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A novel model using the transfer matrix method for multibody system (TMMMS) is put forward to describe the
dynamic characteristics of a cantilever beam that has a concentrated mass at its tip under axial excitations. The
theoretical analysis and numerical results demonstrate that this model has some advantages, such as for a small
matrix and a higher computational speed. Based on this model a control system, which is composed of a LQG
controller, a piezoelectric actuator, and a sensor for the cantilever beam is proposed, theoretically analyzed, and
experimentally verified. The experimental results show that the proposed controller with the piezoelectric actuator
can effectively reduce the vibration of the cantilever beam with an eccentric tip mass. The piezoelectric sensor can
measure vibration responses with high-accuracy. Therefore, this new model gives a broad range of possibilities for

model-based controller design and implementation.

1. INTRODUCTION

A cantilever beam with an eccentric tip mass is a familiar
dynamic model for mechanical systems. For instance, it may
be used to investigate flexible robot arms,! mast antenna struc-
tures,’"? wind tunnel stings carrying an airplane,® and Stock-
bridge dampers used for damping out aeolian vibrations on
high-voltage transmission lines.* Therefore, it is critical to an-
alyze its vibration characteristics and to design an active vi-
bration controller.” The mechanical vibrations of cantilever
beams have attracted plenty of attention from researchers over
the past several years. The majority of the literature has fo-
cused on deriving and solving the exact frequency equation for
the particular case of a concentrated mass and/or moment of
inertia at the tip.°

However, some problems still exist; the first problem of me-
chanical vibrations on a cantilever beam with a tip mass con-
tinues to attract the attention of the research community due to
a wide range of practical situations for which such a mechani-
cal system is a reasonable idealization. The second problem is
that it is difficult to design a proper vibration controller based
on those previous works due to the large size of the matrix of
the dynamic equations.’

With the developments in sensor/actuator technologies,
many researchers have concentrated on vibration control us-
ing smart materials such as shape memory alloys (SMAs), and
piezoelectric transducers. Piezoelectric materials have been
applied in structural vibration control as well as in structural
acoustics because of their fast response, large force output, and
because they generate no magnetic field in the conversion of
electrical energy into mechanical motion.?~!? Positive position
feedback (PPF) was devised by Goh and Caughey'? and has
several distinguished advantages.'* It has proven to be a solid
vibration control strategy for flexible systems with smart ma-
terials, particularly with the piezoelectric actuator.'*!” PPF is
essentially a second-order filter that is used to apply high fre-
quency gain stabilization by improving the frequency rolloff
of the system.'® Alternatively, PPF works by using a second-

order system which is forced by the position response of the
structure. This response is then fed back to give the force input
to the structure. To apply PPF, the natural frequencies of the
structure should be known. The effectiveness of PPF will de-
teriorate if the natural frequencies are not well known or have
changed for some reason, such as the presence of a tip mass.

As such, in order to reduce the size of matrix of the dy-
namic equations, we introduce TMMMS to describe the dy-
namic characteristics of the system and design a LQG control
system, which is composed of a LQG controller, a piezoelec-
tric actuator, and a sensor.

TMMMS is a new method of multibody system dynamics
(MSD) developed by Rui and his co-workers.!>2° The high-
lights of this method are as follows: study MSD without global
dynamics equations of the system, keep a low order of the sys-
tem matrix, and avoid the difficulties in computation caused
by high-order matrices. Nowadays, TMMMS has been widely
applied to various engineering cases such as for such features
without the global dynamics equations of a system, low order
of involved system matrix, fast computational speed, and high
automation in programming.

2. DYNAMIC MODELING

A sketch of a uniform cantilever beam carrying a rigidly
mounted mass is shown in Fig. 1, which is consist of a rigid
body (1) and a beam (2). The mass and inertia relative to the
centroid of the rigid body are m and J., respectively. The beam
is an Euler-Bernoulli beam, which has a flexural rigidity, linear
density, and length are E'1, m, and L, respectively.

2.1. State Vectors

The state vectors of the connection point among any bodies
and hinges vibrating are defined as:

Zg,; = [yaezamzaqy}T; (])

Zi;=1[Y,0.,M.,Q,]"; 2)
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Figure 1. A sketch of the mechanical system being investigated; includes a
cantilever beam with an eccentric tip mass.

where Y is the corresponding modal coordinate of the physics
coordinate of displacement y relative to the equilibrium posi-
tion in inertial coordinate system, ©, is corresponding modal
coordinate of physics coordinate of angular displacement rela-
tive to the equilibrium position €, M, is corresponding modal
coordinate of physics coordinate of internal torque m, of the
system, @, is corresponding modal coordinate of physical co-
ordinate of internal force g, the system, and the subscript k is
the body indices and j is the hinge indices.

For the natural vibrations of a linear multibody system, the
physics coordinates of displacement and interior force can be
assumed to be:

zkj = Lo 3)

where w is the eigenfrequency of the system.

2.2. Transfer Equations and Transfer
Matrices

Based on the EulerBernoulli beam theory, the transfer equa-
tions of elements can be given by:

Z,o=UZ3; 4)
aZi o =UsZy . )

The transfer matrices can be written as:

U, =
1 ao 0 0
0 1 0 0 |
mwiao—ac) —wiJi—m(bobc+acac)] 1 ao |’
mw? mw?ac 0 1
(6)
Us(zz) =
T( Az Uz V(Ax
o I g g
AV (Az) S(Az) ETX EIXZ - (T)
EINU\z) EINV(z)  SOz) T2
EINT(\z) EINU(x) AV( ) S(x)

where (ac,bc) and (ap,bo) are the coordinates of the cen-
troid of the rigid body and the output point in the connect-
ing body coordinate system, respectively, Jp is the inertia of

the rigid body relative to the input point, A = {/mw? / FEI,

S(z) = (cosha +cosx)/2, T(x) = (sinhz+sinx)/2,
U(x) = (coshx — cosz)/2, and V(x) = (sinhx — sinz)/2.

Table 1. Parameters of the system.

.. mass m1 = 7.8 kg
Rigid body (1) inertia Jo = 0.013 kgm?
flexural rigidity EI =244 N-m?
Beam (2) length L=05m
linear density m = 0.94 kg/m

The overall system transfer equation and overall transfer
matrix can be assembled and calculated as:

UanZan = 0; ¥

T
where Uall = [ 714 UlUQ ]’Zall = [ Z’II‘U Z;F’O } .
The boundary conditions are:

Zl,O = [Yv 627 Oa 0]}:0

9
Zs0 = 0,0, Mz, Qy L. ©

When Eq. (9) is substituted into Eq. (8), we get:
UanZan = 0; (10

where U,y is a fourth-order square composed of the 1, 2, 7,
and 8 columns of Uay, Zay = [Y,0., M,,Q,|". Therefore,
the eigenfrequency equation can be expressed as:

det Uay = 0. (11)

When the eigenfrequency equation was solved, we got the
eigenfrequencies wy (k = 1,2,3,---). Using the transfer
equations given by Egs. (4) to (8) for each wy, the state vec-
tor of any point and eigenvectors of the system was obtained
easily.

A set of numerical simulations with the parameters listed in
Tab. 2.2 were carried out to assess the effects of some meth-
ods on calculating the natural frequencies of the system. Ta-
ble 2.2 lists the first six natural frequencies versus different
methods, which indicates that the computational results ob-
tained by the TMMMS and the Newton-Euler method?' are
in agreement and the TMMMS can improve the computational
accuracy than the finite element method.

2.3. Dynamics Responses

2.3.1. Equations of Motion

The concept of the augmented eigenvector of the system is
introduced and defined as:

v
V2

]T

(12)

» V2 = [ya(2)].

Consider a control moment M. (z,t) and a disturbance
force F; action on the beam. By using TMMMS, the equa-
tions of motion can be obtained as the following forms:

where vi = [y1,2,0.12

Mivy g+ Civiy + Kyve =05 (13)

0
Movsy 44 + Covay +Kove = 64 1, Fa + ({TZMC (x,t); (14)
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Table 2. First six eigenfrequencies of the system [rad/s].

Modal 1 2 3 4 5 6
TMMMS 23.50 | 403.85 | 1554.59 | 4033.86 | 7826.06 | 12896.02
FEM 23.50 | 403.85 | 1554.72 | 4036.41 | 7844.60 | 12976.42
Newton-Euler method | 23.50 | 403.85 | 1554.59 | 4033.86 | 7826.06 | 12896.02

where
[ m omac ],
M, = | mac  Ji ’
Kl — [ _D3 ‘O’l 0 .
I aoD? |01 D'i1 —D'o1 |’
C, = [ —d® |11 +d3 o 0 } ,
| aod® |01 dt i —dtoq |’
M, = [m] ;
84
K, = |EI—|;
? 3:34} ’
C, = [U]%
o 1 :L':Ld .
Oa,La = { 0 else ' a5

v+ and v; ; are two order derivative and one order derivative
of v; with respect to time ¢, D3, D!, d3, and d' are differential
operators which are defined as following:

D% |a1 Y12 = qa1;
Dl |a1 9z1,2 = Mazl;

3 d .
d |a1 Yi12,;t = 4q15
= M4

d' a1 021,00 el (16)

a = I denotes the input point, o = O is the output point.
According to Egs. (14) and (15), the equations of motion of
the overall system can be written as:

Mvy + Cvi + Kv =E 1 Fy + Es M, (z,1); 17
where
M — M; 02><1 } :
K — O2><1 } :
1x2

0 61 ,La }T7

o
{o
[0
[0

21 (18)

2.3.2. Augmented Eigenvector and Eigenvector Or-
thogonality

The concept of the augmented eigenvector of the system is
introduced and is defined as:
|

VAR {
where Vi = [V}, 0% 2]T The k denotes the order of
modal. Defining the inner product of V* and V7 is:

Vi

vk (19)

(VE, V) = Y, YE, + 0, ,07, , + / Y (2) Y7 (2) da

(20)

The augmented eigenvector consisted of the displacement
and angular displacement of joint points. The differences be-
tween augmented eigenvector and eigenvector were that the
augmented eigenvector contains the displacement, angular dis-
placement, discrete variables and continuous variables. How-
ever, the eigenvector only contained one of the displacements
and the angular displacement, or contained only one of the dis-
crete variables and the continuous variables. The numbers of
variables in the augmented eigenvector equaled the number
of dynamics equations of the bodies. The augmented eigen-
vector of the system corresponding to the eigenfrequencies
wi (k= 1,2,3,--+) of the system was obtained according
to the state vectors of every joint point got by solving every
transfer equation of these points.

It can thus be proven that the augmented eigenvectors have
the characteristics as follows:%’

<MV’2V”) = 5k,pMk; <KVk,Vp> = (Sk’pKk ; (21)

where Mj, represents the k-order modal mass of the system
and K, = w,%M . denotes the modal stiffness.
2.3.3. Formulas of Dynamic Responses

Let

m

V=Y V¥,

k=1

(22)

where ¢ (t) is the generalized coordinate of the j-order modal.
Due to the existence of a flexible body, the order of the system
modal is m = oo. We obtained a good approximation of the
dynamic responses by using the cutoff modal method. By sub-
stituting Eq. (22) into Eq. (16), the dynamic response of the

system can be expressed as:
m m

S OMVEGE () + > CVRFE) + Y KVEE(t) =

k=1 k=1 k=1

Ele + EQMC (!E,t) .

m

(23)

The inner product in both sides of Eq. (21) with
VP (p=1,2,---,m), respectively was then taken. Using the
orthogonality expressed by Eq. (19), we then generalized co-
ordinate equations of the system and obtained:
> pe1 (CVP V)

q"() + G

(1) + wid(t) =
<E1, V’“>Fd (EQMc (m, t) ,V’f>
MF * MF '

Especially, for proportional damping, the generalized coordi-
nate equation was written as:

(24)

" (t) + 2Cwrd" (t) + wigd®(t) =

ViFy(t)+F.(t) (k=1,2,---,m); (25)

where (j, represented the k-order modal damping ratio of the

system, b* = (B, V*) /M, F. (t) = W
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Figure 2. The computational results of the displacement of the right end of
the beam.
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Figure 3. A sketch of the control system.

Suppose that the system suffered a force at the right end of
the beam element at time instant zero while the initial displace-
ment and velocity of the whole system was zero. The compu-
tational results obtained by the proposed method (m = 2) is
shown in Fig. 2. In comparison, the Newton-Euler method
was also implemented to solve the dynamic response. It can be
seen from Fig. 2 where the computational results obtained by
the above two methods are in agreement.

3. CONTROL SYSTEM DESIGN

For the purpose of designing a smart structure that responds
to the environmental changes intelligently and suppresses the
vibration of the system actively, an integrated control system
that includes a controller, sensors, and actuators is required.
However, the efficiency of the designed controller strongly de-
pends on the position of sensors and actuators as well as their
shapes and sizes. Placing the smart elements in their optimal
locations can improve the controllability and observability of
controller and also can reduce the required efforts to get the
designed goals.'?

In this paper, a LQG feedback controller was designed to at-
tain the most reduction in structural responses along with the
optimum controlling efforts, a piezoelectric actuator as used
to supply the control force, and a piezoelectric sensor as em-
ployed to response the vibration of the system. A sketch of the
control system is shown in Fig. 3.

3.1. Piezoelectric Actuator

We neglect the influence of a piezoelectric actuator and sen-
sor on the beam due to the added lightweight material. There-
fore, the induced bending moment in the piezoelectric actuator

can be express in the following form: '3

M, (x,t) =

& Byt (b 1) U (00 (2 = 2) — h (2 = 2)] ;- 26)

where d3; is referred to as the piezoelectric “strain” constant,
E, is the equivalent piezoelectric stiffness, U, (¢) is the control
1 z>ux;
0 rz<uz; ’

By substituting Eq. (26) into Eq. (25), the generalized coor-
dinate equation can be rewritten as:

voltage, and h (x — z;) =

" (t) + 2Cwrd" (t) + wid® (1)

ViFy(t)+b5U: (t)  (k=1,2,---,m); (27)
where bgz%Epd?)l (ha + hp) <E2[h(x_ml)z\71}zi(m_x2)]’\,k>-
Let
k { qk } (28)
X = . .
i+

By substituting Eq. (28) into Eq. (26), the state equation of the
system can be given by:

%X =Ax+ BU. + GFy; 29)
where
%! B! Gl
X = xF ,B= B ,G = GF
x™ B™ G™
A:diaug(A1 S AF A™ );
0 1 0 0

kE_ Rk — .k —

S e e P e P

3.2. Piezoelectric sensor

For a piezoelectric sensor, we have:'?

_ thpdgl 82y2 (I, t)
2 Ox?

Ds (z,t) [h(x—x3) —h(x—24)];

(30)
where Ds is the electric displacement of the piezoelectric sen-
sor. Therefore, the output of the sensor can be given by:

L
y@=%wmuﬁm=

thpdgl’LU /L 82y2 (x, t)
2 0 81‘2

[h(z—2x3) — h(z — 24)]dz;

International Journal of Acoustics and Vibration, Vol. 22, No. 1, 2017
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where w is the width of the sensor.
Eq. (31) can be rewritten as:
ty B, d
y(t) = T a,v); (32)
where a = [ 0 0 66—;
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Figure 4. Structure of the LQG controller.

By substituting Eq. (22) to Eq. (32), the system output can
be expressed by:

th d31w i
(33)

k=1

Equation (33) can be rewritten as:
y = Cx; (34)

where C = [ ¢! ¢?

E,d
ty p2 31W <a’ Vk>

c™ ],ck: [ck 0},0’C =
. Therefore, the control equation can be ex-
pressed by:

(35)

%X =Ax+BU.+ GFy
y = Cx

3.3. LQG Controller

The LQG controller, which is shown in Fig. 4, is a combi-
nation of the linear quadratic regulator and the Kalman filter.
The controller design using the linear quadratic regulator is
discussed in this section. Due to various uncertainties, the sys-
tem dynamics is not constant. The LQG control is an excellent
robust control system design methodology. Let the system to
be controlled be written in state-space form given below:

X =Ax+BU, + GF;

S Cxtn : (36)

where 7 is the measurement noise and process noise, both Fy
and 7 are the zero mean Gaussian white noise and is mutually
unrelated.

The linear quadratic optimal control problem is to find the
input U, (¢) to the plant such that a scalar quadratic cost func-
tion:

J=E [/OO (x"Qx + RU?) dt|; (37)
0

where Q is a symmetric positive semi-definite matrix, and R
is a positive constant.

(a) The disturbance force.
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Figure 5. The disturbance force and measurement noise.

The structure of the LQG controller is shown in Fig. 4. The

Kalman state observer can be expressed by:
% =A% +BU. + K. (y — Cx); (38)

where K, is the gain matrix of the state observer.
The state equation of the control system can be given by:

%= (A - BK, KC)X—i—Key

U.=-K.Xx (39)
where K, and K, can be satisfied the Riccati equations:
1
AS. +S.AT — R—secTcse +Q; =
1
1
and K.= —S.CT; (40)
Ry
1
S.A+ATS, — R—SCBBTSC +Q; =
2
d K.= —BTS 41
an R (41)

Apply a disturbance force, as seen in Fig. 5a, to the system.
The measurement noise, which is shown in Fig. 5b, has been
considered as with zero mean. The estimated value X and the
actual value x are plotted in Fig. 6, which indicates the Kalman
observer can effectively estimate the state vector.
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Figure 6. Results of the Kalman observer.

4. EXPERIMENTAL VERIFICATION

4.1. Experimental Setup

In order to experimentally validate the proposed LQG con-
troller, the experimental setup is shown in Fig. 7. It can be seen
from Fig. 7 that the experimental setup is composed of the con-
trolled object (the cantilever beam with an eccentric tip mass),
piezoelectric sensor, actuator (PZT-5H), charge amplifier (type
5018, Kistler corporation), piezoelectric power amplifier (type
XE-503, Harbin Core Tomorrow corporation), vibration ex-
citer (type: JZK-50, maximum output force: 500 N, power am-
plifier: YE5874A, Sinocera corporation), Function generator
(type: 33220A, Agilent corporation), real-time simulation sys-
tem (dSPACE DS1006 with MATLAB/Simulink), 16 bit A/D
(type: DS2004), 16 bit D/A (type: DS2103), and laser Doppler
vibrometer (LDV, type: PVS-505/0FV-5000, Polytec corpo-
ration). When conducting experiments, the controlled object,
that has an output that is monitored by the piezoelectric sensor
and sent to the charge amplifier, is driven by the piezoelectric
power amplifier. The voltage applied to the power amplifier
and the output from the charge amplifier are acquired to the
host computer by the real-time simulation system. The distur-
bance force is generated by the vibration exciter. The LDV is

Power amplifier
(XE-503)

Controlled object

Vibratiof exciter

Charge amplifier
(Kistler 5018)

Function generator

i Power amplifier
(Agilent 33220A)

laser Doppler vibrometer (YES874A)
(PVS-505/0FV-5000)

Figure 7. The experimental setup.

used to measure the output displacement of the P point shown
in Fig. 1 to validate the piezoelectric sensor.

4.2. Experimental results

4.2.1. System Parameters

The parameters of the piezoelectric sensor and actuator are
listed in Tab. 4.2.1. Other parameters of the controlled object
are given in Tab. 2.2. The parameters of the controller are listed
in Tab. 4.
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Table 3. Parameters of the piezoelectric sensor and actuator (PZT-5H).

dz1 = =320 x 10712m/V | E, =6.2x 10!°Pa | z; =0.1m
x9 = 0.155m 3 = 0.12m x4 = 0.13m
hq = 0.005m hs = 0.005m hy = 0.05m
w = 0.005m Ly = 0.04m

Table 4. Parameters of the LQG controller.

Ke = [33x107 1.9x 1010 4.2x 107 2.4 x 1011]"
K. =[3.7102 0.1087 0.1969 0.0034]

(a) Output displacement.
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(b) Controlled output measured by different sensors.
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Figure 8. Controlled and uncontrolled output displacements of the P-point
under a zero mean Gaussian white noise excitation.

4.2.2. Control results and analysis

Under a zero mean Gaussian white noise excitation, an im-
pulse excitation, and a 100 Hz sinusoidal excitation, the con-
trolled and uncontrolled results are shown in Figs. 8 to 10, re-
spectively, which indicate that the LGQ controller can effec-
tively control the vibration responses of the controlled system
under an arbitrary excitation and the piezoelectric sensor can
measure vibration responses with high-accuracy.

It can be seen from Figs. 8 to 10, the maximum output dis-
placement with the control are reduced to 83.3% and 62.5%
relative to without control under the white noise excitation and
the sinusoidal excitation, respectively. The reason is that when
designing the LGQ controller, we considered the disturbance
force to have a zero mean Gaussian white noise excitation.

According to Figs. 8 to 10, the quantitative measurement
errors under different excitations are listed in Tab. 5. From
Tab. 5, the maximum relative error is 1.22%, which may re-
sult from the nonlinearity of the piezoelectric sensor and the
modeling error.
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g 1 — - — - Without control ||
£ S
o . =
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(b) output measured by different sensors.

6 T T T T

— Piezoelectric sensor
- —- LDV

ol n il bl bbb "
L L b e v b

P piont output dispalcement[m]
N
.

'
N

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time [s]

Figure 9. Controlled and uncontrolled output displacements of the P-point
under an impulse excitation.

Table 5. Quantitative measurement errors.

Excitation | Measurement error

white noise 1.22%
impulse 1.01%

sinusoidal 1.02%

5. CONCLUSIONS

In order to control of the vibration responses of a cantilever
beam carrying a concentrated mass, a novel model was first put
forward to describe dynamics characteristics of using the trans-
fer matrix TMMMS. Based on this proposed model, a LQG
controller for that system was then established and theoreti-
cally analyzed. Finally, the experimental results showed that
the proposed controller can effectively reduce the vibration of
the cantilever beam with an eccentric tip mass. Therefore, this
new model gave a broad range of possibilities for model-based
controller design and implementation.

Future work can be performed in the direction of using the
proposed method in some mechanical systems. For instance,
wind tunnel stings carrying an airplane. Considering using and
optimizing multiple actuators and sensors may also be a good
idea.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the financial support
by National Natural Science Foundation of China (Grant
No0.61304137), the Fundamental Research Funds for the Cen-
tral Universities (Grant No. 30915011326), the Scientific
Research Foundation of Nanjing University of Posts and
Telecommunications (Grant No. NY213111), the Key Univer-
sity Science Research Project of Jiangsu Province (Grant No.
15KJB130005), and the Basic Scientific Research of National
Defense (JCKY201606C001).

90

International Journal of Acoustics and Vibration, Vol. 22, No. 1, 2017



H. Yang: VIBRATION CONTROL FOR A CANTILEVER BEAM WITH AN ECCENTRIC TIP MASS USING A PIEZOELECTRIC ACTUATOR AND...

x10°
— 4 T T T T T T
§. Piezoelectric sensor
S - — LDV
£ 2 | | T T |
g f
| |
20 ! ‘
§ H { | I |
S
o
o4 . . . . . . . . .

0 0.1 02 03 04 05 06 07 08 09 1

Time [s]

(@)
x10°
s 6 T T T T T
= — With control
S 4h ; P RNTRS ——  Without control |
E | Lot IR T T
8 2f ity ' it L s A I R T IR P e i
2 ! ‘
= 7 !
£ il T R it HEHENRIHIIG
I ST I S T i BRI !
,E 4 '_y“ 1 [ 4
o \
o L L L L L ! L L !
6
0 01 02 03 04 05 06 07 08 09 1
Time [s]

(b) output measured by different sensors.
5

Figure 10. Controlled and uncontrolled output displacements of the P-point

un

der a 100 Hz sinusoidal excitation.

REFERENCES

1

S|

Yaman M. A domain decomposition method for solving
a cantilever beam of varying orientation with tip mass, J.
Comput. Nonlinear Dyn., 2 (1), 52-58, (2007).

To C. W. S. Vibration of a cantilever beam with a base
excitation and tip mass, J. Sound Vib., 83 (4), 445-460,
(1982).

Rama Bhat B., Wagner, H. Natural frequencies of a uniform
cantilever with a tip mass slender in the axial direction, J.
Sound Vib., 45 (2), 304-307, (1976).

Matt, C. F. On the application of generalized integral trans-
form technique to wind-induced vibrations on overhead
conductors, Int. J. Numer. Methods Eng., 78 (8), 901-930,
(2009).

Song, G., Zhao, J. Q., Zhou, X. Q., and Alexis De Abreu-
Garca J. Tracking control of a piezoceramic actuator
with hysteresis compensation using inverse Preisach model,
IEEE/ASME Transactions on Mechatronics, 10 (2), 198—
209, (2005).

Matt, C. F. T. Simulation of the transverse vibrations of
a cantilever beam with an eccentric tip mass in the axial
direction using integral transforms, Applied Mathematical
Modelling, 37, 9338-9354, (2013).

Singhose, W. Command shaping for flexible systems: A re-
view of the first 50 years, International Journal of Precision
Engineering and Manufacturing, 10 (4), 153-168, (2009)

Song, G., Schmidt, S. P., and Agrawal, B. N. Experimental
robustness study of positive position feedback control for

10

13

16

18

20

2

—_

active vibration suppression, J. Guid. Control Dyn., 285,
179-82, (2002).

Meyer, J. L., Harrington, W. B., Agrawal, B. N., and Song,
G. Vibration suppression of a spacecraft flexible appendage
using smart material, Smart Mater. Struct., 7, 95-104,
(1998).

Shan, J. J., Liu, H. T, and Sun, D. Slewing and vibration
control of a single-link flexible manipulator by positive po-
sition feedback (PPF), Mechatronics, 15, 487-503, (2005).

Rossit, C. A. and Laura, P. A. A. Free vibrations of a can-
tilever beam with a spring-mass system attached to the free
end, Ocean Eng., 28 (7), 933-9, (2001).

Fason, J. L. and Cuaghey, T. K. Positive position feedback
for control of larges space structures, AIAA Journal, 28 (4),
717-724, (1990).

Song, G., Schmidt, S. P, and Agrawal, B. N. Experimental
robustness study of positive position feedback control for
active vibration suppression, Journal of Guidance, Control,
and Dynamics, 25 (1), 179-182, (2002).

Fanson, J. L. An experimental investigation of vibration
suppression in large space structures using positive posi-
tion feedback, PhD Thesis, California Inst. of Technology,
Pasadena, CA, (1986).

Meyer, J. L., Harrington, W. B., Agrawal, B. N., and Song,
G. Vibration suppression of a spacecraft flexible appendage
using smart material, Smart Materials and Structures, 7 (1),
95-104, (1998).

Shan, J. J., Liu, H. T., and Sun, D. Slewing and vibra-
tion control of a single-link flexible manipulator by positive
position feedback (PPF), Mechatronics, 15 (4), 487-503,
(2005).

Preumont, A. Vibration control of active structures: An
introduction, Kluwer Academic, Norwell, MA, 101-103,
(2007).

Singhose, W., Eloundou, R., and Lawrence, J. Command
generation for flexible systems by input shaping and com-
mand smoothing, Journal of Guidance, Control, and Dy-
namics, 33 (6), 1697-1707, (2010).

Rui, X. T., Wang, G. P, Lu, Y. Q., Yun, L. F, Transfer
matrix method for linear multibody system, Multibody Syst.
Dyn., 19 (3), 179-207, (2008).

Rui, X. T.,, Zhang, J. S., and Zhou, Q. B. Automatic deduc-
tion theorem of overall transfer equation of multibody sys-
tem, Advances in Mechanical Engineering, 6, 1-12, (2014).
http://dx.doi.org/10.1155/2014/378047

Preumont A. Vibration control of active structures-an intro-
duction, Second ed., Kluwer Academic Publishers, (2002).

In

ternational Journal of Acoustics and Vibration, Vol. 22, No. 1, 2017

9


http://dx.doi.org/10.1155/2014/378047

	Introduction
	DYNAMIC MODELING
	State Vectors
	Transfer Equations and Transfer Matrices
	Dynamics Responses
	Equations of Motion
	Augmented Eigenvector and Eigenvector Orthogonality
	Formulas of Dynamic Responses


	Control system design
	Piezoelectric Actuator
	Piezoelectric sensor
	LQG Controller

	Experimental Verification
	Experimental Setup
	Experimental results
	System Parameters
	Control results and analysis


	CONCLUSIONS
	REFERENCES

