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We analyze the nonlinear dynamics of a simply supported, rectangular, and functionally graded plate in terms
of a newly derived coupled system of thermo-elasticity and energy equations, which is then expanded here in
derivations and explored for chaotic responses through a parameter study in the state space.1 The plate properties
vary linearly in thickness. Three-dimensional stress-strain relations are considered in general case and nonlinear
strain-displacement relations are deployed to account for the plate’s large deflection. A lateral harmonic force is
applied on the plate, and there is a heat generation source within it and the surfaces are exposed to free convection.
By integrating over the thickness, four new thermal parameters are introduced, which together with the mid-
plane displacements constitute a system of seven partial differential equations. These equations are changed into
ordinary differential equations in time using Galerkin’s approximation and solved by using the 4th order Runge-
Kutta method. Finally, a parameter study is performed and the appropriate conditions resulting in chaotic solutions
are determined by using numerical features such as the Lyapunov exponent and power spectrum.

NOMENCLATURE

u, v, w Particles displacements in x, y, z direc-
tions

u, v, w Midplane displacements in x, y, z direc-
tions

A,B,C Dimensionless amplitudes of u, v, w
V Dimensionless amplitude of ẇ
εij Strain components
σij Stress components
θ Point-wise plate temperature
θ0 Initial plate temperature
T Dimensionless amplitude of θ
Nθ,Mθ, Pθ, Qθ Temperature 0th to 3th moments
D,E, F,G Dimensionless amplitudes of N,M,P,

and Q
E Modulus of elasticity
ν Poisson’s ratio
α Thermal expansion coefficient
ρ Density
k Thermal diffusivity
c Specific heat capacity
r Heat generation rate per unit mass
λ Plate side length to thickness ratio
h Plate thickness
a, b Plate side lengths in x and y directions
ω Frequency of the external force
H Heat transfer coefficient
q0 Amplitude of the external force

1. INTRODUCTION

Functionally graded materials (FGMs) are widely used in
aeronautic structures, where they are simultaneously subjected
to mechanical and thermal loadings. Thus, presenting a model
that combines the mechanical and thermal characteristics in-
crease our understanding of their behavior. In this paper, the
coupled problem of thermo-elasticity for the nonlinear dynam-
ics of FGM plates was studied, the governing equations were
derived, and after achieving the solution, some parameter val-
ues for which trajectories show chaotic behavior were deter-
mined.

In the field of linear thermo-elasticity Nowacki has made
several fundamental contributions, among which was the
derivation of the equations of thermo-elastic vibrations of
plates in the coupled case.2 He solved the problem of trans-
verse vibrations when the temperature field varied harmon-
ically with time. Kawamura et al. derived the governing
equations for thermally induced vibrations of an FGM plate
exposed to sinusoidally varying surface temperature.3 Xiang
and Melnik presented a numerical approach for the general
thermo-mechanical problems, which was based on the reduc-
tion of the original system of partial differential equations
to a system of differential algebraic equations.4 They tested
the method for a two-dimensional, thermo-elasticity problem.
Yang and Shen performed an analysis on free and forced vi-
brations of initially stressed FGM plates with temperature de-
pendent material properties.5 They also studied partially dis-
tributed impulsive loads on FGM plates resting on elastic foun-
dations.6 Gupta investigated non-linear thickness variation on
the thermally-induced vibration of a rectangular plate using a
spline technique.7
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A number of papers have been dedicated to the nonlinear
free vibrations of plates. Prabhakara and Chia calculated non-
linear frequencies for free flexural large amplitude vibrations
of orthotropic rectangular plates with different boundary con-
ditions and showed that for large values of amplitude, the cou-
pling effect of vibrating modes on the nonlinear frequency of
the fundamental mode is significant for orthotropic plates.8 Al-
lahverdizadeh et al. analyzed free and forced axisymmetric vi-
brations of a thin circular FGM plate in a thermal environment
and determined the stresses and nonlinear natural frequencies
using a semi-analytical approach.9, 10 Chang and Chian pre-
sented an analytical study on free vibrations of a heated or-
thotropic rectangular thin plate under various boundary condi-
tions.11 Xuefeng et al. studied nonlinear thermo-elastic free
vibrations of circular plates that had simply supported and
clamped boundary conditions.12, 13

Furthermore, Praveen and Reddy analyzed the static and dy-
namic response of FGM plates using a plate finite element
that accounts for the transverse shear strains, rotary inertia,
and moderately large rotations in von Karman sense.14 Huang
and Shen investigated nonlinear vibrations of an FGM plate
in thermal environments, accounting for heat conduction and
temperature dependent material.15 Woo and Meguid provided
an analytical solution for the coupled large deflection of plates
and shallow shells made of functionally graded material. They
made use of two-dimensional stress-strain relations and stud-
ied the effect of thermo-mechanical coupling on the FGM shell
response.16 In another survey, Woo et al. discussed the effect
of material properties, boundary conditions, and thermal load-
ing on nonlinear dynamics of a freely vibrating FGM plate.17

Chang and Wan presented an analytical method to investi-
gate large amplitude thermo-mechanically coupled vibrations
of rectangular elastic thin plates with various boundary condi-
tions.18 Hao et al. studied the nonlinear dynamics of a sim-
ply supported rectangular FGM plate subjected to transverse
and in-plane excitations in a time dependent thermal environ-
ment.19 Yeh analyzed large amplitude thermo-mechanically
coupled vibrations of simply supported orthotropic rectangu-
lar thin plates.20 He discussed the effect of changing different
parameters on thermal damping of the plate. Alijani and Ama-
bili investigated non-linear parametric instability of rectangu-
lar FGM plates in thermal environments using a multi-degree-
of-freedom energy approach.21

Among works done on the chaotic vibrations of plates, we
can mention the derivation of the nonlinear dynamic equation
of a harmonically forced elliptic plate in the presence of a ther-
mal field by Qiang et al.22 They used the Melnikov function
method to give the critical condition for chaotic motion and to
discuss the path to chaos. Ribeiro performed an analysis on ge-
ometrically nonlinear vibrations of linear elastic and isotropic
plates under the combined effect of thermal fields and mechan-
ical excitations and studied transitions from periodic to non-
periodic motions.23 Both him and Duarte also investigated the
effect of fibers’ angle in nonlinear thermo-elastic vibrations
of composite laminated plates.24 Lai et al. determined the
conditions leading to chaotic motion for large deflections of
a simply supported rectangular plate by examining the fractal
dimension and the maximum the Lyapunov exponent.25 They
used the same approach to detect chaos in large deflections of
rectangular plates with thermo-mechanical coupling.26 In an-
other investigation, Yeh and Chen found the conditions that re-

sulted in chaos for a simply supported circular plate of thermo-
mechanical coupling with variable thickness.27 Zhang et al.
analyzed the nonlinear dynamics and chaos of a simply sup-
ported rectangular orthotropic FGM plate in a thermal envi-
ronment in which heat conduction and temperature-dependent
material properties were taken into account.28 Hao et al. ob-
served chaos in nonlinear dynamics of a rectangular FGM plate
in a thermal environment.29

However, none of the referred papers have considered the
thermo-mechanical coupling for nonlinear forced vibrations
of functionally graded plates. The novelty of this paper is
the full derivation of the governing equations in the three-
dimensional case while accounting for geometrical nonlinear-
ity, non-homogeneity, coupled fields of temperature, and dis-
placement in the extension of our preliminary research, which
only includes the general framework for this purpose.1 Ad-
ditionally, we have performed a parameter study in the state
space to find the parameter values that trigger chaotic solu-
tions. In the following sections, the equations of motion and
energy equation are first derived for a nonlinear thermo-elastic
FGM plate and then a solution strategy is proposed for solving
them. Section three is devoted to a parameter study and dis-
cusses the behavior of the resulting responses, with a focus on
detecting chaos. Finally, the conclusions are drawn in the last
section.

2. METHOD

The first aim of this paper is to derive the equations of mo-
tion and the energy equation considering thermo-mechanical
coupling for a rectangular plate made of functionally graded
material. Equations of motion were derived on the basis of
displacement formulation.30 Lagrangian finite strain tensor is
defined as:31

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
+

1

2

∂um
∂xi

∂um
∂xj

. (1)

Based on Kirchhoff hypothesis, the displacements of various
points in the plate thickness are linearly related to those of the
mid-plane as:32

~u(x, y, z, t) = u(x, y, t)− z ∂w
∂x

;

~v(x, y, z, t) = v(x, y, t)− z ∂w
∂y

;

~w(x, y, z, t) = w(x, y, t). (2)

Substituting Eq. (2) in Eq. (1), strain components in terms of
mid-plane displacements were found.33 Additionally, general-
ized thermo-elastic constitutive law for isotropic material was
given by:30

σij = λεkkδij + 2µεij − (3λ+ 2µ)α(θ − θ0); (3)

where,

λ =
Eν

(1 + ν)(1− 2ν)
; (4)

µ =
E

2(1 + ν)
. (5)

By using Eq. (3), stress tensor components were found in
terms of mid-plane displacements as:
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σxx =
Eν

(1 + ν)(1− 2ν)

[
∂u

∂x
+
∂v

∂y
+

(
∂w

∂x

)2

+

(
∂w

∂y

)2

−

z
∂2w

∂x2
− z ∂

2w

∂y2

]
+

E

(1 + ν)

[
∂u

∂x
+

1

2

(
∂w

∂x

)2

−

z
∂2w

∂x2

]
− Eα

(1− 2ν)
(θ − θ0) ; (6)

σyy =
Eν

(1 + ν)(1− 2ν)

[
∂u

∂x
+
∂v

∂y
+

(
∂w

∂x

)2

+

(
∂w

∂y

)2

−

z
∂2w

∂x2
− z ∂

2w

∂y2

]
+

E

(1 + ν)

[
∂v

∂y
+

1

2

(
∂w

∂y

)2

−

z
∂2w

∂y2

]
− Eα

(1− 2ν)
(θ − θ0) ; (7)

σzz =
Eν

(1 + ν)(1− 2ν)

[
∂u

∂x
+
∂v

∂y
+

(
∂w

∂x

)2

+

(
∂w

∂y

)2

−

z
∂2w

∂x2
− z ∂

2w

∂y2

]
+

E

(1 + ν)

[
1

2

(
∂w

∂x

)2

+

1

2

(
∂w

∂y

)2
]
− Eα

(1− 2ν)
(θ − θ0) ; (8)

σxy =
E

(1 + ν)

[
1

2

(
∂u

∂y
+
∂v

∂x
+
∂w

∂x

∂w

∂y

)
− z ∂

2w

∂x∂y

]
; (9)

σxz =
E

(1 + ν)

[
1

2
z
∂2w

∂x2
∂w

∂x
+

1

2
z
∂2w

∂x∂y

∂w

∂y
− 1

2

∂u

∂x

∂w

∂x
−

1

2

∂v

∂x

∂w

∂y

]
; (10)

σyz =
E

(1 + ν)

[
1

2
z
∂2w

∂y2
∂w

∂y
+

1

2
z
∂2w

∂x∂y

∂w

∂x
− 1

2

∂u

∂y

∂w

∂x
−

1

2

∂v

∂y

∂w

∂y

]
; (11)

It was assumed that the volume fractions, xA and xB , and
consequently all extensive properties, varied linearly in thick-
ness. Thus, a plate typical property P was expressed as:

P = xAPA + xBPB =
PA + PB

2
+
z(PB − PA)

h

= Pavg +
z

h
∆P ; (12)

where A and B are the two types of material used at the lower
and upper surfaces respectively.

The equations of motion in the absence of body forces had
the form:

σij,j = ρüi. (13)

In order to reduce spatial dimensions of Eq. (13), we inte-
grated both sides of each equation over the thickness. In this
way, we let the property variations emerge in the equations of
motion. This integration yielded:

∂Nxx
∂x

+
∂Nxy
∂y

+ σxz|h/2−h/2 = ρavgh
∂2u

∂t2
− h2∆ρ

12

∂3w

∂x∂t2
;

(14)

∂Nxy
∂x

+
∂Nyy
∂y

+ σyz|h/2−h/2 = ρavgh
∂2v

∂t2
− h2∆ρ

12

∂3w

∂y∂t2
;

(15)

∂Qx
∂x

+
∂Qy
∂y

+ σzz|h/2−h/2 = ρavgh
∂2w

∂t2
; (16)

where,

Nxx =

∫ h/2

−h/2
σxx dz; Nyy =

∫ h/2

−h/2
σyy dz;

Nxy =

∫ h/2

−h/2
σxy dz; Qx =

∫ h/2

−h/2
σxz dz;

Qy =

∫ h/2

−h/2
σyz dz; σzz|h/2−h/2 = q0 sin(ωt); (17)

and σxz|h/2−h/2 and σyz|h/2−h/2 can be found from Eqs. (10)
and (11). Nxx, Nyy, and Nxy were obtained by directly in-
tegrating Eqs. (6), (7), and (9). Thus, the equations of motion
in the x and y directions were given by:

Eavgh(1− ν)

(1 + ν)(1− 2ν)

∂2u

∂x2
+

Eavgh

2(1 + ν)(1− 2ν)

∂2v

∂x∂y
+

Eavgh

2(1 + ν)

∂2u

∂y2
+

Eavgh(3− 2ν)

2(1 + ν)(1− 2ν)

∂w

∂x

∂2w

∂x2
+

Eavgh

(1 + ν)(1− 2ν)

∂w

∂y

∂2w

∂x∂y
− ∆Eh2(1− ν)

12(1 + ν)(1− 2ν)
·(

∂3w

∂x3
+

∂3w

∂x∂y2

)
+

Eavgh

2(1 + ν)

∂w

∂x

∂2w

∂y2
−

1

1− 2ν

[
Eavgαavg

∂

∂x

∫ h/2

−h/2
(θ − θ0) dz +

(Eavg∆α+ αavg∆E)

h

∂

∂x

∫ h/2

−h/2
z(θ − θ0) dz +

∆E∆α

h2
∂

∂x

∫ h/2

−h/2
z2(θ − θ0) dz

]
=

ρavgh
∂2u

∂t2
− h2∆ρ

12

∂3w

∂x∂t2
; (18)

Eavgh(1− ν)

(1 + ν)(1− 2ν)

∂2v

∂y2
+

Eavgh

2(1 + ν)(1− 2ν)

∂2u

∂x∂y
+

Eavgh

2(1 + ν)

∂2v

∂x2
+

Eavgh(3− 2ν)

2(1 + ν)(1− 2ν)

∂w

∂y

∂2w

∂y2
+

Eavgh

(1 + ν)(1− 2ν)

∂w

∂x

∂2w

∂x∂y
− ∆Eh2(1− ν)

12(1 + ν)(1− 2ν)
·(

∂3w

∂y3
+

∂3w

∂y∂x2

)
+

Eavgh

2(1 + ν)

∂w

∂y

(∂2w

∂x2
−

1

1− 2ν

[
Eavgαavg

∂

∂y

∫ h/2

−h/2
(θ − θ0) dz +

(Eavg∆α+ αavg∆E)

h

∂

∂y

∫ h/2

−h/2
z(θ − θ0) dz +

∆E∆α

h2
∂

∂y

∫ h/2

−h/2
z2(θ − θ0) dz

]
=

ρavgh
∂2v

∂t2
− h2∆ρ

12

∂3w

∂y∂t2
. (19)
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However, in order to derive the equation of motion in the z
direction, Qx and Qy were obtained by multiplying the equa-
tions of motion in the x and y direction by z and integrating
them over the thickness. This yielded:

∂Mxx

∂x
+
∂Mxy

∂y
−Qx + (zσxz)|h/2−h/2 =

− h3

12
ρavg

∂3w

∂t2∂x
+
h2

12
∆ρ

∂2u

∂t2
; (20)

∂Mxy

∂x
+
∂Myy

∂y
−Qy + (zσyz)|h/2−h/2 =

− h3

12
ρavg

∂3w

∂t2∂y
+
h2

12
∆ρ

∂2u

∂t2
; (21)

where,

Mxx =

∫ h/2

−h/2
zσxx dz; Myy =

∫ h/2

−h/2
zσyy dz;

Mxy =

∫ h/2

−h/2
zσxy dz; (22)

and (zσxz)|h/2−h/2 and (zσyz)|h/2−h/2could be calculated from
Eqs. (10) and (11). Differentiating Eq. (20) with respect to
x and Eq. (21) with respect to y and substituting the resulting
∂Qx

∂x and ∂Qy

∂y together with the stress components in Eq. (16),
resulted in the equation of motion in the z direction, which was
expressed as:

h2∆E(1− ν)

12(1 + ν)(1− 2ν)

[
∂3u

∂y2∂x
+

∂3v

∂x2∂y
+
∂3u

∂x3
+
∂3v

∂y3

]
+

(2− 3ν)h2∆E

6(1 + ν)(1− 2ν)

[(
∂2w

∂x2

)2

+

(
∂2w

∂y2

)2

+
∂w

∂x

∂3w

∂x3
+

∂w

∂y

∂3w

∂y3
+
∂w

∂x

∂3w

∂y2∂x
+
∂w

∂y

∂3w

∂x2∂y

]
+

h2∆E(7− 10ν)

12(1 + ν)(1− 2ν)

(
∂2w

∂x∂y

)2

+
h2∆E

12(1 + ν)

∂2w

∂x2
∂2w

∂y2
−

Eavgh
3(1− ν)

12(1 + ν)(1− 2ν)
∇4w −

hEavg

(1 + ν)

(
∂2u

∂x2
∂w

∂x
+

∂u

∂x

∂2w

∂x2
+
∂2v

∂x2
∂w

∂y
+
∂v

∂x

∂2w

∂x∂y
+
∂2u

∂y2
∂w

∂x
+

∂u

∂y

∂2w

∂x∂y
+
∂v

∂y

∂2w

∂y2
+
∂2v

∂y2
∂w

∂y

)
+

h3

12
ρavg

∂4w

∂t2∂x2
− h2

12
∆ρ

∂3u

∂x∂t2
+
h3

12
ρavg

∂4w

∂t2∂y2
−

h2

12
∆ρ

∂3v

∂y∂t2
− 1

1− 2ν

[
Eavgαavg∇2

∫ h/2

−h/2
z(θ − θ0) dz +

(Eavg∆α+ αavg∆E)

h
∇2

∫ h/2

−h/2
z2(θ − θ0) dz +

∆E∆α

h2
∇2

∫ h/2

−h/2
z3(θ − θ0) dz

]
+ q0 sin(ωt) =

ρavgh
∂2w

∂t2
. (23)

As a result of reducing spatial dimensions of the equa-
tions of motion, these equations were changed into integro-

differential equations. By introducing the four following pa-
rameters, the equations could remain in differential form:

Nθ ≡
∫ h/2

−h/2
(θ − θ0) dz; Mθ ≡

∫ h/2

−h/2
z(θ − θ0) dz;

Pθ ≡
∫ h/2

−h/2
z2(θ − θ0) dz; Qθ ≡

∫ h/2

−h/2
z3(θ − θ0) dz.

(24)

To specify these four parameters together with displacement
components in the x, y, and z directions, seven independent
equations were needed. So far, three equations were derived,
and the other four were deduced from the energy equation.

The energy equation for a thermo-elastic continuous me-
dia experiencing small temperature changed in the presence
of heat generation:34

ρr +∇(k∇θ)− ρcθ̇ − βθoε̇mm = 0; (25)

where,

β = 3kα =
Eα

(1− 2ν)
. (26)

Equation (25) was also integrated over the thickness and
solved together with thermo-elasticity equations. However,
since we introduced four new thermal variables in Eq. (24), and
because we were interested in their dynamics, we still needed
three other equations for the closure of the problem. Thus, in
addition to mere integration, we multiplied Eq. (25) by z, z2,
and z3 and integrated over the thickness. As a result, by us-
ing Eqs. (1), (12), (24), and (25) and finite integration rules,
the four following equations were added to the equations of
motion:

ρavghr + kavg∇2Nθ +
∆k

h
∇2Mθ + kavg

∂θ

∂z

∣∣∣h/2
−h/2

+

∆k

h
z
∂θ

∂z

∣∣∣h/2
−h/2

− ρavgcavg
∂Nθ
∂t
−

(ρavg∆c+ cavg∆ρ)

h

∂Mθ

∂t
−

∆c∆ρ

h2
∂Pθ
∂t
− θ0h

(1− 2ν)

(
Eavgαavg +

∆Eδα

12

)
·(

∂2u

∂t∂x
+

∂2v

∂t∂y
+ 2

∂w

∂x

∂2w

∂t∂x
+ 2

∂w

∂y

∂2w

∂t∂y

)
+

θ0h
2

12(1− 2ν)
(Eavg∆α+ αavg∆E)

(
∂3w

∂t∂x2
+

∂3w

∂t∂y2

)
= 0;

(27)

h2∆ρr

12
+ kavg∇2Mθ +

∆k

h
∇2Pθ + kavgz

∂θ

∂z

∣∣∣h/2
−h/2

−

kavgθ|h/2−h/2 +
∆k

h

(
z2
∂θ

∂z

∣∣∣h/2
−h/2

− zθ|h/2−h/2 + hθ0 +Nθ

)
−

ρavgcavg
∂Mθ

∂t
−

(ρavg∆c+ cavg∆ρ)

h

∂Pθ
∂t
− ∆c∆ρ

h2
∂Qθ
∂t
−

θ0h
2

12(1− 2ν)
(Eavg∆α+ αavg∆E) ·(

∂2u

∂t∂x
+

∂2v

∂t∂y
+ 2

∂w

∂x

∂2w

∂t∂x
+ 2

∂w

∂y

∂2w

∂t∂y

)
+

θ0h
3

(1− 2ν)

(
Eavgαavg

12
+

∆E∆α

80

)(
∂3w

∂t∂x2
+

∂3w

∂t∂y2

)
= 0;

(28)
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h3ρavgr

12
+ kavg∇2Pθ +

∆k

h
∇2Qθ +

kavg

(
z2
∂θ

∂z

∣∣∣h/2
−h/2

− 2zθ|h/2−h/2 + 2hθ0 + 2Nθ

)
+

∆k

h

(
z3
∂θ

∂z

∣∣∣h/2
−h/2

− 2z2θ|h/2−h/2 + 4Mθ

)
− ρavgcavg

∂Pθ
∂t
−

(ρavg∆c+ cavg∆ρ)

h

∂Qθ
∂t
− ∆c∆ρ

h2
∂

∂t

∫ h/2

−h/2
z4θ dz −

θ0h
3

(1− 2ν)

(
Eavgαavg

12
+

∆E∆α

80

)
·(

∂2u

∂t∂x
+

∂2v

∂t∂y
+ 2

∂w

∂x

∂2w

∂t∂x
+ 2

∂w

∂y

∂2w

∂t∂y

)
+

θ0h
4

80(1− 2ν)
(Eavg∆α+ αavg∆E)

(
∂3w

∂t∂x2
+

∂3w

∂t∂y2

)
= 0;

(29)

h4∆ρr

80
+ kavg∇2Qθ +

∆k

h
∇2

∫ h/2

−h/2
z4θ dz +

kavg

(
z3
∂θ

∂z

∣∣∣h/2
−h/2

− 3z2θ|h/2−h/2 + 6Mθ

)
+

∆k

h

(
z4
∂θ

∂z

∣∣∣h/2
−h/2

− 3z3θ|h/2−h/2 + 9Pθ +
3

4
h3θ0

)
−

ρavgcavg
∂Qθ
∂t
−

(ρavg∆c+ cavg∆ρ)

h

∫ h/2

−h/2
z4θ dz −

∆c∆ρ

h2
∂

∂t

∫ h/2

−h/2
z5θ dz − θ0h

4

80(1− 2ν)
(Eavg∆α+ αavg∆E) ·(

∂2u

∂t∂x
+

∂2v

∂t∂y
+ 2

∂w

∂x

∂2w

∂t∂x
+ 2

∂w

∂y

∂2w

∂t∂y

)
+

θ0h
5

(1− 2ν)

(
Eavgαavg

80
+

∆E∆α

448

)(
∂3w

∂t∂x2
+

∂3w

∂t∂y2

)
= 0;

(30)

where,

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
. (31)

On the basis of Galerkin’s single term approximation, the
dependent variables’ functionality of the independent variables
x, y, z, and t was assumed as:

u(x, y, t) = A(t) sin

(
2mπx

a

)
sin

(
2nπy

b

)
;

v(x, y, t) = B(t) sin

(
2mπx

a

)
sin

(
2nπy

b

)
;

w(x, y, t) = C(t) sin

(
2mπx

a

)
sin

(
2nπy

b

)
;

Nθ(x, y, t) = hθ0D(t) sin
(mπx

a

)
sin
(nπy

b

)
;

Mθ(x, y, t) = h2θ0E(t) sin
(mπx

a

)
sin
(nπy

b

)
;

Pθ(x, y, t) = h3θ0F (t) sin
(mπx

a

)
sin
(nπy

b

)
;

Qθ(x, y, t) = h4θ0G(t) sin
(mπx

a

)
sin
(nπy

b

)
;

θ(x, y, z, t)− θ0 = (θ∞− θ0)T (z, t) sin
(mπx

a

)
sin
(nπy

b

)
.

(32)

It should be noted that the assumed functions satisfied the
problem’s boundary conditions, which were simply supported
conditions for the displacement components and constant tem-
perature edges for the energy equation:

u = v = w =
∂2w

∂x2
= 0 & θ = θ0 at x = 0, a; (33)

u = v = w =
∂2w

∂y2
= 0 & θ = θ0 at y = 0, b. (34)

After substituting the above functions in the govern-
ing equations, Eqs. (18) and (19) were weighted by
sin
(
2mπx
a

)
sin
(
2nπy
b

)
and Eqs. (23), (27), (28), (29), and (30)

by sin
(
mπx
a

)
sin
(
nπy
b

)
. Subsequently, the resulting equations

were integrated over the plate’s surface and a system of seven
ordinary differential equations was achieved. These equations
were rendered dimensionless by introducing the following pa-
rameters:

x = x∗a; y = y∗b; z = z∗h; t =
2πt∗

ω
;

λ =
a

h
; u = u∗u0; v = v0v

∗; w = w∗w0;

θ − θ0 = (θ∞ − θ0)θ∗ = ∆θ0θ
∗; Nθ = hθ0N

∗
θ ;

Mθ = h2θ0M
∗
θ ; Pθ = h3θ0P

∗
θ ; Qθ = h4θ0Q

∗
θ;

Eavg = EBE
∗
avg; αavg = αBα

∗
avg; cavg = cAc

∗
avg;

kavg = kBk
∗
avg; ρavg = ρBρ

∗
avg;

∆E = EB∆E∗; ∆α = αB∆α∗; ∆c = cA∆c∗;

∆k = kB∆k∗; ∆ρ = ρB∆ρ∗. (35)

Each material property was non-dimensionalied, with its
maximum value belonging to either material type. Material A
was considered to be Aremco Macor machinable glass ceramic
and material B was considered to be AISI 1010 steel. The
values of the properties are given in Table 1 for both material
types.35

By letting m = n = 1 and a = b, the governing equations
for a square plate using a single term Galerkin’s approximation
was eventually derived as:

ω2ρ∗avgρBa
2(1 + ν)(1− 2ν)

16π2EB
Ä(t∗) +

E∗avg(3− 4ν)π2

2
A(t∗) = 0; (36)

ω2ρ∗avgρBa
2(1 + ν)(1− 2ν)

16π2EB
B̈(t∗) +

E∗avg(3− 4ν)π2

2
B(t∗) = 0; (37)

(11− 18ν)∆E∗π2

27a
C2(t∗)−

(1− ν)E∗avgπ
4

12λ
C(t∗) +

a(1 + ν)∆θ0αBπ
2

2

[
E∗avgα

∗
avgE(t∗) +(

E∗avg∆α∗ + α∗avg∆E∗
)
F (t∗) + ∆E∗∆α∗G(t∗)

]
+

q0aλ
2(1 + ν)(1− 2ν)

EB
sin(2πt∗) =

λω2ρ∗avgρBa
2(1 + ν)(1− 2ν)

16π2EB
C̈(t∗); (38)
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Table 1. Material Properties, A (Aremco Macor machinable glass ceramic),
B (AISI 1010 steel).

E (Pa) α (1/◦C) c (J/kg◦C) k (W/mK) ρ (kg/m3)
A 66.9×109 7.4×10−6 790 1.464 2520
B 205×109 12.2×10−6 448 49.8 7870

4ρBρ
∗
avgra

2

π2∆θ0kB
+

1

4

{
− 2π2k∗avgD(t)− 2π2∆k∗E(t) +

k∗avgλ
2 ∂T

∂z∗

∣∣∣1/2
−1/2

+ ∆k∗λ2z∗
∂T

∂z∗

∣∣∣1/2
−1/2

−

ρBcAωa
2

2πkB

[
ρ∗avgc

∗
avgḊ(t) +

(
ρ∗avg∆c∗ + c∗avg∆ρ∗

)
Ė(t) +

∆c∗∆ρ∗Ḟ (t)
]}
−

16EBαBω

9π(1− 2ν)kB

θ0
∆θ0

(
E∗avgα

∗
avg +

∆E∗∆α∗

12

)
C(t)Ċ(t)−

πaEBαBω

4(1− 2ν)kB

1

12λ

θ0
∆θ0

(
E∗avg∆α∗ + α∗avg∆E∗

)
Ċ(t) = 0;

(39)

ρB∆ρ∗ra2

3π2∆θ0kB
+

1

4

{
− 2π2k∗avgE(t)− 2π2∆k∗F (t) +

k∗avgλ
2z∗

∂T

∂z∗

∣∣∣1/2
−1/2

− k∗avgλ
2T |1/2−1/2 +

∆k∗λ2
(
z∗2

∂T

∂z∗

∣∣∣1/2
−1/2

− z∗T |1/2−1/2 +D(t)

)
−

ρBcAωa
2

2πkB

[
ρ∗avgc

∗
avgĖ(t) +

(
ρ∗avg∆c∗ + c∗avg∆ρ∗

)
Ḟ (t) +

∆c∗∆ρ∗Ġ(t)
]}
−

4EBαBω

27π(1− 2ν)kB

θ0
∆θ0

(
E∗avg∆α∗ + α∗avg∆E∗

)
C(t)Ċ(t)−

πaEBαBω

4(1− 2ν)kB

1

λ

θ0
∆θ0

(
E∗avgα

∗
avg

12
+

∆E∗∆α∗

80

)
Ċ(t) = 0;

(40)

ρBρ
∗
avgra

2

3π2∆θ0kB
+

1

4

{
− 2π2k∗avgF (t)− 2π2∆k∗G(t) +

k∗avgλ
2

(
z∗2

∂T

∂z∗

∣∣∣1/2
−1/2

− 2z∗T |1/2−1/2 + 2D(t)

)
+

∆k∗λ2
(
z∗3

∂T

∂z∗

∣∣∣1/2
−1/2

− 2z∗2T |1/2−1/2 + 4E(t)

)
−

ρBcAωa
2

2πkB

[
ρ∗avgc

∗
avgḞ (t) +

(
ρ∗avg∆c∗ + c∗avg∆ρ∗

)
Ġ(t) +

∆c∗∆ρ∗
∂

∂t∗

∫ 1/2

−1/2
z∗4T dz∗

]}
−

16EBαBω

9π(1− 2ν)kB

θ0
∆θ0

(
E∗avgα

∗
avg

12
+

∆E∗∆α∗

80

)
C(t)Ċ(t)−

πau0EBαBω

320(1− 2ν)kB

1

λ

θ0
∆θ0

(
E∗avg∆α∗ + α∗avg∆E∗

)
Ċ(t) = 0;

(41)

ρB∆ρ∗ra2

20π2∆θ0kB
+

1

4

{
− 2π2k∗avgG(t)− 2π2∆k∗

∫ 1/2

−1/2
z∗4T dz∗ +

k∗avgλ
2

(
z∗3

∂T

∂z∗

∣∣∣1/2
−1/2

− 3z∗2T |1/2−1/2 + 6E(t)

)
+

∆k∗λ2
(
z∗4

∂T

∂z∗

∣∣∣1/2
−1/2

− 3z∗3T |1/2−1/2 + 9F (t)

)
−

ρBcAωa
2

2πkB

[
ρ∗avgc

∗
avgĠ(t) +

(
ρ∗avg∆c∗ + c∗avg∆ρ∗

)
·

∂

∂t∗

∫ 1/2

−1/2
z∗4T dz∗ + ∆c∗∆ρ∗

∂

∂t∗

∫ 1/2

−1/2
z∗5T dz∗

]}
−

EBαBω

45π(1− 2ν)kB

θ0
∆θ0

(
E∗avg∆α∗ + α∗avg∆E∗

)
C(t)Ċ(t)−

πaEBαBω

4(1− 2ν)kB

1

λ

θ0
∆θ0

(
E∗avgα

∗
avg

80
+

∆E∗∆α∗

448

)
Ċ(t) = 0.

(42)

Due to the fact that besides temperature integrals, tempera-
ture also appeared in the governing equations. As such, a back-
stepping approach was devised in the programming process.
At each time step, dimensionless temperature T , which was
only a function of z∗, was approximated by a fifth order poly-
nomial. The coefficients of this polynomial were determined
by the four temperature integrals of the preceding step and con-
vection boundary conditions on lateral surfaces as follows:

D(t∗) =

∫ 1/2

−1/2
T (z∗, t∗) dz∗;

E(t∗) =

∫ 1/2

−1/2
z∗T (z∗, t∗) dz∗;

F (t∗) =

∫ 1/2

−1/2
z∗2T (z∗, t∗) dz∗;

G(t∗) =

∫ 1/2

−1/2
z∗3T (z∗, t∗) dz∗; (43)

kB
∂θ

∂z

∣∣∣
h/2

= H(θ∞ − θ|h/2)

= H(θ∞ − θ0 + θ0 − θ|h/2); (44)

kA
∂θ

∂z

∣∣∣
−h/2

= −H(θ∞ − θ|−h/2) =

= −H(θ∞ − θ0 + θ0 − θ|−h/2). (45)

Using the temperature distribution assumption in Eq. (32)
yields:

kB
∆θ0
h

∂T

∂z∗

∣∣∣
1/2

sin(mπx∗) sin(nπy∗) =

H∆θ0 −H∆θ0T |1/2 sin(mπx∗) sin(nπy∗); (46)

kA
∆θ0
h

∂T

∂z∗

∣∣∣
−1/2

sin(mπx∗) sin(nπy∗) =

−H∆θ0 +H∆θ0T |−1/2 sin(mπx∗) sin(nπy∗). (47)

Due to the fact that the convection boundary conditions were
point-wise, we satisfied them weakly by integrating over the
surfaces:

kB
∂T

∂z∗

∣∣∣
1/2

=
π2

4
hH − hHT |1/2; (48)

kA
∂T

∂z∗

∣∣∣
−1/2

= −π
2

4
hH + hHT |−1/2. (49)
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Figure 1. State variables for the base state (Lyapunov exponent =
0.2249).

Figure 2. FFT of state variables for the base state (Lyapunov exponent =
0.2249).

3. RESULTS

Equations (36) and (37), which express in-plane equations
of motion, are linear and completely decoupled from param-
eters C, D, E, F , and G. Therefore, they can be solved
separately. Solving Eqs. (38), (39), (40), (41), and (42) in-
volves primarily changing them into six first order differen-
tial equations. Afterwards, the solution in the time domain is
achieved by using the Runge-Kutta method of fourth order for
an 80 × 80 cm2 square plate with zero initial conditions for
all state variables. The time step is assumed to be 1/50 of the
period of applied force and integration is done along 500 pe-
riods. To detect chaos, the Lyapunov exponent is calculated

Figure 3. State variables for θ0 = 290 K, q0 = 10000 N/m2, r = 0 W/kg,
λ = 15, and ω = 1000 rad/s (Lyapunov exponent = −0.0179).

Figure 4. FFT of state variables for θ0 = 290 K, q0 = 10000 N/m2, r = 0
W/kg, λ = 15, and ω = 1000 rad/s (Lyapunov exponent = −0.0179).

for 20 initial points on each trajectory and then averaged as
below:36

λ(xi) =
1

n
ln

(
dn
d0

)
; (50)

λ =
1

N

N∑
i=1

λ(xi). (51)

If the sign λ is positive for a trajectory, it is said to be
chaotic. dn is the evolved distance between two point of a
trajectory, which were initially at the distance d0. It should
be noted that the distance d indicates the Euclidean norm in
six dimensional state space. Fast Fourier transform (FFT) of
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Table 2. Maximum lateral displacement, velocity, and average temperature
over the thickness and Lyapunov exponent when values of heat generation,
initial temperature, and lateral load change (base state: θambient = 300 K,
ω = 700 rad/s, and λ = 60. r = 0 W/kg, θ0 = 290 K, and q0 = 1×104).

δmax (m) Vmax (m/s) Tavg (K) LE
Base state 0.0233 0.1123 289.9816 0.2249

r = −100 W/kg 0.0233 0.1127 288.8077 0.2497
r = 100 W/kg 0.0233 0.1121 290.2341 0.2190
θ0 = 295 K 0.0233 0.1124 294.8742 0.1380
θ0 = 285 K 0.0233 0.1123 285.0853 0.2764

q0 = 5×103 N/m2 0.0174 0.0912 290.0027 0.1889
q0 = 2×103 N/m2 0.0120 0.0669 290.0725 0.2369

Table 3. Maximum lateral displacement, velocity, and average temperature
over the thickness and Lyapunov exponent when frequency and side length to
thickness ratio change (base state: θambient = 300 K, ω = 700 rad/s, and
λ = 60. r = 0 W/kg, θ0 = 290 K, and q0 = 1×104).

δmax (m) Vmax (m/s) Tavg (K) LE
Base state 0.0233 0.1123 289.9816 0.2249

ω = 900 rad/s 0.0042 0.0222 290.0487 0.0323
ω = 1100 rad/s 0.0021 0.0100 290.0616 0.0213
ω = 1300 rad/s 0.0014 0.0060 290.0370 -0.0128

λ = 40 0.011 0.0080 290.0632 -0.0227
λ = 80 0.0091 0.0422 289.9619 0.0674
λ = 100 0.00112 0.0368 289.9171 0.0814

the solution time series, which depicts the existing frequen-
cies, can also be an intuitive verification to decide whether a
trajectory is chaotic or not.

To investigate the conditions resulting in chaos, θ0, q0, r, λ,
and ω are treated as control parameters and changed in certain
ranges. For different values of these parameters, the Lyapunov
exponent, maximum lateral deflection, maximum lateral veloc-
ity, and average temperature over the thickness are listed in Ta-
bles 2 and 3. Figures 1, 2, 3, and 4 show the state variables and
their FFT’s for two cases, where the Lyapunov exponent has
opposite signs. For the purpose of comparison, the problem is
also solved when plate is homogeneously made of steel or ce-
ramic. Table 4 and Fig. 5 illustrate the differences between the
thermal and mechanical responses of the homogeneous plates
versus the functionally graded plates.

4. CONCLUSIONS

In this paper, the governing equations for thermo-
mechanically coupled nonlinear vibrations of a rectangular
FGM plate are derived. Using the Galerkin approximation, the
equations are changed into ordinary differential equations and
solved numerically. The Lyapunov exponent is used as a cri-
terion to recognize chaos and has been computed for various
values of control parameters.

According to the results, the Lyapunov exponent is sensitive
to the parameters θ0, q0, r, λ, and ω. However, among all the
mentioned parameters, only λ and ω can cause drastic change
in the Lyapunov exponent, especially in its sign. Therefore, the
geometry of trajectories in state space is strongly characterized
by these two parameters and the response can be chaotic for
certain values of them, as listed in Table 3.

Table 4 and Fig. 5 show that the dynamical behavior of a
functionally graded plate does not necessarily intermediate ce-
ramic and steel plates, since many new terms emerge in the
FGM governing equations through integration over the thick-
ness due to non-homogeneity. This highlights the modeling
and analysis of FGM bodies in separate contexts.

Table 4. Maximum lateral displacement, velocity, and average temperature
over the thickness and Lyapunov exponent for a plate homogenously made of
steel or ceramic versus FGM (θambient = 300 K, ω = 1000 rad/s, and λ = 80.
r = 0 W/kg, θ0 = 290 K, and q0 = 1×104).

Material A (Ceramic) FGM Material B (Steel)
Vmax (m/s) 0.0275 0.0140 0.0088
Tavg (K) 290.1004 290.0365 290.0657

LE 0.0423 -0.0664 0.0172

Figure 5. Temperature distribution in thickness for FGM, homogenous steel
and ceramic plates (θambient = 300 K, ω = 1000 rad/s, and λ = 80. r =
0 W/kg, θ0 = 290 K, and q0 = 1×104).
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