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This paper investigates and characterises the major fault detection signal features and techniques for the diagnostics
of rotating element bearings and air leakage faults in high-speed centrifugal blowers. The investigation is based on
time domain and frequency domain analysis, as well as on process information, vibration, and acoustic emission
fault detection techniques. The results showed that the data analysis method applied in this study is effective, as
it yielded a detection accuracy of 100%. A lookup table was compiled to provide an integrated solution for the
developer of Condition-Based Monitoring (CBM) applications of centrifugal blowers. The major contribution of
this paper is the integration and characterisation of the major fault detection features and techniques.

1. INTRODUCTION

Condition-Based Monitoring (CBM) is a strategy aimed at
extending machine life, lowering maintenance cost, and in-
creasing both productivity and profitability.1 Unlike preven-
tative maintenance, which is based on servicing a machine at
scheduled intervals, CBM relies upon actual machine health
condition to diagnose faults and to determine when the main-
tenance is required. The specific advantage of condition mon-
itoring is that potential degradation or failure can be detected.
This technique enables the user to take maximum advantage
of the useful life of a component, such as a bearing, since the
equipment can be left in service if its operational performance
meets the desired performance standards.2

Centrifugal compressors are widely used in the industry, and
in particular in the oil and gas industries, as they compress the
propane and mixed refrigerants in the liquefaction process. A
15 HP industrial centrifugal blower was employed for the emu-
lation of high-speed centrifugal blowers. Due to the similarity
between centrifugal blowers and centrifugal compressors,3 this
work can be extended to centrifugal compressors and centrifu-
gal equipment.

The global structure of the generally used monitoring sys-
tem can be divided into three main sections: The first phase
is data collection, with data reports gathered in a digital form.
The second phase is acquisition, which entails calculation of
the statistical values and functions in time and frequency do-
main with integrated data reduction by fault and operational

pattern. The more difficult third phase of automatic fault diag-
nostics is still under development and permanently adapted to
the necessities of industrial applications, mainly dependent on
the acting personnel at the monitoring system.4

Machine condition, machine faults, and on-going damage
can be identified in operating machines by fault symptoms and
signatures. Mechanical vibration, acoustic emission (AE), and
process information are the three major fault detection tech-
niques in addition to monitoring changes in process operat-
ing parameters, such as pressure, temperatures, and efficiency.
Thus, this study will provide a characteristics investigation
based on these major techniques, which should be included in
any full capabilities condition-based maintenance system. In-
tegrating these techniques can yield early detection and trend-
ing of numerous equipment faults. Moreover, it could have a
potential to reduce false alarms due to noise and fault interfer-
ence issues.

Vibrations of machines are the results of the dynamic forces
due to moving parts and structures (for example, foundations),
which are interlinked to the machine and its mechanical prop-
erties. All machine components generate specific vibration
signatures which are then transmitted to the machine’s struc-
ture. Vibration analysis detects repetitive motions of a sur-
face on rotating or oscillating machines. The repetitive mo-
tions may be caused by unbalance, misalignment, resonance,
electrical effects, rolling element bearing faults, or many other
problems. The various vibration frequencies in a rotating ma-
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chine are directly related to the geometry and the operating
speed of the machine. By knowing the relationship between
the frequencies and the types of defects, vibration analysts can
determine the cause and severity of faults or problem condi-
tions. The history of the machine and the previous degradation
pattern are important factors in determining the current and fu-
ture operating condition of the machine. Frequency, displace-
ment, velocity acceleration, and phase angle are the major five
characteristics of rotating machine vibration.5

Unlike the mechanical vibration technique, the AE tech-
nique is less affected by noise and detects faults such as friction
in bearing in their early stages. All rotating equipment pro-
duces frictional forces with high frequency ultrasonic signa-
tures, which are often masked by ambient plant noise and low
frequency vibrations.6 As the defect size increased, acoustic
emission, root mean square, maximum amplitude, and kurto-
sis values increased; however, observations of corresponding
parameters from vibration measurements were disappointing.7

For rotating machinery, the most commonly measured AE
parameters for diagnostics are amplitude, RMS, energy, kur-
tosis, crest factor, counts, and events. Observations of the
frequency spectrum, whilst informative for traditional non-
destructive evaluation, were found to have a limited success
in machinery monitoring. This is primarily due to the broad
frequencies associated with the sources of generation of AE in
rotating machinery. For example, the transient impulse associ-
ated with the breakage of contacting surface asperities experi-
encing relative motion will excite a broad frequency range.6

The process parameters such as pressure, temperature, vi-
bration, and flow rate, and material samples such as oil and
air are also used to monitor machine conditions. With these
parameters and samples, condition-based maintenance obtains
indications of system and equipment health, performance, and
integrity, and provides information for scheduling timely cor-
rection.8

Tandon and Nakra investigated AE counts and peak ampli-
tudes for an outer race defect using a resonant type transducer.
It was concluded that AE counts increased with increasing load
and rotational speed. However, it was observed that AE counts
could only be used for defect detection when the defect was
less than 250 µm in diameter, though AE peak amplitude pro-
vided an indication of defects irrespective of the defect size.8

Rogers utilised the AE technique for monitoring slow rotating
anti-friction slew bearings on cranes employed for gas produc-
tion, and obtained encouraging results compared to vibration
monitoring techniques. Rubbing of the crack faces, grinding
of the metal fragments in the bearing, and impacts between the
rolling elements and the damaged parts in the loaded zone were
identified as sources of detectable AE signatures. The author
stated that “because of the slow rotational speed of the crane,
application of conventional vibration analysis (0–20 kHz) was
of limited value for on-line condition monitoring.” AE reso-
nant transducers between 100 kHz and 300 kHz were found to
be informative for online monitoring of bearings using kurto-
sis at different frequency bands.9 Wang and Hu investigated
uncertainties and ambiguities that exist between pump fault
symptoms and the events using a spectral features-based tech-
nique. The research resulted in an effective approach to solve
the problem of fault diagnostics. Fuzzy logic was used to
model the uncertainty and ambiguity relationship among dif-
ferent faults, analyse the fuzzy information that existed in the

Figure 1. Two frequency spectra represent (a) sample fault, (b) second fault
with the same sample fault on the second inlet valve.10

different phases of fault diagnostics and condition monitoring
of the pump, and classify frequency spectra that represented
various pump faults.10 The author concluded that the condi-
tion recognition and fault diagnostics were detected through
the fuzzy comprehensive discrimination according to the de-
fuzzy diagnostic criteria. Two vibration spectra for the faulty
device are shown in Fig. 1. Schultheis, et al. studied different
techniques used in machine heath condition monitoring of mo-
tors. They compared the online versus periodic monitoring and
proven versus effective techniques. The following techniques
were found to be effective: ultrasound vibration, mechanical
vibration, temperature, rod run out, and pressure velocity mea-
surements. For gas leaks, ultrasonic vibration measurement
was preferable to mechanical vibration. The online monitoring
was effective in decreasing the chance of catastrophic failures,
as well as maintenance and shutdown costs.11

Based on the above research, the AE, vibration, and process
information are the most utilised CBM techniques. It can be
also concluded that the acoustic emission technique proved its
effectiveness over other techniques for CBM of rotating equip-
ment. The utilisation of the multi-fault detection technique
maximises the efficiency and accuracy of diagnosing faults.
The fault detection technique must be properly selected based
on the fault type.

This paper is divided into eight sections. The first section
provides an introduction to CBM and fault detection tech-
niques. Section two describes the methodology employed in
this study. Section three illustrates the experimental setup,
while section four shows the design of the experiment. Section
five presents the results of the fault diagnostic using the major
fault detection techniques. Section six presents the developed
lookup table, which summarizes the results of the character-
istics investigation. Section seven discusses the results, and
section eight concludes the results of the study.

2. METHODOLOGY

Three major fault detection techniques, in addition to five
time domain and frequency domain signal features, will be
investigated and compared with respect to their capability of
diagnosing a centrifugal air blower’s faults using a 15 HP in-
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dustrial air blower system, high-speed NI DAQ system, broad
frequency range AE sensor, vibration sensor, and a pressure
sensor.

This paper will utilise a recent Fast Fourier Transform
(FFT)-based segmentation and features selection algorithm in
the selection of best spectral feature sets.12 A “lookup table”
will then be developed to characterise the major fault detection
techniques and signal analysis methods for the condition-based
monitoring of centrifugal blowers. The table will combine in-
formation from several fault detection techniques, including
AE vibration, pressure, crest factor, energy factor, RMS, am-
plitude, and spectral features. This approach is found to have
great potential for the development of CBM systems for typical
centrifugal equipment and improves the accuracy of detection
compared with the use of a single fault detection technique.

3. EXPERIMENTAL SETUP

Experimental tests were conducted in a laboratory environ-
ment hosted by Qatar University using a Paxton AT1200 in-
dustrial single-stage centrifugal air blower system. The blower
has a maximum flow rate of 800 CFM @70” W/C. Figure 2
shows the single-stage centrifugal blower.

The air blower system consists of a 15 HP DC motor, a DC
inverter for motor speed control, a 4” hose, a 4” air flow control
valve, and a centrifugal air blower. Four factory calibrated AE
sensors from Physical Acoustics were utilised to measure the
acoustic signals, along with two low frequency range sensors
with an operating range of 35–100 kHz (Model: R6a) and two
high frequency range sensors with an operating range of 100–
1000 kHz (model: UT1000). The AE sensors were positioned
as close as possible to the bearings, as shown in Figs. 3 and 4.
However, the AE sensor can measure any frequency outside its
operating bandwidth, but with less sensitivity. A 70 g triax-
ial vibration sensor was positioned midway between the shaft
bearings, and a pressure sensor was installed in the outlet pipe
and was positioned 50 cm away from the outlet of the blower.

The schematic of the experimental setup is shown in Fig. 4.
The AE sensors were attached to signal conditioners and pro-
grammable low pass filters with isolated grounds to combat
the problem of aliasing in sampling signals. A cut-off fre-
quency of 200 kHz was set to attenuate high frequency AE
signals. The models of bearings A and B are DKT-7203BMP
and FAG-2203TV, respectively. The data was collected using
an MSeries- PCI 6250 National Instruments data acquisition
board with 16 channels, 16-bit resolution, and a 1.25 MS/s
sampling rate.

4. DESIGN OF EXPERIMENT

Bearing problems account for over 40% of machine break-
downs.8 Thus, this experimental work focuses on bearings
faults in centrifugal blowers, and investigates the issue of fault
interference, as well. Typical causes of bearing faults are ex-
cessive load, overheating, false brinelling, true brinelling, nor-
mal fatigue failure, reverse loading, contaminations, lubricant
failure, corrosion, misalignment, loose fits, and tight fits.13

Two typical bearing failure modes were selected to evaluate
the addressed detection techniques — true brinelling and nor-
mal fatigue failures. Brinelling occurs when loads exceed the

Figure 2. Single stage centrifugal blower.

Figure 3. Positions of AE sensors.

elastic limit of the ring material. Brinell marks show as inden-
tations in the raceways, and these increase bearing vibration
(noise). Severe brinell marks can cause premature fatigue fail-
ure. Fatigue failure, usually referred to as spalling, is the frac-
ture of the running surfaces and subsequent removal of small
discrete particles of material. Spalling can occur on the inner
ring, outer ring, or balls.13

Figure 5 illustrates the faults in bearings A and B. Bear-
ing A has a 2 mm throughout hole in the outer race to em-
ulate a brinelling fault, while bearing B has four notches in
both sides with a maximum notch width of 1.5 mm to em-
ulate a fatigue fault. Five Machine Conditions (MC) were
emulated at an ambient temperature of 22oC as shown in Ta-
ble 1. Several tests were conducted under three different opera-
tional speeds to check the functionality and proper installation
of sensors using the experimental setup shown in Fig. 3. To
control the speed-related risks, the speed was increased from
3,600 to 6,960 RPM, and then to 15,650 RPM. The R6a sen-
sor, which was directly positioned above bearing A, gave the
highest reading at 15,650 RPM. Hence, as the experiment was
designed to have only one AE sensor, the bearing A R6a sensor
was selected for its proper installation and high sensitivity. In
this study, the measured AE frequencies ranged from 2 kHz to
121 kHz.

Five experiments were conducted in a laboratory at the
maximum blower rotational speed of 15,650 RPM (maximum
power). The operating point of the blower was set to maximum
to emulate industrial air blower systems. The first experiment
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Figure 4. The schematic of the experimental setup.

Table 1. Machine health conditions.

Machine Bearing A Bearing B Air leakageCondition
MC 1 Healthy Healthy No
MC 2 Healthy Healthy Yes
MC 3 Outer race defect Healthy No
MC 4 Healthy Outer race defect No
MC 5 Outer race defect Outer race defect No

emulated the healthy condition, the second experiment emu-
lated the air leakage problem, and the remaining experiments
emulated the three bearing fault conditions. Faults emulated
in MC 5 are a combination of MC 3 and MC 4 faults. The
flow control valve was partially closed to maintain an outlet
air pressure of 1.165 BarA. To emulate the air leakage problem
(MC 2), the control valve was set to fully open. The majority
of air leakages occur because of either a crack in blower case,
rapture in hose, or a joint failure. The data were sampled using
the high speed NI DAQ board at a sampling rate of 1 MS/s for
a time period of 187 seconds. For each of the five conditions,
10 data sets were collected at a fixed time interval of 13 second
(one set every 13 second). Each data set had a size of 1×106

samples and a sampling rate of 1 MHz. The first samples for
the five machine conditions were taken 60 seconds after the
blower reached its full rotation speed. Fifty percent of the 50
data set were used for training while the remaining sets were
used for testing.

5. FAULT DIAGNOSTIC USING MAJOR
FAULT DETECTION TECHNIQUES

In this section, the fault detection capabilities of the three
major fault detection techniques14 are investigated and as-
sessed for the diagnostics of typical centrifugal blowers’ faults,
namely Acoustic Emission (AE), vibration, and process infor-
mation techniques.

5.1. Acoustic Emission Technique
The AE signals were measured using bearing A R6a AE

sensor. Four samples were collected for each machine condi-
tion. Matlab was used to calculate the following time domain
features: RMS, amplitude, crest factor, and energy. The fre-
quency domain was also utilized and the AE spectral features

(a) Bearing A

(b) Bearing B

Figure 5. Notches in the outer races of bearings A and B.

were extracted. Machine conditions were grouped into three
different groups. The first group includes MCs 1 and 2, the
second group includes MCs 3 and 5, and the third group in-
cludes MC 4 only.

Table 2 shows the RMS values of training sets. The RMS
values shown in Table 2 can be used to detect MC 1, MC 2,
MC 4, and group 2. The principal drawback of the AE RMS
feature is that it cannot be utilized for the detection of all ma-
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Table 2. AE RMS Values (V).

1 2 3 4 Min Max
MC 1 0.294 0.310 0.310 0.306 0.294 0.310
MC 2 0.342 0.352 0.325 0.321 0.321 0.352
MC 3 0.575 0.611 0.607 0.603 0.575 0.611
MC 4 2.824 2.834 2.552 2.468 2.468 2.834
MC 5 0.713 0.593 0.470 0.457 0.457 0.713

Table 3. AE maximum amplitude values (V).

1 2 3 4 Min Max
MC 1 1.347 1.445 1.389 1.273 1.273 1.445
MC 2 1.917 2.037 1.564 1.635 1.564 2.037
MC 3 4.622 4.494 4.520 5.015 4.494 5.015
MC 4 10.512 10.555 10.207 9.979 9.979 10.555
MC 5 4.465 3.638 3.521 3.588 3.521 4.465

Table 4. AE crest factors.

1 2 3 4 Min Max
MC 1 4.585 4.662 4.486 4.165 4.165 4.662
MC 2 5.602 5.785 4.816 5.097 4.816 5.785
MC 3 8.044 7.351 7.449 8.319 7.351 8.319
MC 4 3.723 3.724 3.999 4.043 3.723 4.043
MC 5 6.262 6.137 7.493 7.845 6.137 7.845

chine conditions.
Table 3 shows the calculated signal maximum amplitudes

of the training sets. The Maximum amplitude feature can be
used to differentiate between all machine faults. For several
machine conditions, the maximum amplitude values are close
to each other, which will definitely affect the accuracy of de-
tection.

Table 4 presents the calculated crest factors of training sets.
The crest factor is equal to the RMS value divided by the max-
imum amplitude of the same signal. The crest factor feature
can be utilized to differentiate between MC 1, MC 2, MC 4,
and group 2. This time domain feature cannot be utilized for
the detection of all machine faults.

Table 5 displays the AE energy values of training sets. The
energy feature can be utilized to differentiate between MC 1,
MC 2, MC 4, and group 2. As the difference between the en-
ergy values of MC 1 and MC 2 is large, this time series feature
can be better utilized to differentiate between MC 1 and MC 2
which gives the energy feature a benefit over RMS, amplitude
and crest factor features. The main drawback is that the energy
feature cannot be utilized to detect all machine conditions.

Figure 6 illustrates the difference in the values of RMS, crest
factor, amplitude, and energy time domain AE signal features.
Although the energy feature is best in comparison to others,
it cannot be fully utilized to differentiate between condition 3
and 4.

An FFT-based segmentation and features selection algo-
rithm was utilized to check the suitability of AE spectral fea-
tures for the detection of machine conditions. The range of
the measured AE frequency was 2 kHz to 121 kHz. Moreover,
the algorithm investigated the segment sizes (number of divi-
sions) that can be utilized for pattern classification. The selec-

Table 5. AE energy values (J).

1 2 3 4 Min Max
MC 1 86,261 96,088 95,869 93,358 86,261 96,088
MC 2 117,079 124,004 105,439 102,940 102,940 124,004
MC 3 330,158 373,780 368,167 363,459 330,158 373,780
MC 4 7,973,092 8,031,877 6,514,243 6,093,149 6,093,149 8,031,877
MC 5 508,308 351,403 220,829 209,173 209,173 508,308

Figure 6. Graphical presentation for the AE RMS, amplitude, crest factor and
energy values.
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Table 6. Segmented FFT AE spectra.

S MC 1 MC 2 MC 3 MC 4 MC 5
121 kHz 0 1 0 1 0
120 kHz 0 1 0 1 0
119 kHz 1 1 1 1 1
118 kHz 0 0 1 1 1
117 kHz 1 1 0 1 1
116 kHz 1 1 0 1 1
115 kHz 0 1 0 1 1
114 kHz 0 1 1 1 1
113 kHz 0 1 1 1 1
112 kHz 0 1 1 1 1
111 kHz 0 1 1 1 1
110 kHz 0 1 1 1 1
109 kHz 0 1 1 1 1
108 kHz 1 1 1 1 1

107: 2 kHz 1 1 1 1 1
1 kHz 1 1 1 1 1

Table 7. AE crest factors.

1 2 3 4 Min Max
MC 1 1.663 1.655 1.633 1.629 1.629 1.663
MC 2 1.660 1.660 1.662 1.662 1.660 1.662
MC 3 1.872 1.853 1.828 1.823 1.823 1.872
MC 4 1.668 1.653 1.628 1.626 1.626 1.668
MC 5 1.685 1.668 1.636 1.630 1.630 1.685

tion of the most suitable maximum Segment size (S) depends
on the detection accuracy required.12 Table 6 shows the detec-
tion accuracy at different segment sizes where 0 means that the
fault cannot be detected at this maximum segment size, while 1
means that the fault can be detected. All machines conditions
were detected at a maximum segment size of 108 kHz and a
confidence level of 3. At this segment size, the AE frequency
spectrum was divided into two divisions; the first frequency
division ranged from 2 kHz to 108 kHz, while the second di-
vision ranged from 108 kHz to the maximum measured fre-
quency, 121 kHz. At a segment size of 1 kHz, all machine
conditions were successfully detected with a confidence level
of 93. At this segment size, the AE frequency spectrum was
divided into 119 equal divisions of 1 kHz each.

The confidence level is defined as the difference between
the highest number of matching features between the signal
features and the corresponding fault benchmark features, and
between the second highest number of matching features be-
tween the same signal features and another fault benchmark
features. The larger the value of the difference, the better con-
fidence level.12

5.2. Vibration Technique
Due to the high stiffness of the blower structure in the ver-

tical and horizontal directions, the vertical and horizontal vi-
bration signals were weak, and peak amplitudes were close to
each other. Hence, the axial vibration signals were found to be
more informative. The axial RMS vibration values of the train-
ing sets shown in Table 7 can be used only for the detection of
MC 3. All other machine conditions have very close RMS val-
ues, which prevents the use of this feature for the detection of
fault conditions of a centrifugal blower.

The maximum amplitudes of all vibration signals are almost
equal, and the maximum amplitude feature cannot be utilized
for the detection of faults. The vibration crest factors of the
four training sets can be utilized only for the detection of MC 3
(see Table 8). All other machine conditions have very close
crest factors, which prevents the use of this feature for the de-

Table 8. AE crest factors.

1 2 3 4 Min Max
MC 1 2.999 3.018 3.056 3.068 2.999 3.068
MC 2 3.003 2.999 3.008 2.992 2.992 3.008
MC 3 2.671 2.696 2.733 2.740 2.671 2.740
MC 4 2.994 3.023 3.066 3.073 2.994 3.073
MC 5 2.962 2.997 3.051 3.052 2.962 3.052

Table 9. AE crest factors.

1 2 3 4 Min Max
MC 1 922,397 913,554 889,123 884,541 884,541 922,397
MC 2 918,251 918,949 920,443 920,779 918,251 920,779
MC 3 1,167,622 1,144,503 1,114,004 1,107,512 1,107,512 1,167,622
MC 4 927,033 911,303 883,697 881,439 881,439 927,033
MC 5 946,480 927,465 892,592 885,805 885,805 946,480

Table 10. Segmented FFT vibration spectra.

S MC 1 MC 2 MC 3 MC 4 MC 5
10 Hz 1 1 1 1 1
110 Hz 1 1 1 1 1
210 Hz 1 1 1 1 1
310 Hz 1 0 1 1 1
410 Hz 1 0 1 1 1
510 Hz 1 0 1 0 1
610 Hz 1 1 1 1 0
710 Hz 0 0 1 0 0
810 Hz 1 1 1 1 1
910 Hz 1 1 1 1 0

1010 Hz 0 1 1 1 0
1110 Hz 0 1 1 1 0
1210 Hz 0 1 1 1 0
1310 Hz 0 0 1 1 0
1410 Hz 0 0 1 1 0
1510 Hz 0 0 1 0 0
1610 Hz 0 0 1 0 0
1710 Hz 0 0 1 0 1
1810 Hz 0 1 1 1 1
1910 Hz 0 1 1 1 1

tection of fault conditions of a centrifugal blower.
The calculated energy values of the training sets shown in

Table 9 can be utilized only for the classification of MC 3.
All other machine conditions have intersected values, which
prevents the use of this feature for the detection of machine
faults.

Figure 7 illustrates the difference in the values of RMS,
crest factor, and energy time domain vibration signal features.
Based on the values shown in Fig. 7, the vibration time do-
main features can be effectively utilized to detect MC 3. The
features of other machine faults interfered, however, and can-
not be utilized for detecting other machine faults such as MC 1,
MC 2, MC 4 and MC 5.

Table 10 shows the detectability of all machine conditions
at different segment sizes.12 All machine conditions were de-
tected at a Segment size (S) of 210 Hz and a confidence level
of 4. At segment sizes of 10 and 110 Hz, all machine condi-
tions were successfully detected. The confidence levels were
46 and 7, respectively.

5.3. Process Information Technique
The average pressure information was selected to be inves-

tigated as a major process information for centrifugal blow-
ers. A pressure sensor was installed in the air outlet tube to
record the operating pressure. The average pressure shown in
Table 11 was calculated based on four consecutive reading for
each machine condition. The analysis showed that this feature
can only be utilized for the classification of MC 2.
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Figure 7. Graphical presentation for the vibration RMS, crest factor and en-
ergy features.

6. RESULTS AND DISCUSSION

A multi-fault detection technique was utilised for the
condition-based monitoring of centrifugal blowers. Eleven
features were extracted for each machine condition. The
lookup table shown in Table 12 was built based on the
results of benchmark thresholds and verification samples.
“Weak” means that the minimum difference between bench-
mark threshold of this machine condition and the benchmark
thresholds of other machine conditions (or the value confi-
dence level) is less than or equal to 10 percent; “Good” means
that the minimum difference is greater than 10 percent and less
than 20 percent; “Strong” means that means that the minimum
difference is greater than 20 percent but less than 30 percent;
and “Very Strong” means that the minimum difference is equal
to or greater than 30 percent. A tailor-made classification pro-

Table 11. Segmented FFT vibration spectra.

Average pressure ( BarA ) Average pressure ( BarG )
MC 1 1.165 0.165
MC 2 1.067 0.067
MC 3 1.161 0.161
MC 4 1.157 0.157
MC 5 1.150 0.150

gram was developed using MATLAB, based on the illustrated
lookup table, and it yielded a detection accuracy of 100 per-
cent. The use of multi-detection and multi-feature techniques
significantly minimised the potential of fault interference and
provided a better detection scheme.

Samples were collected from all machine conditions — 50
AE samples, 55 vibration samples, and 50 pressure samples.
Of all the samples, 44 percent were utilised to identify the
benchmark thresholds, and 56 percent were utilised for the
evaluation of detection accuracy. RMS and energy features of
AE signals proved their efficiency in detecting MC 1, MC 2,
MC 4, and group 2 with a detection accuracy of 100 per-
cent. The crest factor and amplitude features detected MC 4,
group 1, and group 2 with a detection accuracy of 100 percent.
The main drawback of the AE time domain features is that
MC 3 and MC 5 are always undetectable. The AE spectral fea-
tures proved their effectiveness over time domain features, as
they successfully detected all faults at any segment size smaller
than or equal to 108 kHz with a detection accuracy of 100 per-
cent.

RMS, amplitude, crest factor, and energy features of vibra-
tion signals demonstrated their efficiency in detecting MC 3
with a detection accuracy of 100 percent. The main draw-
back of the vibration time domain features is that MC 1, MC 2,
MC 4, and MC 5 are undetectable. The vibration spectral fea-
tures failed to detect all machine conditions at segment sizes of
200 and 300 Hz. However, the vibration spectral features tech-
nique proved its greater effectiveness over time domain fea-
tures, as it successfully detected all machine conditions at a
segment size of 100 Hz with a detection accuracy of 100 per-
cent. The failure in detecting faults at 110 and 210 Hz was
expected due to the small confidence level values at those seg-
ment sizes. The confidence level values at 10, 110, and 210 Hz
are 46, 7, and 4, respectively.12

The pressure information proved its efficiency in detecting
MC 2 with an accuracy of 100 percent. The main drawback of
this technique is that the pressure information did not provide
enough information for the detection of other machine condi-
tions. It can be observed that fault interference occurred in
MC 5, as the faults of MC 3 and MC 4 interacted together and
produced a new fault signature. This study is limited to similar
high-speed industrial centrifugal blowers, and was carried out
at a specific ambient temperature and operation time. Due to
the similarity between blowers and compressor, the results of
this study can be extended to centrifugal compressors.

7. CONCLUSION

The presented work investigated bearing and air leakage
faults of centrifugal blowers using three major fault detection
techniques — namely acoustics, vibration, and pressure infor-
mation. The proposed “lookup” table provides an integrated
solution for the fault diagnostics of typical centrifugal equip-
ment to maximise the accuracy of detection and to avoid false
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Table 12. A lookup table for the classification of centrifugal blower faults.

MC 1 MC 2 MC 3 MC 4 MC 5 Group 1 Group 2
AE

RMS Weak Weak Very Strong X X Strong
Amplitude X X Very Strong X Strong Strong

CF X X Weak X Weak Weak
Energy Weak Weak Very Strong X X Very Strong

FFT @S<90 kHz Very Strong Very Strong Very Strong Very Strong Very Strong X X
Vibration

RMS X X Good X X X X
Amplitude X X X X X X X

CF X X Weak X X X X
Energy X X Good X X X X

FFT@ S=10 Hz Good Good Good Good Good X X
Pressure

Average (BarG) X Very strong X X X X X

alarms. An accurate assessment of the three major condition-
based monitoring techniques was given in this article using five
time domain and frequency domain features, with a total num-
ber of 11 different feature sets for each machine condition.

AE and vibration time domain features failed to detect the 5
addressed machine conditions, while the AE and vibration fre-
quency domain features managed to detect all of the addressed
faults with a detection accuracy of 100 percent. The pressure
information was only useful in detecting the air leakage prob-
lem (MC 2). The AE technique proved its greater effectiveness
over vibration and pressure information techniques, except in
the case of leakage, where the pressure information technique
was competitive. In comparison to time domain features, the
FFT spectral (frequency domain) features were best for the de-
tection of high-speed centrifugal air blower faults. The fault
interference occurred during experimentation. Two faults sig-
nals, MC 3 and MC 4, interacted with each other in an unex-
pected way, which resulted in new fault signatures. Fault inter-
ference usually results in a new fault signature, or in masking
one or more of the existing failures. A full capacity CBM sys-
tem that collectively use the best features and fault detection
techniques can be developed based on the results of this study.
The collective utilization of the major signal features and fault
detection techniques could have the potential to reduce false
alarms due to noise and fault interference issues.

Future research could investigate other blower faults in
addition to the utilisation of different faults detection tech-
niques, such as temperature measurements, thermal imaging,
and wavelet analysis. Moreover, further experimentation could
be carried out to apply the result of this study to similar indus-
trial centrifugal blowers and compressors at different condi-
tions or to different types of blowers. The issue of fault inter-
ference exists, and needs further investigation.
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