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In this paper, the attenuation of lamb waves in three-layer adhesive joints, including two elastic plates bonded
together by a viscoelastic adhesive layer, is investigated using the global matrix method and then a suitable inci-
dence angle is calculated to generate a low-attenuation lamb wave using an angle beam transducer. The theoretical
boundary value problem in adhesive joints with a perfect bond and traction-free boundary conditions on their
outer surfaces is solved to find a combination of frequencies and modes with lowest attenuation. A characteris-
tic equation is derived by applying continuity and boundary conditions in adhesive joints using the global matrix
method. Phase velocity and attenuation dispersion curves are obtained with numerical solution of this equation by
a computer code for a three-layer joint, including an aluminum repair patch bonded to the aircraft aluminum skin
by a layer of viscoelastic epoxy adhesive. To validate the numerical solution results, wave structure curves are
plotted for a special mode in two different frequencies in the adhesive joint. Also, the transducer incidence angle
is calculated in terms of frequency to generate lamb wave modes with low attenuation level using the theoretical

method.

1. INTRODUCTION

The applications of adhesive joints in plates and pipes to
increase life, improve stiffness, and protect against corrosion
and electrical insulation have resulted the widespread use of
viscoelastic polymer material like epoxy with plates and pipes
as adhesive and coating. An example of these joints’ appli-
cation is a three-layer adhesive joint, including an aluminum
patch bonded to a surface, such as aircraft aluminum skin, by
a viscoelastic epoxy adhesive layer. Repair patches are used
to extend the life of the aircraft. Ultrasonic guided waves are
used to inspect these adhesive joints. Lamb waves have ap-
plications in non-destructive inspection of elastic-viscoelastic
multi-layer joints and plates. Some modes of these waves have
frequencies with minimum attenuation and are recognizable in
inspection by a transducer, and they can also detect the defects
in the structures. Low-attenuation lamb waves can be produced
in multi-layer structures using angle beam transducers for in-
spection purposes.

Guided waves propagation in multi-layer structures has
been investigated using various methods. The transfer ma-
trix method is applied to model guided waves in multilayered
anisotropic and damping media, the use of this method in high
frequencies is accompanied with numerical instability.! Delta
operator technique is applied to improve the stability of trans-
fer matrix method in multilayered anisotropic damping plates.”
The matrix methods have been presented for modeling the
propagation of ultrasonic waves in multilayered media.> Both
global the matrix method and transfer matrix method are used
in these studies. These techniques can be used to obtain at-
tenuation and phase velocity dispersion curves in viscoelastic

materials. The propagation of guided waves in multilayered
adhesive structures has been investigated using analytical, ex-
perimental, and transient FEM simulation methods by taking
into consideration the low stiffness and viscoelastic behavior
of adhesive layer.*

The propagation of lamb and shear horizontal (SH) waves
in elastic plates coated with viscoelastic materials has been
investigated by Superposition Partial Bulk Waves (SPBW)
method.>® Material damping causes an excessive reduction
of an applied signal in an ultrasonic test. The propagation
of guided waves in elastic hollow cylinders with viscoelastic
coating has been investigated using experimental and analyti-
cal methods.” Wave equation in elastic hollow cylinders was
solved using theoretical boundary value problem and the best
modes were specified. The global matrix method has been
used to obtain the roots of the characteristic equation. Wave
propagation in linear viscoelastic laminates has been investi-
gated using spectral finite element method or semi-analytical
finite element method (SAFE), the damping loss factor was es-
timated for waves in low frequencies, and the stiffness matrix
was assumed to be real.® The damping loss factor has been ob-
tained using the SAFE method and taking into consideration
the complex stiffness matrix.” To model ultrasonic wave prop-
agation in different waveguides, the SAFE method is used.!”
The titanium repair patches bonded to the aircraft aluminum
skin have been inspected using ultrasonic guided waves, wave
structures were plotted using a theoretical method and selected
the mode shape with maximum in-plane displacement for in-
spection, although the effect of material damping did not take
into consideration.'!

In the present study, the propagation of lamb waves in
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Figure 1. The propagation of the lamb wave in an elastic-viscoelastic three-
layer adhesive joint.

elastic-viscoelastic three-layer joints, including two elastic
plates bonded together with a layer of viscoelastic adhesive,
is investigated using the global matrix method and consider-
ing the viscoelastic layer damping effect. Then, the suitable
incidence angle is theoretically calculated to generate lamb
wave mode with low attenuation using an angle beam trans-
ducer. Adhesive damping causes an excessive reduction in the
sending signal amplitude in ultrasonic tests. Hence, modes and
frequencies with minimum attenuation should be specified be-
cause these waves travel the maximum possible distance in
joints and can detect the different defects namely interfacial
defects.

2. LAMB WAVES PROPAGATION IN THREE-
LAYER ADHESIVE JOINTS

Lamb waves are propagated in thin plate-like mediums in
which planar dimensions are far greater than the thickness of
the plate and wavelength of the same order with plate thick-
ness.!? Free upper and lower surfaces of plate lead movement
of these waves. Lamb waves have infinite modes and their
propagation properties depend on wave entry angle, frequency,
and structure geometry. Figure 1 shows lamb wave propaga-
tion in an adhesive joint, which is comprised of three layers.
The first and the third layers, which are elastic and isotropic,
are bonded together by the second layer, which is an isotropic
viscoelastic layer. The layers are perfectly bonded together
and the free surfaces at the top and the bottom of the three
layers are traction-free. Layer thickness is shown using hq,
ho, and hs. A local Cartesian coordinate system is used to
investigate the propagation of lamb waves in the three layers.
Because of the propagation of the lamb waves in the three-
layer joint, the problem is investigated as plain strain and the
wave propagation is considered to be harmonic. In each layer,
lamb waves are comprised of shear and longitudinal waves su-
perposition.'* Symbols L+ and L— show the propagation of
longitudinal waves downwards and upwards the plate, and S+
and S— show the propagation of shear waves downwards and
upwards the plate, respectively.

Assuming that the wave propagation in three-layer adhe-
sive joints in terms of time is harmonic, the stress-strain equa-
tions of the viscoelastic layer are similar to those in the elastic
layer, except that material properties of the viscoelastic layer
are complex numbers and a function of frequency.'* This de-
pendency between elastic and viscoelastic materials in a har-
monic state is called Alfrey’s Correspondence Principle. Also,
Navier’s equation of motion in the viscoelastic layer is similar
to the elastic layer and is expressed by Eq. (1).

82
pV2u+ (A + p)V(Vu) :pa—t‘;. 1)

In Eq. (1), A, u, and p are Lame constants and density, re-
spectively. Lame constants in viscoelastic material are com-
plex numbers and a function of frequency that are measured us-
ing experimental methods such as ultrasonic tests.” In Eq. (1),
the displacement field, u, can be decomposed as a combination
of the gradient of a scalar potential field, ®, and the curl of a
vector potential field, H (Helmholtz decomposition).13

u=Ve+VxH, VH = 0. 2)

Substituting Eq. (2) in Eq. (1), scalar and vector equations
are obtained respectively:

0p 1 070 A +2u
VIR = === O
1 0°H I
H= — —— =./5; 4
\Y% 022 at2a 02 py ()

Equation (3) shows the propagation of longitudinal wave,
Eq. (4) shows the propagation of the transverse wave in struc-
tures, and C; and C'y quantities are the longitudinal and shear
wave velocities in medium, respectively. Since Lame constants
in viscoelastic material are complex numbers and a function
of frequency, wave velocities are also complex numbers and a
function of frequency.

Using the Cartesian coordinate system, the potential vector,
H, can be defined as the Eq. (5):

H=H,e, +Hye, + H.e,. %)

Since this problem is assumed as a plain strain, then the
equation u, = 9/0z = 0 should be satisfied. This happens
when the H, and H, components equal zero and only H re-
mains. The scalar potential function, ®, should also be a func-
tion of z and .

The solutions of Egs. (3) and (4) for a harmonic wave prop-
agate along the positive = direction and are assumed to be
Egs. (6) and (7):

O = f(y)e'hrmeh); ©6)
H. = h.(y)e' ==, 7

In Egs. (6) and (7), k and w are the wave number and angular
frequency, respectively.

Substituting Egs. (6) and (7) in Egs. (3) and (4) and taking
into consideration that the two components of the vector poten-
tial function are equal to zero, and after solving the differential
equations, the solutions are obtained as:

& = {A el + Ay e iov} eilka—wt);

w2
a® = (CQ - k2) ; (3)
1
H, = {A(S+)eil3y + A(Si)e—zﬂy} ei(kw—wt);
2 w? 2
g = (%) ©)
2

The solutions of Egs. (8) and (9) are known as the partial
waves solution. The four terms obtained from Eqs. (8) and
(9) show the longitudinal waves propagation L, and the trans-
verse waves propagation .S, upwards and downwards the layer.
Constant values show the amplitude of propagated waves. For
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instance, A4 shows that the longitudinal wave amplitude
propagates towards the bottom of the layer.

Substituting vector and scalar potential functions from
Egs. (8) and (9) in Eq. (2), the displacement field in adhesive
joint is obtained in terms of unknown constants of the shear
and longitudinal wave amplitudes:

“‘”:i{ (Aze'™ + Agoe ™) +
B (Ase™ — Asye
= ifa (A @™ = Agye ) -

ke (Ags4ye™ + Ag_ye ) } i(kz—wt).

'Lﬁy) 6 i(kz— o.lt)’ (10)

1)

u, = 0. (12)

Equations (10) and (11) can also be expressed as Egs. (13)
and (14):

13)
(14)

Uy = Uxez(szwt);

u, = Uy@i(kx7Wt).
In Egs. (13) and (14), U, and U, are unattenuated displace-
ment amplitudes.

Using Hooke and strain-displacement relations, stresses in
the adhesive joint can be obtained in terms of the unknown
constants of shear and longitudinal wave amplitudes:

Opx = u{(2a2

2]{:5 (A(S+)€iﬁy _A(S

) (A A ) -
)e—iﬁy)}ei(kz—wt); (15)

oy = n{ (k2= B2) (A )™+ A e ™) +
2k (A(S_He A(S )e sz)}ei(kwfwt); (16)
Oup = _)\{(a2+k2) (A(LJr)eiay +A(L )efiay)}ei(kmfwt);
a7
Opy = —M{Qka (Apye" ™Y —A_ye ") +
(52—]{2) (A(S+)€iﬁy+A(S_)€7i6y)}€i(kw7wt); (18)
0y, = 0; oy = 0. (19)

In order to obtain lamb waves dispersion curves for the
elastic-viscoelastic three-layer adhesive joint, continuity and
boundary conditions need to be applied.

3. FORMULATION OF CONTINUITY AND
BOUNDARY CONDITIONS

The global matrix method is suitable for the formulation of
problems concerning multi-layers. Continuity and boundary
conditions are needed for this formulation. Using this method,
continuity and boundary conditions can be shown as matrices
and vectors. This method can simultaneously consider effects
of material damping and wave leakage to the environment. In
this method a global matrix is used to describe all the continu-
ity and boundary conditions, and when it comes to numerical
stability, it is better than other matrix methods.?

Figure 2 shows the boundary conditions of a three-layer ad-
hesive joint including stress and displacement continuity in

Normal Stress ¢, =0
Shear Stress  o,=0
—Interface 1

Free Surface

e e

o T

X nterface 2

Layer 2: Viscoelastic Layer i
[nterface 3

~Interface 4

\\ Normal Stress o, =0
Free Surface Wave Front;\ !

Shear Stress  ¢,=0

Figure 2. Continuity and boundary conditions in an elastic-viscoelastic three-
layer adhesive joint.

layers interfaces and traction-free conditions in up and bottom
surfaces of the elastic-viscoelastic three-layer adhesive joint.

The bond between the layers is perfect, and there’s no shear
and normal stress on the free-surfaces at the top and bottom
of the three-layer adhesive joint. This condition is shown in
Eq. (20). Continuity of interface conditions include continuity
of the displacement, shear, and normal stresses components.
As an example, continuity between the m and m + 1 layers are
shown by vector Eq. (21).

g
e =0 (20)
U:ry Free
surface

Uy Uy
Uy _ ) uy ' @1
Tyy Oyy
Oxy ) Layer=m Oxy ) Layer=m+1

Interface = m-1 Interface = m-1

Before applying continuity and boundary conditions, a vec-
tor relation for displacement and stress in each layer is neces-
sary, which is obtained using Eqgs. (10), (11), (16), and (18)
and is shown by Eq. (22):

Us A

U\ _p Ao pilkz—wt). (22)
Oyy Ast) ’

Ozy (8-)

in which D is the layer matrix and is expressed as Eq. (23):

D=
iket®y ike— oY iBe*?Y —ifBe Py
et —ioe Y —iketPY —ike Y
p(k*=B2)e" Y p(k*=p2)e " 2ukpe’™  —2ukfe"Y
—2ukae’™¥  2ukae”' (k= B2)eY u(k?—p%)e" Py
(23)

Before applying continuity and boundary conditions using
Eq. (22), the layer matrix in the interfaces of each layer was
calculated. This was achieved from Eq. (23) by substituting
y = —h/2 for layer top interface, and y = h/2 for layer bot-
tom interface. These two new layer matrices are shown by Dy,
Dy, respectively, in which the subscripts ¢ and b show the top
and bottom interfaces of layer, respectively. Local coordinate
system is used to derive these matrices, which are shown in
Fig. 2, and therefore can be derived for all layers by substitut-
ing material properties and thickness.

Now, the three-layer joint continuity and boundary condi-
tions are expressed in the form of a global matrix, which is
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shown in Eq. (24). The A,,, 0 vectors in this matrix are shown
by Eq. (25):

(Di¢)sa O 0
Dy =Dy 0 il = g (24)
0 Dy, —Dsg; A2 a 0 ’
0 0 (Dsp)ss 3
ﬁ(u)m 0
_ 0
A, = EmL. 0= 25
A(s4ym 0 =
A(S—)m 0

In Eq. (24), the subscript 34 shows rows 3 and 4 of the layer
matrix.

The global matrix method is a 4n x 4n system of equations,
in which n is the number of layers and the global matrix for
an elastic-viscoelastic three-layer is 12 x 12. In order for the
nontrivial solution to exist, the determinant of global matrix
should be zero. This is shown by Eq. (26), which is the charac-
teristic or dispersion equation of lamb waves. With the aid of
the roots of Eq. (26), attenuation and phase velocity dispersion
curves are plotted in terms of frequency.

(Dit)sa O 0
Dy, —Dy 0
=0. 26
0 Dy, —Dg; (26)
0 0 (Dsp)sa

4. THE NUMERICAL SOLUTION METHOD
OF A CHARACTERISTIC EQUATION

Characteristic equation roots in the three-layer adhesive
joint are obtained using numerical solution method. In charac-
teristic equation, frequency, w, is the independent variable, and
wave number, k, is the dependent variable. The wave number
in a desired frequency is obtained by solving this equation. To
find characteristic equation roots, a computer code was written
in MATLAB. These roots are shown by dispersion curves.

Finding complex roots of a characteristic equation concern-
ing a three-layer adhesive joint of which at least one layer is
viscoelastic is a difficult task. 4- If harmonic wave propagation
is desired in linear viscoelastic material, then transverse and
longitudinal velocities, and Lame constants of the viscoelastic
layer, are complex and a function of frequency. 4- If harmonic
wave propagation is desired in linear viscoelastic material, then
transverse and longitudinal velocities, and Lame constants of
the viscoelastic layer, are complex and a function of frequency.
If harmonic wave propagation is desired in linear viscoelastic
material, then transverse and longitudinal velocities, and Lame
constants of the viscoelastic layer, are complex and are a func-
tion of frequency. The transverse and longitudinal velocities
are calculated from Egs. (27) and (28).'4

C1(iw) = ; (27
1 + ial(w)
c1(w) w
. 1
Cao(iw) = — caz(w)’ (28)
c2(w) + w

In Eqgs. (27) and (28), ¢; and ¢, are bulk velocities of longitu-
dinal and transverse waves and «; and oo are bulk attenuations
of longitudinal and transverse waves of the viscoelastic layer.
Bulk attenuation and velocity values for viscoelastic material

Find the phase velocity root of

the elastic characteristic equation

Perform two dimensional

by temporarily neglecting the A
imaginary parts of the material minimization of the

viscoelastic characteristic

constants for the viscoelastic
equation absolute value to find
phase velocity and attenuation,
the root of the viscoelastic
characteristic equation, using

nelder-mead simplex method.

layer using bisection method.

>
>
v

>,
>

Minimize  the  viscoelastic

Phase Velocity, cpp

characteristic equation absolute
value in terms of attenuation,
keeping phase velocity constant
using  nelder-mead
method.

simplex

Attenuation, k;

Figure 3. The process of minimization in order to find complex roots of the
characteristic equation.

can be calculated in terms of frequency by using experimental
tests such as the ultrasonic test.’

Before introducing a method for finding the attenuation and
phase velocity numerical results, the wave number should be
defined in terms of imaginary and real parts. Equation (29)
shows the wave number as complex.

k= kp+ik; = - 4+ ik;.
Cph

(29)

Equation (29) enables us to solve the viscoelastic characteristic
equation in terms of attenuation k7, and phase velocity cpy,
instead of wave number k. In this case, the attenuation and
phase velocity dispersion curves are obtained directly.

One solution method for finding the viscoelastic character-
istic equation roots is taking into consideration the minimum
of characteristic equation absolute value. In this case, the
problem becomes three dimensional in which the character-
istic equation absolute value is a function in terms of the atten-
uation and phase velocity. In this method, it is sought to find
minimum value of this function. The main issue in this method
is finding all the roots.

Figure 3 shows a minimization process of characteristic
equation absolute value in order to find characteristic equation
complex roots.

Using the process shown in Fig. 3, a computer code can
be written to find characteristic equation roots. This process
can be applied for all desired frequencies, and attenuation and
phase velocity can be obtained in terms of frequency. The at-
tenuation constant can be converted to attenuation in decibel
per length unit by using Eq. (30). This conversion magnifies
the attenuation values.

ap(dBm™1) = 201og,, (e~ 1000k, (30)

5. LAMB WAVE MODE GENERATION

Different methods exist to generate and receive ultrasonic
guided waves. One method to generate a lamb wave is by using
a longitudinal wave transducer on a plexiglass wedge, which is
also called an angle beam transducer. Figure 4 shows the lamb
wave generation method in an elastic-viscoelastic three-layer
adhesive joint using an angle beam transducer. According to
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Wedge

Three-Layer Adhesive Joint

— L wave = T wave — Lamb wave

Figure 4. Lamb wave generation with an angle beam transducer.

Table 1. Geometric and acoustical properties of an elastic-viscoelastic three-
layer adhesive joint.”

. c1 a1 /w co as/w P h
Layer | Material (km/s) | (s/km) | (knv/s) | (s/km) | (g/cm) | (mm)
T | Aluminum | 635 - 313 - 27 16
2 Mereco 15 39 100070 | 099 |0.0201 | 1.08 | 0.66
303 Epoxy
3 | Aluminum | 635 - 313 - 27 3175

Snell’s law, in this method, the transducer incidence angle de-
pends on the wedge velocity and lamb wave phase velocity.
Equation (31) shows Snell’s law, in which 6; is the plexiglass
wedge angle, cpjeq is the longitudinal wave velocity of the
wedge, and c,, is the lamb wave phase velocity in adhesive

joint.
§; = sin~! (cple“)
; =
Cph

In order to complete the theoretical modeling of the lamb
wave generation, the attenuation and phase velocity in the joint
are obtained first, then a combination of modes and frequencies
that have low attenuation are selected, and finally the suitable
incidence angle for generation is calculated using Snell’s law
and phase velocity of these modes. These angles are used in
inspections.

€2y

6. DISCUSSION OF RESULTS FOR A
SPECIFIC APPLICATION

Solving the characteristic equation by a computer code for a
three-layer adhesive joint, including an aluminum repair patch
bonded to the aircraft aluminum skin with a viscoelastic epoxy
adhesive layer, the attenuation and phase velocity dispersion
curves in high and low frequencies for this specific application
are generated. Also, acceptable attenuation level is calculated
for ultrasonic inspection using a single transducer of the adhe-
sive joint with 200 mm length and suitable modes are selected.
Geometric and acoustic properties of elastic-viscoelastic three-
layer adhesive joint can be seen in Table 1. Aluminum and
Mereco Epoxy 303 acoustic properties are picked up from.”

Wave structure for a mode in two different frequencies is
plotted to validate numerical solution results. Finally, the
transducer incidence angle is plotted in terms of frequency for
different modes, and suitable wedge angles are selected to gen-
erate low-attenuation lamb wave modes in the adhesive joint
with 200 mm length.

6.1. Phase Velocity and Attenuation
Dispersion Curves
Figure 5 shows the phase velocity dispersion curve in terms

of frequency for different modes in an elastic-viscoelastic
three-layer adhesive joint, the properties of which are shown

TMS v T Ms MTMIT s ¥ e

ok \ 10 M17

(km/s)

Phase Velocity, ¢pp
s

r r r r

r r r r
0 025 05 075 1 125 15 175 2
Frequency, f (MHz)

r

r r
226 25 275 3

Figure 5. Phase velocity dispersion curves in terms of frequency in the three-
layer adhesive joint: aluminum—epoxy—aluminum.

in Table 1. The lamb wave modes are identified with M and
numbers in Fig. 5. Investigating this curve, it can be seen that
in the frequency intervals of 150 kHz to 250 kHz only three
modes of M1, M2, and M3 propagate, and other modes do not
propagate in these low frequencies. 250 kHz frequency is cut-
off frequency of M4 mode; because M4 mode does not prop-
agate in frequencies lower than this frequency. Also, in the
frequency intervals of 275 kHz to 575 kHz only four modes
of M1, M2, M3, and M4 propagate, and 575 kHz is the cutoff
frequency of M5 mode.

Figure 6 shows the attenuation dispersion curve in terms of
frequency for ten modes in an elastic-viscoelastic three-layer
adhesive joint. In this paper, the acceptable range of attenua-
tion is calculated for ultrasonic inspection of the adhesive joint
with 200 mm length using a single transducer. The suitable
range of attenuation depends on wave propagation distance in
a wave round-trip to the transducer and on the signal to noise
ratio (SNR). In an inspection with guided waves, SNR is a
measure for detecting small defects and is the ratio of reflected
signal from defects to return signal from grains (as noise) to
the transducer. A minimum identifiable SNR in guided wave
test is 6 dB.” In a guided wave test, a defect signal is usually
20 dB higher than the noise signal; therefore, a 14 dB signal
can be lost because of the guided wave mode attenuation, and
if attenuation is more than 14 dB, defects are not detectable.
The distance that a wave travels in a round-trip to the trans-
ducer is twice the length of the plate and equal to 400 mm, and
maximum attenuation that the wave can have in a round-trip
equals —14 dB /0.4 m or —35 dB m ™1, then the suitable range
of attenuation is from 0 to —35 dBm~1.

The modes with acceptable attenuation level (0 to
—35 dBm™1!) are selected for inspection in high and low fre-
quencies. In generating these modes, an adhesive joint inspec-
tion can be carried out to find the defects. From curves in
Fig. 5, it can be seen that the M/ mode in frequency range
of 150 kHz to 500 kHz has a suitable attenuation level for in-
spection, and in frequencies higher than 500 kHz, a sudden
and excessive increase can be seen in attenuation. This mode
in high frequencies is not suitable for inspection. Attenuation
in the M2 mode in low frequencies, in the range of 150 kHz
to 250 kHz increases extremely, and has a sudden and exces-
sive increase in frequencies higher than 800 kHz. The M2
mode in frequency range of 325 kHz to 800 kHz and the M3
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Figure 6. Attenuation dispersion curves in terms of frequency for 10 modes
in the three-layer adhesive joint: aluminum—-epoxy—aluminum.

Figure 8. M2 mode wave structure in 1.25 MHz frequency with the attenu-
ation of —222.8 dBm~! in a three-layer adhesive joint (a) normalized dis-
placement wave structure and (b) normalized stress wave structure.
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Figure 7. M2 mode wave structure in 500 kHz frequency with the attenuation
of —13.5 dBm~! in a three-layer adhesive joint (a) normalized displacement
wave structure and (b) normalized stress wave structure.

mode in frequency ranges of 150 kHz to 675 kHz and 1.2 MHz
to 1.775 MHz have suitable attenuation levels for inspection
of the adhesive joint with 200 mm length. The M3 mode in
500 kHz has an attenuation equal to —5.1 dB m~! which is the
lowest attenuation level for this mode in frequency range of 0
to 3 MHz. The M5 mode has a suitable attenuation level in
high frequencies and is suitable for inspection in 1.9 MHz to
3 MHz frequency range, and it also has negligible attenuation
about —0.27 dB m~! in frequencies near 3 MHz.

6.2. Validation of Numerical Solution
Results

One method to validate the numerical solution results of
characteristic equations, which are the same as attenuation and
phase velocity, is the investigation of the interfacial continuity
equations and boundary conditions in the adhesive joint. The
wave structure of the propagated modes in the three-layer ad-
hesive joint is plotted to validate if the interfacial continuity
equations and boundary conditions are satisfied. Wave struc-
ture curves are the same as stress and displacement amplitudes
across three-layer adhesive joint thickness.

=]
o

~
o

2]
o

w &
o o

Transducer Incidence Angle, 6; (Degree)
N W
o o

M3 M6

1 r r r r r r r r r r
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0 025 05 075 A1 125 15 175 2 225 25 275 3

Frequency, f (MHz)

Figure 9. Transducer incidence angle curves in terms of frequency for gen-
erating Lamb wave modes in the three-layer adhesive joint: aluminum-epoxy-
aluminum.

Figure 7 shows the M2 mode wave structure in 500 kHz fre-
quency with an attenuation of 13.5 dBm~!. As Fig. 7 shows,
shear and normal stresses do not exist in free surfaces at the
top and bottom of the three layers; also, interfacial continu-
ity conditions including the continuity of shear and normal
stresses and displacement components are satisfied. The M2
mode wave structure in 1.25 MHz frequency with the attenua-
tion of —222.8 dB m™! is also plotted in the curves of Fig. 8,
in which continuity and boundary conditions are also satisfied.
Because attenuation level is high in wave structure curve of
Fig. 8, most of the displacement exists in the viscoelastic layer.

6.3. Transducer Incidence Angles to
Generate Low-Attenuation Lamb Wave
Modes

In this section, at first the transducer incidence angle curves
in terms of frequency for generating lamb wave modes in the
three-layer adhesive joint is plotted using Eq. (31) and phase
velocity values, these curves are shown in Fig. 9. Then the suit-
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able incidence angles are specified to generate low-attenuation
modes by the transducer. In Fig. 9, it can be seen that the inci-
dence angle for generating some modes such as the M1 mode is
90 degree, the generation of which is impossible by the trans-
ducer. The M1 mode cannot be generated by the transducer,
because the transducer incidence angle for its generation is 90
degree for all the frequency ranges. The M2 mode has a low
attenuation level and a suitable incidence angle for inspection
in 150 kHz to 200 kHz and 650 kHz to 800 kHz frequency
ranges. To generate this mode in 200 kHz frequency with
low attenuation level of —7.34 dBm™!, the transducer inci-
dence angle should be 32.4 degree. Simultaneously investi-
gating the attenuation values and the transducer incidence an-
gle, it can be seen that the M3 mode in 150 kHz to 675 kHz
frequency range, the M4 mode in 300 kHz to 725 kHz fre-
quency range, and the M5 mode in 875 kHz to 1.075 MHz
and 1.9 MHz to 3 MHz frequency ranges have low attenuation
level and suitable incidence angle for the generation of lamb
wave. The transducer incidence angle should be 30.6 degree
to generate the M3 mode in 500 kHz frequency and low atten-
uation level of —5.1 dBm™1, and 66 degree to generate the M5
mode in 3 MHz frequency and negligible attenuation level of
—0.27dBm™.

7. CONCLUSIONS

The obtained results of lamb wave theoretical modeling in
three-layer adhesive joint with a viscoelastic adhesive can be
used in inspections using ultrasonic guided waves in three-
layer structures. The results of the present paper can be sum-
marized as:

1. Some modes, such as the M1, M2, and M3, have an
acceptable attenuation level for inspection with guided
waves in low frequencies and some others, such as the
M5 mode, in high frequencies.

2. Investigating the wave structure curves it can be seen that
the interfacial continuity and boundary conditions is satis-
fied in adhesive joints. This result validates the numerical
solution results of characteristic equation.

3. The transducer incidence angle obtained from theoretical
modeling of lamb wave mode generation can be used to
inspect adhesive joints and generate lamb wave with low
attenuation level in joints.

4. To generate the M2 mode in 200 kHz frequency with low
attenuation level of —7.34 dBm™", the transducer inci-
dence angle should be 32.4 degree.
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