to measure the MT small-scale effect. First, in order to
evaluate the results in a more efficient fashion, the results were
compared to those of other studies and experiments, and their
accuracy and precision were confirmed. Besides, the current
model has supremacy over the previous FSDT shell and Timo-
shenko beam models, as it can fill the gaps between the analyti-
cal and experimental data at the nano scale of MTs. After solv-
ing the MT free vibration equations, the results demonstrated
that an increase in the modulus ratio and MT length leads to
an increase and decrease in MT frequency, respectively. Fur-
thermore, it was determined that although the scale parameter
invariably increases MT frequency, the intensity of the effect of
this parameter for MTs with (mπR/L) > 0.01, the condition
is stronger. In addition, it is demonstrated that the impact of in-
creased mode number on MT frequency is stronger for higher
modulus ratios. Also, the impact of the cytoplasm medium on
MT frequency was investigated and the results indicated that
cytoplasm strongly increases MT vibration frequency by in-
creasing MT stiffness. Also, it was found that the impact of
the length scale parameter on the MTs frequency is stronger
for a higher vibration mode number.
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14 Civalek, O., Demir, Ç. Bending analysis of micro-
tubules using nonlocal Euler-Bernoulli beam theory, Ap-
plied Mathematical Modelling, 35 (5), 2053–2067, (2011),
https://dx.doi.org/10.1016/j.apm.2010.11.004.

15 Akg:oz, B., Civalek, O. Application of strain gradient
elasticity theory for buckling analysis of protein micro-
tubules, Current Applied Physics, 11 (5), 1133–1138,
(2011), https://dx.doi.org/10.1016/j.cap.2011.02.006.

16 Civalek, O. and Akgoz, B. Static analysis of single walled
carbon nanotubes (SWCNT) based on Eringen’s nonlocal
elasticity theory, International Journal of Engineering and
Applied Sciences, 1 (2), 47–56, (2009).

92 International Journal of Acoustics and Vibration, Vol. 24, No. 1, 2019

http://dx.doi.org/10.1016/j.jbiomech.2009.09.005
http://dx.doi.org/10.1103/PhysRevLett.89.248101
http://dx.doi.org/10.1016/j.cma.2012.02.023
http://dx.doi.org/10.1002/bmb.2003.494031049999
http://dx.doi.org/10.1006/jmbi.2000.3696
http://dx.doi.org/10.1088/0957-4484/19/12/125101
http://dx.doi.org/10.1016/j.physe.2010.05.022
http://dx.doi.org/10.1016/j.physleta.2010.08.006
http://dx.doi.org/10.1007/s00707-008-0121-8
http://dx.doi.org/10.1016/j.ijmecsci.2014.02.013
http://dx.doi.org/10.1016/j.cap.2010.11.116
http://dx.doi.org/10.1142/S0219519415500372
http://dx.doi.org/10.1016/j.bbrc.2009.07.042
http://dx.doi.org/10.1016/j.apm.2010.11.004
http://dx.doi.org/10.1016/j.cap.2011.02.006


Y. T. Beni, et al.: USING NEW SIZE DEPENDENT ORTHOTROPIC ELASTIC SHELL MODEL FOR INVESTIGATION OF FREE VIBRATION. . .

17 Demir, C. and Civalek, O. Torsional and longitudinal fre-
quency and wave response of microtubules based on the
nonlocal continuum and nonlocal discrete models, Applied
Mathematical Modelling, 37 (22), 9355–9367, (2013),
https://dx.doi.org/10.1016/j.apm.2013.04.050.

18 Tadi Beni, Y., Abadyan, M. R., and Noghrehabadi,
A. Investigation of size effect on the pull-in instabil-
ity of beamtype NEMS under van der Waals Attrac-
tion, Procedia Engineering, 10, 1718–1723, (2011),
https://dx.doi.org/10.1016/j.proeng.2011.04.286.

19 Mohammadi Dashtaki, P. and Tadi Beni, Y. Effects of
Casimir force and thermal stresses on the buckling of elec-
trostatic nano-bridges based on couple stress theory, Ara-
bian Journal for Science and Engineering, 39 (7), 5753–
5763, (2014), https://dx.doi.org/10.1007/s13369-014-1107-
6.

20 Tadi Beni, Y., Karimipour, I., and Abadyan, M. Mod-
elling the effect of intermolecular modelling force on the
size-dependent pull-in behaviour of beam-type NEMS us-
ing modified couple stress theory, Journal of Mechani-
cal Science and Technology, 28 (9), 3749–3757, (2014),
https://dx.doi.org/10.1007/s12206-014-0836-5.

21 Zeighampour, H. and Tadi Beni, Y. Free vibration anal-
ysis of axially functionally graded nanobeam with radius
varies along the length based on strain gradient theory,
Applied Mathematical Modelling, 39 (18), 5354–5369,
(2015), https://dx.doi.org/10.1016/j.apm.2015.01.015.

22 Tadi Beni, Y. Size-dependent electromechanical bend-
ing, buckling, and free vibration analysis of function-
ally graded piezoelectric nanobeams, Journal of Intelli-
gent Material Systems and Structures, 27 (16), (2016),
https://dx.doi.org/10.1177/1045389X15624798.

23 Mehralian, F. and Tadi Beni, Y. Size-dependent torsional
buckling analysis of functionally graded cylindrical shell,
Composites Part B: Engineering, 94, 11–25, (2016),
https://dx.doi.org/10.1016/j.compositesb.2016.03.048.

24 Tadi Beni, Y. A nonlinear electro-mechanical analysis of
nanobeams based on the size-dependent piezoelectricity
theory, Journal of mechanics, 33 (3), 289–301, (2016),
https://dx.doi.org/10.1017/jmech.2016.65.

25 Tadi Beni, Y. Size-dependent analysis of piezoelectric
nanobeams including electro-mechanical coupling, Me-
chanics Research Communications, 75, 67–80, (2016),
https://dx.doi.org/10.1016/j.mechrescom.2016.05.011.

26 Sedighi, HM., Daneshmand, F., and Abadyan, M.
Modelling the effects of material properties on the
pull-in instability of nonlocal functionally graded
nano-actuators, ZAMM Journal of applied mathe-
matics and mechanics: Zeitschrift fur angewandte
Mathematik und Mechanik, 96 (3), 385–400, (2016),
https://dx.doi.org/10.1002/zamm.201400160.

27 Sedighi, HM., Daneshmand, F., and Abadyan, M.
Modified model for instability analysis of symmet-
ric FGM double-sided nano-bridge: Corrections

due to surface layer, finite conductivity and size ef-
fect, Composite Structures, 132, 545–557, (2015),
https://dx.doi.org/10.1016/j.compstruct.2015.05.076.

28 Sedighi, HM., Keivani, M., and Abadyan, M. Mod-
ified continuum model for stability analysis of asym-
metric FGM double-sided NEMS: Corrections due to
finite conductivity, surface energy and nonlocal effect,
Composites Part B Engineering, 83, 117–133, (2015),
https://dx.doi.org/10.1016/j.compositesb.2015.08.029.

29 Sedighi, HM., Daneshmand, F, and Abadyan,
M. Dynamic instability analysis of electro-
static functionally graded doubly-clamped nano-
actuators, Composite Structures, 124, 55–64, (2015),
https://dx.doi.org/10.1016/j.compstruct.2015.01.004.

30 Mindlin, R. D. and Tiersten, H. F. Effects of couple-
stresses in linear elasticity, Archive for Rational
Mechanics and Analysis, 11 (1), 415–448, (1962),
https://dx.doi.org/10.1007/BF00253946.

31 Zeighampour, H. and Tadi Beni, Y. Analysis of conical
shells in the framework of coupled stresses theory, In-
ternational Journal of Engineering Science, 81, 107–122,
(2014), https://dx.doi.org/10.1016/j.ijengsci.2014.04.008

32 Zeighampour, H. and Tadi Beni, Y. Size-dependent vi-
bration of fluid-conveying double-walled carbon nan-
otubes using couple stress shell theory, Physica E: Low-
dimensional Systems and Nanostructures, 61, 28–39,
(2014), https://dx.doi.org/10.1016/j.physe.2014.03.011.

33 Al-Basyouni, K. S., Tounsi, A., and Mahmoud, S.
R. Size dependent bending and vibration analy-
sis of functionally graded micro beams based on
modified couple stress theory and neutral surface
position, Compos. Struct., 125, 621–630, (2015),
https://dx.doi.org/10.1016/j.compstruct.2014.12.070.

34 Dehrouyeh Semnani, A. M., Dehrouyeh, M.,
Torabi Kafshgari, M., and Nikkhah Bahrami, M. A
damped sandwich beam model based on symmetric-
deviatoric couple stress theory, International Jour-
nal of Engineering Science, 92, 83–94, (2015),
https://dx.doi.org/10.1016/j.ijengsci.2015.03.007.

35 Wanji, C., Li, X., and Xu, M. A modified cou-
ple stress model for bending analysis of compos-
ite laminated beams with first order shear deforma-
tion, Composite Structures, 93 (11), 2723–2732, (2011),
https://dx.doi.org/10.1016/j.compstruct.2011.05.032.

36 Reddy, J. N., Romanoff, J., and Loya, J. A. Nonlin-
ear finite element analysis of functionally graded circu-
lar plates with modified couple stress theory, European
Journal of Mechanics – A/Solids, 56, 92–104, (2016),
https://dx.doi.org/10.1016/j.euromechsol.2015.11.001.
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APPENDIX B
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