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Beam dynamics are often measured using accelerometers and in some cases laser based systems. Natural frequen-
cies, modes shapes, and deflections are then derived from these measurements. The work presented here describes
a method to directly measure the deflection curve of a vibrating beam using piezoelectric films. The sensor con-
sists of a constant shape PolyVinyliDene Fluoride (PVDF) film bonded to the surface of the beam and spanning
the entire beam length. Bands parallel to the width of the beam are etched on the film to create multiple separate
sections of the sensor on the lower electrode. The individual output charge of the sensor sections is shown to be
proportional to the slope of the beam lateral displacement curve at the location of the patch or section. The beam
surface lateral displacement curve is calculated from the slopes using the central difference method. The equation
of the sensor is derived along with errors analysis followed by numerical and multiphysics simulation. The results
show that the proposed sensor can be used to effectively measure the lateral vibration displacements of prismatic
beams with various boundary conditions. Furthermore, acceleration measurements on a clamped-clamped beam
are used to validate the sensor design. It is shown in the paper that the accuracy of the sensor is closely related to
the number of sensor sections and the target highest frequency. Thus, a relatively large number of measurement
channels may be needed depending on the required accuracy of the measurements and the highest frequency in the
excitation.

1. INTRODUCTION

Actuators and sensors play a central role in active vibration
control, acoustic emission monitoring, nondestructive testing,
structure health monitoring, and many other types of applica-
tions.1 In the last three decades or so, the design of the actu-
ators and sensors has been focused on piezo films,2 especially
on the use of PVDF, which is a piezoelectric polymer that can
be poled in thin films down to 9 micron.3 This makes them
suitable for sensor development because they add little loading
to the receiving structure and are easy to cut, shape, and etch.4

Many applications of PVDF based sensors can be found in
literature in active noise and vibration control,5 material char-
acterization,6 the medical field,7 etc. PVDF is usually in the
form of a film that is bonded to the structure.8 To cite but a
few, recent applications of PVDF as actuator involved a vi-
brating membrane used for fatigue test of thin films.9 Another
application uses PVDF laminate as an actuator to control the
vibration of a cylindrical shell.10 In these applications, mul-
tiple layers of film are used to increase the available actuating
force. However for sensing, the ideal situation is to use as min-
imum number of layers as possible so that the sensor does not
interfere with the structure’s dynamic properties. In general,
the film is very flexible compared to the structure to which it is
bonded. Therefore, the strain transferred to the structure is ex-
pected to be very small. The film is usually shaped11 to extract
the dynamic properties of interest. Researchers have measured
the volume velocity of beams and plates for active noise and
vibration cancellation12 using quadratic functions to shape the
sensor film while others have used a mixture of quadratic and
linear functions to shape sensors that measure localized vol-
ume velocity.13

The current paper presents the framework for the measure-
ment of the lateral displacements of a vibrating beam using
distributed sensor for various boundary conditions. Gener-
ally, well established point sensors such as accelerometers are
used to measure the dynamic properties of vibrating structures.

However for control systems, especially since the advent and
wide spread of active control and structural health monitoring,
researchers have been looking for more non-conventional sen-
sors (mainly distributed sensors). In the case of active vibra-
tion control, distributed sensors tend to provide better vibra-
tion properties of the controlled structure. Unlike point sen-
sors, distributed sensors can give simultaneous measurement
data for various locations on the structure and are less likely to
miss a vibration mode. For example, a point sensor on a rela-
tively long beam could provide a false reading of the state of
the beam if its location corresponds to a vibration node.14

One particular promising application that motivated the in-
vestigation of the proposed sensor is the monitoring of the
structural supports of signs, luminaires, and traffic signals.15

Various vibration mitigation devices have been proposed for
these structural supports with no clear solution on how to as-
sess their effectiveness. The sensor presented here could be an
affordable solution for evaluating and monitoring the effective-
ness of the vibration-mitigation16 devices of structural supports
of signs, luminaires, and traffic signals.

The proposed sensor can also be used in active vibration and
noise control or structural members health monitoring. The
sensor measures the slopes of the beam simultaneously at mul-
tiple locations on the beam to yield the instantaneous real time
vibration curves. Important beam mechanical entities such as
strains and stresses can be readily computed from the deflec-
tion curves making the proposed sensor an invaluable asset in
control and structural health monitoring. Dynamic properties
such as natural frequencies and mode shapes can also be cal-
culated from the instantaneous deflection curves.

Strain based dynamic point sensors have been around for
decades. These sensors use internal beams17 to relate the dy-
namic properties of the structure to the strain on the surface of
the beam. The strain at any point on the cantilever beam is pro-
portional to the deflection of the mass. Therefore, the displace-
ment of the base and the motion of the corresponding point on
the structure can be found. The sensor proposed here extends
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to the cantilever beam sensor concept with the strain sensor
(PVDF) directly attached to the structure. Multiple sections of
the sensor is used to measure the strain at multiple locations on
the beam and translate those strains into displacements along
the beam length. It is therefore obvious that the accuracy of
the measurement will depend on the numbers of sensor sec-
tions relative to the highest target frequency.18 The proposed
displacement sensor approach presented here is made possible
by the availability and cost of PVDF films, etching processes,
and single chip computers.

2. SENSOR DESIGN

2.1. Generic Piezoelectric Film Output
Charge Equations

A piezoelectric film bonded to a flexible shell continuum is
totally covering the surface of the structure. The film is much
thinner than the shell structure such that the strains in the film
are assumed constant and equal to the outer surface strains of
the shell. Also, the piezoelectric film is perfectly coupled with
the shell continuum but does not change its dynamic character-
istics i.e., natural frequencies and mode shapes. For such a thin
film, only the transverse electric field E3 is considered. Using
direct piezoelectric equations for linear piezoelectricity19 and
Fig. 1 the voltage across the electrodes can be written as shown
in Eq. (1):

φ3 = −
hf∫
E3dα3; (1)

where hf is the piezoelectric film layer thickness. From Fig. 1,
the above equation can be expressed in term of normal strains
in the film Sf

11 and Sf
22 in the direction of α1 and α2 respec-

tively, and the electric displacement vector D3.

φ3 = hf
(
h31S

f
11 + h32S

f
22 − β33D3

)
; (2)

where β33 and hij denote respectively the impermeability and
the strain charge coefficients of the piezoelectric film. The
above voltage can be integrated over the entire film surface
and yield the following equation:
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where u1, u2, and u3 are the shell displacements in the three
principal direction of α1, α2, and α3 respectively. rf1 and rf2
denote respectively the distances from the neutral surface to
the bottom and top plane of the piezoelectric film layer. S

Figure 1. Shell covered with PVDF film.

is the shell or film area. Finally, A1 and A2 are the Lamé
parameters20 from the fundamental equation:

(ds)
2

= A2
1(dα1)

2
+A2

2(dα2)
2
. (4)

Considering Eq. (3), Zou showed that the output of the piezo-
electric film can be calculated analytically for simple structures
such as beam and plates if u1, u2, and u3 are known. However,
for complex structures and boundary conditions, analytical so-
lution is impossible.

2.2. Plate Substrate
Equation (3) can be further simplified if the film is bonded

to a plate structure undergoing transverse motion and thus
R1 = R2 = ∞. The Lamé parameters are derived from
the fundamental equation (ds)

2
= (1)

2
(dx)

2
+ (1)

2
(dy)

2 and
therefore A1 = A2 = 1. Substituting these values into Eq. (3)
and setting z = u3 gives the piezoelectric film output charge
as:

φ = −h
f
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∂2z

∂x2
+ h32r

f
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]
dSf . (5)

2.3. Beam Substrate
If only one axis is considered, then the beam equation can be

obtained from Eq. (5) as shown below by removing h32 term
and setting dSf = bdx where b is the width of the beam.

φ = −bh
f

Sf

∫
x

(
h31r

f
x

∂2z

∂x2

)
dx. (6)

2.4. Sensor Equation
In the following, the beam substrate and Eq. (6) is consid-

ered. If multiple patches of film are used as shown in Fig. 2
with n segments of films, the ith patch output charge can be
written from Eq. (6) in the form of.21

φi = −bh
f
i

Sf
i

xi∫
xi−1

(
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f
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dx. (7)
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Figure 2. Beam covered with PVDF film and Beam deflection curve.

After integration, Eq. (7) yields the following equation:

φi = −bh
f
i

Sf
i

h31ir
f
xi

[
∂zi
∂x

]xi

xi−1

. (8)

If the slope of the beam deflection is assumed constant at the
location of the ith patch and set equal to ai, then Eq. (8) can
be written as:

φi = −bh
f
i

Sf
i

h31ir
f
xi
ai. (9)

It can be seen from Eq. (9) that the ith film patch output signal
is proportional to the slope of the displaced patch. Then the
slope ai can be written in term of the charge φi.

ai = − φiS
f
i

bhfi h31ir
f
xi

. (10)

Equation (9) represents the sensor general equation from
which the slope of the beam section at the location of the sen-
sor patch can be calculated using Eq. (10).

2.5. Beam Lateral Displacement Equation
The function z in Fig. 2 represents the deflection of the beam

that can be evaluated at points that lie to the left and right of
the center point x of the ith patch. Thus, the central-difference
formula for the slop of z at the center of the patch is

ai ∼=
z(x+ ∆x)− z(x−∆x)

2∆x
. (11)

Setting zi−1 = z(x − ∆x) = z(xi−1), zi = z(x + ∆x) =
z(xi), and 2∆x = xi − xi−1, Eq. (11) becomes:

zi ∼= ai(xi − xi−1) + zi−1. (12)

The combination of Eq. (10) and Eq. (12) can be further sim-
plified. For practical purposes, let’s assume that the piezoelec-
tric patches are of equal sizes and fabricated from the same
uniform thickness film such that:

xi−xi−1 =
`

n
, rfxi

=
hf + hb

2
∼=
hb
2
, h31i = h31. (13)

Table 1. Error analysis results for a simply supported bean .

δx zm (Eq. (17)) z (Exact) %E(zm − z) %E(Eq. (18))
`/4 0.508320369 0.587785252 13.52 11.38
`/10 0.298783216 0.309016994 3.31 3.18
`/15 0.204862754 0.207911690 1.47 1.44
`/20 0.155145721 0.156434465 0.82 0.82

Equation (12) becomes:

zi = −2
φi`

2

hfhbh31n2
+ zi−1. (14)

Equation (14) represents the general form of the beam lateral
displacement equation and is independent of the beam bound-
ary conditions. However, z0 must be known to apply these
equations. Therefore, the requirement on this method is that
the displacement of at least one end of the beam must be
known. For clamped and simply supported boundary condi-
tions, the vector {z} of zi represents an approximation of the
curve shown in Fig. 2. For any other boundary conditions, a
point sensor near the origin can be used to find z0.

2.6. Error Analysis
The beam deflection calculated from the sensor output is

based on the central difference equation Eq. (11). This equa-
tion is approximating the slope of the beam deflection curve at
the center of th eith patch. The exact slope can be written as:22

ai =
z(x+ ∆x)− z(x−∆x)

2∆x
+ Et(z,∆x); (15)

where Et(z,∆x) is the truncation error so using a point xc on
the curve between xi−1 and xi , the truncation error can be
written as:

Et(z,∆x) =
(∆x)

2
z′′′ (xc)

6
. (16)

For a known slope zi, the error on the deflection at x+ ∆x can
be derived as follows:

z(x+ ∆x) = 2∆xai + z(x−∆x)− 2∆xEt(z,∆x). (17)

So the total error in calculating z(x+ ∆x) is:

E =
∆x3z′′′(xc)

3
= O(∆x3). (18)

The truncation error is a third order error and therefore a func-
tional and accurate sensor can be designed using the design
equations presented above with a practical number of patches.
Table 1 shows the error calculation results for a simply sup-
ported beam of length `. It can be seen that the error is greatly
reduced with the increasing number of sensor patches. The
beam lateral displacements from Eq. (19) of the simulation
section is the excitation input for the sensor Eq. (7). z is also
used to calculate the error in Eq. (18) while the beam lateral
displacements zm from the sensor is calculated using Eq. (14).

3. NUMERICAL SIMULATION

3.1. Numerical Simulation Equations
The forced lateral vibration steady state response of a beam

can be formulated in a modal superposition form as shown in
Eq. (19) :

z(x) ∼=
m∑

k=1

Wkψk(x); (19)

International Journal of Acoustics and Vibration, Vol. 22, No. 1, 2017 113



M. Zahui, et al.: BEAM VIBRATION DISPLACEMENT CURVE MEASUREMENT

where k is the kth mode number, Wk is the modal participa-
tion factor, ψk is the kth mode shape, and m is the maximum
number of modes used in the approximation. The output of the
ith patch can be written by using Eqs. (7), (13), and (19) as:

φi ∼= −
nhfhbh31

2`

m∑
k=1

Wk

xi∫
xi−1

∂2ψk

∂x2
dx. (20)

To perform the numerical simulation, we will assume that the
beam is excited by a general force vector {f} of unity magni-
tude applied at a node and rewrite Eq. (19) in discretized form
as:23

{z} ∼=
m∑

k=1

{ψk} {ψk}T {f}
ω2
k − ω2 + jηkω2

k

; (21)

where ω is the excitation frequency, ηk is the structural damp-
ing factor of the kth mode, ωk the kth natural frequency, and
j2 = −1. It can be shown that

Wk
∼=

{ψk} {ψk}T

ω2
k − ω2 + jηkω2

k

. (22)

Equation 21 is used to calculate the response of the beam and
the mode participation factor Wk to a unit input force. The
output charge of each patch is then calculated using modal
coordinates Wk in Eq. (20). These output charges are then
used in Eq. (10) to calculate the slopes ai at the center of each
patch before calculating the bean deflection using the central-
difference equation (Eq. (12)). The deflection calculated from
the sensor output charge and referred to as “Measured” is com-
pared to the deflection calculated from the mode superposition
equation and referred to as “Actual.” The results of the numer-
ical simulation are discussed in the next section.

3.2. Numerical Simulation Results
The numerical simulation was performed for a simply sup-

ported, clamped-clamped, and cantilever beam. Low fre-
quency (less than 1.5 kHz) excitation was applied to the beams
using the data of Table 2. The admittance of each beam was
calculated from Eq. (21), which we will refer to as an actual
response, and plotted against the admittance calculated from
the sensor output using Eq. (14), which we will refer to as a
measured response. The admittance data was further process
to extract the response of the beams at resonance for the first
and second modes. These two modes were selected arbitrary
for brevity. The results are shown in Figs. 3 to 8 for the three
types of boundary conditions considered. Figures 3, 5, and 7
are presented to show the response of the sensor at a point over
a broadband of frequency from 0-1000 Hz. For each boundary
condition, the sensor accurately measures the vibration ampli-
tude capturing all the resonance frequencies within the excita-
tion signal. Additionally, the sensor correctly matches the re-
sponse phase over the same frequency of interest. Phase is crit-
ical in sensor development because for an error sensor to be ef-
fective in applications such as active vibration or noise control,
the accurate representation of the phase is crucial. The results
presented in Figs. 4, 6, and 8 are showing the beam displace-
ment curves at the first and second modes. Once again, as pre-
dicted by the admittance results, the lateral displacements of
the beam predicted from the sensor match the actual displace-
ments of the beam. It is clear that the sensors correctly “mea-
sured” the lateral deflections of the beams over a broadband

Table 2. Simulation data.

Aluminum Beam PVDF
` = 0.2 (m) hf = 50× 10−6 (m)
b = 0.025 (m) h31 = 0.4× 109 (V/m/m/m)
hb = 0.001 (m) ρ = 1789 (kg/m3)
ρ = 2770 (kg/m3) E = 8.4× 109 (N/m2)

E = 8.4×109 (N/m2) ν = 0.18
η = 0.002 —

Figure 3. Beam (S-S) admittance numerical simulation (Continuous= Actual;
Dot=Sensor).

frequency. However, the measurements accuracy decreases at
higher frequency, which can be explained with the error inher-
ent to the central difference approximation and the approxima-
tion of the actual deflection with mode superposition as related
to the number of modes included in the computation.

4. MULTIPHYSIC SIMULATION

4.1. Multiphysic Modelling
Multiphysics or coupled physics analysis is a powerful ap-

proach that is becoming easier and more accessible due to
progress in desktop computing. A multiphysic analysis is a
combination of analyses from different disciplines that inter-
act to solve a global problem. It can be used to model and an-
alyze complex system simulations such as active noise control
systems, MEMS simulation, etc. The coupling between the
fields can be accomplished by either matrix coupling or load
vector coupling. Load transfer can take place across surfaces
or volumes depending on the application. Coupling across the
fields can be complicated because different fields will be run-
ning different type of analyses during the simulation. In this
work, both matrix coupling or direct methods and load vector
coupling or sequential methods were used. In the sequential
process, the beam structural vibration was solved first and then
the results passed to the piezoeltric module. The piezoelectric
analysis then proceeds using the direct method whereby the
solution is obtained with a coupled element formulation. That
is, the type of element used has both structural and electrical
degrees of freedom.

The structural and piezoelectric coupled field analysis were
used in this paper to assess the performance of the beam lateral
vibration displacement curve sensor. We modeled the beam
based on the data used in the numerical analysis and shown
in Table 2. The theoretical mode shapes and natural frequen-
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Figure 4. Beam (S-S) first and second mode response (Continuous= Actual;
Dot=Sensor).

Figure 5. Beam (C-C) admittance numerical simulation (Continuous= Actual;
Dot=Sensor).

Figure 6. Beam (C-C) first and second mode response (Continuous= Actual;
Dot=Sensor).

Figure 7. Beam (C-F) admittance numerical simulation (Continuous= Actual;
Dot=Sensor).
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Figure 8. Beam (C-F) first and second mode response (Continuous= Actual;
Dot=Sensor).

cies were matched through mesh convergence analysis with
the respective structural boundary conditions for the simply
supported, clamped-clamped, and cantilever beams. The film
patches were then attached on top of the beam ensuring proper
mesh coupling and continuity. The proper electrical and struc-
tural boundary conditions were applied to the piezoelectric el-
ements. Because solid elements were used, simply supported
boundary conditions were achieved using cylindrical supports.
Figure 9 shows that cylindrical tabs were added to the ends of
the beam. The tabs were constrained with fixed radial and axial
displacements while the tangential displacement was free. Fre-
quency response or harmonic analysis were carried out. The
results were further processed to extract the deflection of the
beams for the two first natural frequencies of each beam. These
results are discussed in the next section.

4.2. Multiphysic Simulation Results
Table 3 shows the natural frequencies of the beams used

in the simulation comparing the theoretical and finite element
models. The theoretical values in this table are obtained using
the data from Table 2 and a beam natural frequency table.17
The finite element model analysis was carried out to assess the
true performance of the sensors. Unlike in the numerical simu-
lation, the structure was allowed to have 3D motion to ascertain

Figure 9. Beam with cylindrical tabs to simulate simply supported BC.

Table 3. The theoretical and finite element beam’s natural frequencies.

Theoretical Natural Finite Element
Mode Frequencies (Hz) Natural Frequencies (Hz)

Number S-S C-C C-F S-S C-C C-F
1 57.4 130.1 20.4 57.5 130 20.5
2 229.6 358.6 128.1 229.7 358.3 128.3
3 516.5 703.1 358.8 516.0 702.2 359.2
4 918.5 1162.2 703.1 917.6 1160.3 703.7
5 1434.8 1736.1 1162.2 1425.5 1732.4 1162.8

whether or not the in plane transverse strains will greatly affect
the results. In the numerical simulation, the Euler-Bernoulli
beam theory was used while in the Multiphysics simulation,
the output of the 3D deformation of the film was allowed. The
resulting output voltages φi were used to calculate the “Mea-
sured” deflection of the beam with Eq. (14). The results shown
in Figs. 10 to 15 indicate that the sensor can be used to ac-
curately measure the deflection curve of the beams. The con-
clusions of the numerical simulation results can be extended
to the results shown in Figs. 10 to 15. As seen in the numeri-
cal simulation, once again, the sensor is less accurate at higher
frequencies. Hence, it is clear that the accuracy of the measure-
ment is directly related to the number of patches as discussed
in the error analysis section.

5. EXPERIMENTAL VERIFICATION

The sensor design theory presented and simulated above is
further verified using the experimental setup shown in Fig. 16.
The 482.4 mm long, 25.4 mm wide, and 3.2 mm thick alu-
minum beam is clamped at both ends and excited by a Lab-
works ET-126 shaker. The sensor is fabricated out of 28 µm
thick copper-nickel metallized PVDF film. The fabrication
process is displayed in Fig. 17. A template is cut out of a
self-adhesive vinyl sheet by a printer-cutter as displayed in
Fig. 17a. The template is laid on top of the film in Fig. 17b
before an etching ink is sprayed onto the vinyl and the film.
The vinyl is removed and etching chemical is applied to the
film to etch away the metalized surface of the film not covered
by the ink to reveal 19 segments of PVDF patches and electric
connection tabs shown in Fig. 17b. Using a multi-meter, the
continuity between the patches is checked to ensure that the
19 patches are electrically isolated from each other. Then, the
sensor is bonded to the beam with a double sided tape and the
tabs connected to the data acquisition unit with alligator clips
and BNC connectors.

The beam is then excited with a unity force over broadband
of frequencies from 0-800Hz. The beam Frequency Response
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Figure 10. Beam (S-S) admittance multiphysic simulation (Continuous= Ac-
tual; Dot=Sensor).

Figure 11. Beam (S-S) first and second mode response (Continuous= Actual;
Dot=Sensor).

Figure 12. Beam (C-C) admittance multiphysic simulation (Continuous= Ac-
tual; Dot=Sensor).

Figure 13. Beam (C-C) first and second mode response (Continuous= Actual;
Dot=Sensor).
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Figure 14. Beam (C-F) admittance multiphysic simulation (Continuous= Ac-
tual; Dot=Sensor).

Figure 15. Beam (C-F) first and second mode response (Continuous= Actual;
Dot=Sensor).

Figure 16. Experimental setup.

Figure 17. Sensor fabrication.

Functions (FRF) are measured using a PCB 208C02 force
gage as input and the sensor and a PCB 355B03 accelerom-
eter as output. Nineteen FRFs using the sensor 19 patches are
recorded and later processed using Eq. (14) to calculate the
admittances of the beam from each patch. Next, a single ac-
celerometer is used to measure the accelerance of the beam at
the boundaries and at the center of the 19 segments defined
by the sensor patches along the length of the beam. Then, as-
suming the motion to be harmonic at each frequency, the beam
admittances are calculated at each measurement point by di-
viding the accelerance measurements by −ω2

i where i is the
ith frequency within the excitation band.

Figure 18 shows a comparison of the beam admittance at the
center of an arbitrarily selected patch using the accelerometer
measurements and using the PVDF sensor. The PVDF sensor
measures the beam displacement accurately below 500 Hz and
captures the first three modes of the beam. The sensor magni-
tude and phase accuracy, however, decreases beyond 500 Hz.
There are three possible reasons could explain this degradation
of the accuracy. The first cause could be the misplacement of
the sensor on the beam. A shift along the length of the beam
can result in both phase and magnitude errors. The second
cause could be the limited number of sensor patches used as
related to truncation errors. And the third cause could be from
some imperfections in the fabrication of the sensor due to the
smear of the etching chemical into the dye which will reduce
the sensing surface of the patch.

The displacement curves of the beam is also calculated from
the acceleration and PVDF measurements and shown in Fig. 19
for the first and second modes of the beam. It can be seen that
the sensor accurately measures the vibrating beam displace-
ment curves as expected from the plots of FRF in Fig. 18.
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Figure 18. Admittance of experimental results (Continuous= Accelerometer; Dot=Sensor).

Figure 19. Beam first and second mode response (Continuous= Accelerometer; Dot=Sensor).
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6. CONCLUSIONS

Equations of a beam lateral vibration displacement sensor
were derived using well established one dimensional PVDF
output charge equations. Bands of the piezoelectric film across
the width of the beam output voltages proportional to the slops
of the beam deflection curve at their respective location. These
slopes were use in a central-difference equation to compute
the vibration deflection curve of the beam. Truncation errors
associated with the central-difference process were estimated
to assert the accuracy of the sensor. The analysis resulted in a
third order error term that was confirmed numerically using a
simply supported beam.

The proposed sensor was verified through numerical and fi-
nite element multiphysics simulation. The numerical simula-
tion used mode superposition and discretized models to com-
pute the forced vibration responses of the beam over a broad
band frequency. These deflection curves were compared to the
deflection curves calculated using the charges from the film
patches. Next a full 3D coupled physics simulation was car-
ried out and the results used to confirm the performance of the
sensor.

Furthermore, a clamped-clamped beam experimental setup
was used to verify the performance of the sensor. Chemical
etching process was used to fabricate the sensor and measure-
ments were carried out using the sensor and an accelerometer.
The results indicate that the 19 patches of film over 482 mm
long beam accurately measured the beam lateral displacement
curve up to the beam third mode.

Therefore, the work presented here proves that PVDF film
can be effectively used to measure the vibration displacement
curve of beams with various boundary conditions and particu-
larly for beam with clamped-clamped boundary conditions.
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