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The Adomian decomposition method (ADM) and high-pass filters are employed in this study to investigate the
free vibrations and damage detection of cracked Euler-Bernoulli beams. Based on the ADM and employing some
simple mathematical operations, the closed-form series solution of the mode shapes can be determined for beams
consisting of an arbitrary number of cracks under general boundary conditions in a recursive way. Then, a high-
pass filter is used to extract the irregularity profile from the corresponding mode shape. The location and size of
the cracks in the beam can be determined by the peak value of the irregularity profile. The numerical results for
different locations and depths of cracks on the damaged beam under different boundary conditions are presented.
The results show that the proposed method is effective and accurate. The experimental work for aluminium can-
tilever beams with one and two cracks was performed to verify the proposed method. The successful detection
of cracks in the beam demonstrates that the proposed method has great potential in crack detection of beam-type
structures, as it is simple and does not require the mode shapes of an uncracked beam as a baseline.

1. INTRODUCTION

Recently, many vibration-based damage detection tech-
niques have been developed due to their non-destructive na-
ture.1–3 The popularity of these techniques is based on the
fact that the loss of stiffness due to structural damage changes
the dynamic response of the structure. With these techniques,
damages can be detected by monitoring the vibration param-
eters, such as damping ratios, natural frequencies, and mode
shapes.

Mode shapes and/or their derivatives are generally used to
predict the location and the size of the damage rather than
natural frequencies. Because the natural frequencies are the
global features of the structure, it is difficult to determine the
damage location with a frequency-based method.1 Since the
1990s, a lot of damage detection algorithms based on mode
shape have been proposed for damage detection and localiza-
tion.1, 2, 4, 5 Most of these methods require knowing the mode
shapes of the health structures, which are difficult to obtain
(and sometimes impossible), in order to establish a baseline
for damage detection.

If the applicability of the mode shaped-based damage de-
tection approach could be extended by eliminating the need
for the baseline mode shapes, this approach would be signif-
icantly expanded in structural damage detection applications.
Because of this potential, the non-baseline mode shape-based
damage detection approaches have received more and more at-
tention. Recently, Qiao and Cao6 calculated the fractal dimen-
sion (FD) and waveform fractal dimension (WFD) of the mode
shape from a cracked beam to determine the damage location

and quantification. Ismail, et al.7 used fourth derivatives of
the mode shapes to directly identify the location of damage
for reinforced concrete beams. The application of 1-D and 2-
D wavelet transform methods to displacement mode shape for
damage detection of beam and plate structures have also been
extensively investigated.8, 9

Ratcliffe, et al.10, 11 proposed the gapped smoothing method
(GSM) and the global fitting method (GFM) for damage detec-
tion. The GSM and GFM do not require data from the undam-
aged structure. By applying GSM or GFM to the mode shapes
of the damaged structures, a smoothing curve, which could be
regarded as a substitution for the mode shape from the undam-
aged structure, can be extracted. The GSM and GFM later
used the operating deflection shape and its curvature data, and
were extended to directly use two-dimensional COS data for
damage detections.12–14

Recently, Wang and Qiao15 proposed an irregularity-based
method to detect the cracks in beam structures. In this method,
The Gaussian filter and triangular filter are applied on the mode
shapes to extract the irregularities from the mode shape of the
cracked beam, indicating the damage in the structure. The
irregularity-based method was extended to detect the delam-
ination in composite laminated beams and plates.16, 17

In this study, high-pass filters are used to extract the irregu-
larities from the mode shapes and determine the damage situa-
tion in a beam. The aim of the paper presented here is twofold.
Firstly, mode shapes for a beam with an arbitrary number of
cracks under general boundary conditions are determined by
the Adomian decomposition method (ADM).18–22 Using the
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Figure 1. The coordinate system for a multiple-cracked beam, elastically re-
strained at both ends.

ADM, the governing differential equation for each section of
the cracked beam becomes a recursive algebraic equation. The
boundary conditions and continuity conditions at crack loca-
tions become simple algebraic frequency equations that are
suitable for symbolic computation. Moreover, after some sim-
ple algebraic operations on these frequency equations, we can
obtain the natural frequency and corresponding closed-form
series solution of mode shape simultaneously.

As a second aim, this paper seeks to detect the location and
depth of cracks in beam structures by using high-pass filters.
The mode shapes are filtered by using a 3rd-order Butterworth
high-pass filter, and their irregularities are extracted. The nu-
merical calculation with different crack locations, depths, and
number are discussed for a damaged beam under different
boundary conditions. Finally, by using two aluminium can-
tilever beams with one and two cracks, the experimental dam-
age detection was performed to verify the proposed method.

2. THE ADM FOR A CRACKED BEAM

Consider the free vibration of a uniform Euler-Bernoulli
beam of length L consisting of J open cracks elastically re-
strained at both ends, as shown in Fig. 1. It is assumed that the
cracks are located at L1, L2, . . . , LJ−1, and 0 < L1 < L2 <

. . . < LJ < L. The beam is divided into (J + 1) sections with
the (J + 1) mirror systems of reference xj (j = 0, 1, . . . , J).

The ordinary differential equation describing the free vibra-
tion in each section is as follows:

d4φj(xj)

dx4
j

−msω
2

EI
φj(xj) = 0, xj ∈ [0, Lj ], j = 0, 1, . . . , J ;

(1)
where subscript j denotes the beam between the jth crack and
(j + 1)th crack. φj(xj) and ω are the structural mode shape
and the natural frequency, respectively. E is Young’s modulus.
I = bh3

12 is the cross-sectional moment of inertia of the beam.
ms = ρbh is the mass per unit length. ρ, b, and h are the
density, width, and thickness of the beam, respectively.

Equation (1) can be rewritten in dimensionless form as fol-
lows:

d4Φj(Xj)

dX4
j

− Ω4Φj(Xj) = 0, Xj ∈ [0, Rj ]; (2)

where Xj =
xj

L , Φj(Xj) =
φj(xj)
L , Rj =

Lj

L , Ω4 = msω
2L4

EI ,

Ω is the dimensionless natural frequency, and the nth dimen-
sionless natural frequency is denoted as Ω(n).

According to the ADM,18–22 φj(Xj) in Eq. (2) can be ex-
pressed in terms of an infinite series

Φj(Xj) =

∞∑
m=0

Φ
[m]
j (Xj); (3)

where the component function Φ
[m]
j (Xj) will be determined

recurrently.
If a linear operator G = d4

dX4 is imposed, the inverse op-
erator of G is therefore a 4-fold integral operator defined by
G−1 =

∫∫∫∫
(. . .)dXdXdXdX , and

G−1G [Φj(Xj)] = Φj(Xj)− Φj(0)− dΦj(0)

dXj
Xj −

d2Φj(0)

dX2
j

X2
j

2
− d3Φj(0)

dX3
j

X3
j

6
. (4)

Applying this on both sides of Eq. (2) with G−1, we get

G−1G [Φj(Xj)] = Ω4G−1 [Φj(Xj)] =

= Ω4G−1

[ ∞∑
m=0

Φ
[m]
j (Xj)

]
. (5)

Comparing Eqs. (4) and (5), we get

Φj(Xj) = Φj(0) +
dΦj(0)

dXj
Xj +

d2Φj(0)

dX2
j

X2
j

2
+

d3Φj(0)

dX3
j

X3
j

6
+ Ω4G−1

[ ∞∑
m=0

Φ
[m]
j (Xj)

]
. (6)

Finally, by using Eq. (3), the approximated solution of Eq. (6)
can be determined by using the following recurrence relation:

Φ
[0]
j (Xj) = Φj(0) +

dΦj(0)

dXj
Xj +

d2Φj(0)

dX2
j

X2
j

2
+

d3Φj(0)

dX3
j

X3
j

6
; (7)

Φ
[m]
j (Xj) = Ω4G−1

[
Φ

[m−1]
j (Xj)

]
; m ≥ 1. (8)

By substituting Eqs. (7) and (8) into Eq. (3), and approximat-
ing the above solution by the truncated series, the following
equation is found:

Φj(Xj) =

M−1∑
m=0

Φ
[m]
j (Xj) =

=

3∑
s=0

dsΦj(0)

dXs

M∑
m=0

[
Ω4m

X4m+n
j

(4m+ n)!

]
. (9)

Equation (9) implies that
∑∞
m=M Φ

[m]
j (Xj) is negligibly

small. The number of the series summation limit M is de-
termined by convergence requirement in practice.

The unknown parameters dsΦj(0)
dXs (s = 0, 1, 2, 3) and Ω in

Eq. (9) can be determined based on the boundary condition
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equations and the continuity conditions of each section of the
beam.

The boundary conditions at the ends of the beam shown in
Fig. 1 can be expressed in dimensionless form as follows:

d2Φ0(0)

dX2
0

−KR0
dΦ0(0)

dX0
= 0,

d3Φ0(0)

dX3
0

+KT0Φ0(0) = 0; (10)

d2ΦJ(RJ)

dX2
J

+KRJ
dΦJ(RJ)

dXJ
= 0,

d3ΦJ(RJ)

dX3
J

−KTJΦJ(RJ) = 0; (11)

where KR0 = kR0L
EI , KT0 = kT0L

3

EI , KRJ = kRJL
EI , KTJ =

kTJL
3

EI , and RJ = LJ

L . kT0 and kTJ are the stiffness of the
translational springs, and kR0 and kRJ are the stiffness of the
rotational springs at x0 = 0 and xJ = LJ , respectively.

Substituting Eq. (9) into Eq. (10), the mode shape function
for the first section Φ0(X0) can be expressed as a linear func-
tion of Φ0(0) and dΦ0(0)

dX0
, as follows:

Φ0(X0) = Φ0(0)

{
M−1∑
m=0

[
Ω4m X4m

0

(4m)!

]
−

KT0

M−1∑
m=0

[
Ω4m X4m+3

0

(4m+ 3)!

]}
+

dΦ0(0)

dX0

{
M−1∑
m=0

[
Ω4m X4m+1

0

(4m+ 1)!

]
+

KR0

M−1∑
m=0

[
Ω4m X4m+2

0

(4m+ 2)!

]}
. (12)

Due to the localized crack effect, the crack of the beam can
be simulated as a massless spring.6 For each crack between
the two sections, conditions can be introduced which impose
continuity of displacement, bending moment, and shear. More-
over, an additional condition imposes equilibrium between the
transmitted bending moment and the rotation of the spring rep-
resenting the crack. Consequently, the continuity conditions in
dimensionless form are6, 8

Φj+1(0) = Φj(Rj),

dΦj+1(0)

dXj+1
=
dΦj(Rj)

dXj
+ θj

d2Φj(Rj)

dX2
j

; (13)

d2Φj+1(0)

dX2
j+1

=
d2Φj(Rj)

dX2
j

,

d3Φj+1(0)

dX3
j+1

=
d3Φj(Rj)

dX3
j

; (14)

where θj is the dimensionless jth crack flexibility. θj =

5.346h · J
(aj
h

)
and aj is the depth of the jth crack. J

(aj
h

)
is

the dimensional local compliance function,6, 15 given by

J
(aj
h

)
= 1.8624r2

j − 3.95r3
j + 16.37r4

j − 37.226r5
j +

76.81r6
j − 126.9r7

j + 172r8
j − 43.97r9

j + 66.56r10
j ;

(15)

Figure 2. Damage detection procedure using high-pass filter.

where rj is the dimensionless depth of the jth crack, rj =
aj
h .

Substituting Eqs. (13) and (14) into Eq. (9), the mode shapes
for the section-j (j ≥ 0) can be written as

Φj+1(Xj+1) = Φj(Rj)

M−1∑
m=0

[
Ω4m

X4m
j+1

(4m)!

]
+[

dΦj(Rj)

dXj
+ θj

d2Φj(Rj)

dX2
j

]
M−1∑
m=0

[
Ω4m

X4m+1
j+1

(4m+ 1)!

]
+

d2Φj(Rj)

dX2
j

M−1∑
m=0

[
Ω4m

X4m+2
j

(4m+ 2)!

]
+

d3Φj(Rj)

dX3
j

M−1∑
m=0

[
Ω4m

X4m+3
j+1

(4m+ 3)!

]
. (16)

Notice that there are only three unknown parameters (Φ0(0),
dΦ0(0)
dX0

, and Ω) in Eq. (16) in a recursive way. By substituting
Eqs. (16) into Eqs. (11) and (12), this boundary condition equa-
tion can be expressed as linear functions of Φ0(0) and dΦ0(0)

dX0
,

such as

f11(Ω)Φ0(0) + f12(Ω)
dΦ0(0)

dX0
= 0; (17)

f21(Ω)Φ0(0) + f22(Ω)
dΦ0(0)

dX0
= 0. (18)
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Figure 3. The first four mode shapes of the cantilever beam with two cracks.

From Eqs. (17) and (18), the dimensionless natural frequency
Ω can be solved by

f11(Ω)f22(Ω)− f12(Ω)f21(Ω) =

N∑
n=0

SnΩn = 0. (19)

Notice that Eq. (19) is a polynomial of degree N evaluated
at Ω. By using the functions sym2poly and roots in the
MATLAB Symbolic Math Toolbox, Eq. (19) can be directly
solved. The next step is to determine the nth mode shape func-
tion corresponding to the nth dimensionless natural frequency
Ω(n). Substituting the solved Ω(n) into Eq. (17) or (18), the
unknown parameter dΦ0(0)

dX0
can be expressed as the function of

Φ0(0), as follows:

dΦ0(0)

dX0
= −f11(Ω)

f12(Ω)
Φ0(0) = −f21(Ω)

f22(Ω)
Φ0(0). (20)

Substituting Eq. (20) into Eqs. (12) and (16), the mode shape
function for each section can be obtained. The mode shape
function for the entire beam can be written as

Φ(X) =
[
Φ0(X0) Φ1(X1) . . . ΦJ(XJ)

]
. (21)

It should be noted that the proposed method can be used
to analyse the vibration of beams consisting of an arbitrary
number of cracks in a recursive way, and the complexity of
the vibration is the same order of a uniform beam without any
cracks. The solution can be obtained by solving a set of al-
gebraic equations with only three unknowns, and the resultant
problem is significantly simpler compared to the one obtained
through a traditional way.

3. DAMAGE DETECTION USING HIGH-PASS
FILTER

It has been demonstrated that the mode shapes of the dam-
age structures consist the irregularities induced by the damage.
The mode shapes of the damage structures Φ(x) can be ex-
pressed as

Φ(x) = Φh(x) +R(x); (22)

Figure 4. The irregularity profile R2 for (a) the first mode shape; (b) the
second mode shape.

Figure 5. The peak R2 value of the first mode varies with the second crack
depth.

where Φh(x) is the mode shape for the health structure,R(x) is
the irregularity curve due to the damage, and R2(x) is termed
as the irregularity profile,15 which is used as a damage index
(DI) throughout this study.

However, it is impossible to directly observe the irregularity
profile R2 from the mode shape only. The irregularities on the
mode shapes should be amplified and separated to determine
the locations and sizes of damages. In this study, the irregular-
ities on the mode shapes are extracted through the separation
of damage information in frequency domain rather than tradi-
tional spatial domain. It was found that the irregularities due to
damage create an additional high-frequency component in the
amplitude spectrum of the mode shapes that is not present in
the health structures.23 This means that it is possible to extract
the irregularities of the mode shapes by using high-pass filters.
The basic idea of the damage detection procedure is shown in
Fig. 2.
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Figure 6. The first four mode shapes for the two-cracked beam with different boundary conditions (Other parameters listed in Table 1): (a) KT0 = 10,
KR0 = 20, KTJ = 100, KRJ = 200; (b) KT0 = 400, KR0 = 300, KTJ = 200, KRJ = 100; (c) KT0 = 700, KR0 = 600, KTJ = 150, KRJ = 50;
(d) KT0 = KR0 = KTJ = KRJ = 1000.

4. NUMERICAL CALCULATIONS

4.1. A Cantilever Beam with Two Cracks
In order to verify the proposed method for damage detec-

tion, a cantilever aluminium beam with two cracks at a dis-
tance of 0.3L and 0.5L from the clamped end, respectively, is
considered firstly. The relative depths of these two cracks are
the same and chosen as a/h = 0.1. The beam under anal-
ysis has the following properties: length L = 0.51 m, rect-
angular cross-section with width b = 0.03 m, and thickness
h = 0.004 m. A 3rd-order high-pass Butterworth filter is used
to extract the irregularity profile. Figure 3 shows the first four
mode shapes for the cracked beams. From Fig. 3, no effects
from the cracks can be observed in the mode shape. Figure 4
shows the extracted irregularities profileR2 of the first and sec-
ond modes. From Fig. 4, it can be found that the locations of
the cracks can be determined using the irregularity profile.

To study the ability of the proposed method to detect crack
depth, it was assumed that the location and depth of the first
crack location are R1 = 0.1 and r1 = 0.1, respectively. Fig-
ure 5 shows the effect of the depths of the peak R2 values of
the first mode at the second crack location. From Fig. 5, it can

be seen that the peak R2 value is larger when the crack depth
is increased. This means that the peak R2 value can be applied
as a criterion for crack depth.

4.2. Two Cracks Beam under General
Boundary Conditions

Because the proposed method based on the ADM technique
offers a unified and systematic procedure for vibration analy-
sis of the cracked beam with arbitrary boundary conditions, the
calculation of the natural frequencies and corresponding mode
shapes for different boundary conditions can be very easy. For
example, the modification of boundary conditions from one
case to another is as simple as changing the values of the stiff-
ness of translational and rotational springs. And it does not
involve any changes to the solution procedures or algorithms.
Table 1 lists the first four dimensionless natural frequencies
Ω(n) for the beam with two cracks with different boundary
conditions. Figure 6 shows the first four corresponding mode
shapes for the cracked beams listed in Table 1. Figure 7 shows
the extracted irregularities profile R2 of the first mode under
different boundary conditions. In all cases, the cracks can be
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Figure 7. The irregularities profile R2 of the first mode under different bound-
ary conditions shown in Fig. 6.

easily detected from the irregularity profiles.

5. EXPERIMENTAL VERIFICATION

5.1. Experiment Setup

To verify the above damage detection results, a set of lab-
oratory experiments was performed to examine its effective-
ness for real measurement data. Two applications including
the cantilever beams with one crack and two cracks are il-
lustrated. Two aluminium cantilever beams with dimensions
600×30×4 mm, Young’s modulusE = 70×109 Pa, and den-
sity ρs = 2700 kg/m3 are fabricated. The beams were clamped
at one end and free at the other, and the effective length of both
beams is 510 mm, as shown in Fig. 8(a). The cracks were
made using a saw cut. The crack is located at 255 mm from
the clamped end for the one-crack beam, and the crack loca-
tions are at 150 mm and 300 mm from the clamped end for
the other beam. The depth of all through-width cut is about
1–1.5 mm.

It is well known that there are two methods for modal test
using the impact hammer, i.e. a roving hammer or a rov-
ing accelerometer. In this study, all experiments were car-
ried out with the roving impact hammer. The beams were ex-
cited by a moving hammer from Sinocera Piezotronics, Inc.
(Yangzhou, China) with a plastic tip and a force transducer
(with the sensitivity of 4 pC/N and a load range of 0–2000 N)
at 17 points, equally spaced (every 30 mm) along the length
of the beam. The excitation points were numbered from 1
to 17, starting from the fixed end. An accelerometer from
Sinocera Piezotronics, Inc. with the weight of 28 g, sensitivity
of 50 pC/g, and a frequency range of 0.5–6000 Hz is mounted
at the opposite side of the 5th hammer excitation point (the
distance of 150 mm from the clamped end) to measure the re-
sponse of the beams. A SINOCERA dynamic signal analyser
(with 4 channels, but only 2nd and 3rd channel used) is used
to acquire the frequency response functions between force and
the accelerations, as shown in Fig. 8(b). The square and expo-

Figure 8. Photographs of (a) the cantilever beams; (b) experiment setup in the
laboratory.

Figure 9. The interpolated mode shapes for the beam (a) with one crack at
255 mm, and (b) with two cracks at 150 mm and 300 mm.

nential windows were used to filter the force and acceleration
signals, respectively. Three measurements were taken for each
impact location to help minimize variance errors. Finally, the
post-processing software (N-MODAL) was used to obtain the
modal parameters such as natural frequencies, damping ratios,
and mode shapes. N-MODAL software contains two built-in
curve-fitting methods: Peak Fit and Polynomial Fit. The Poly-
nomial Fit method was used to extract the experimental modal
parameters.

5.2. Experimental Results
In brief, only the second measured modes of the beam with

one and two cracks are used to extract the irregularity profile
R2. Notice that there are only 17 experimental measurement
points, and if the high-pass filter is directly implemented, many
points of the sample data would be detected as singularities. In
this study, a cubic spline interpolation technique is applied to
smooth the transition from one point to another. As a result, a
total number of 200 interpolated points is obtained. Figure 9
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Table 1. The first four dimensionless natural frequencies Ω(n) for a two-cracks beam under different boundary conditions (crack location R1 = 0.1, R2 = 0.4;
crack depth r1 = 0.1, r2 = 0.15).

Stiffness of springs (Boundary conditions) Mode index
KT0 KR0 KTJ KRJ 1 2 3 4

10 20 100 200 2.602601 4.221255 6.381824 9.281358
400 300 200 100 4.054168 5.662266 7.367550 9.749038
700 600 150 50 3.980091 5.712174 7.701976 9.916163

1000 1000 1000 1000 4.518749 6.915724 8.752670 10.635948

Figure 10. The irregularity profile R2 for the beam with one crack at 255 mm.

Figure 11. The irregularity profile R2 for the beam with two cracks at 150 mm
and 300 mm.

shows the interpolated mode shapes of the beam.

By using 3rd-order high-pass Butterworth filter, the irreg-
ularity profiles R2 for the mode shapes shown in Fig. 9 are
obtained and presented in Figs. 10 and 11. From Figs. 10 and
11, it can be seen that the largest peak values appear at the
crack locations. This means that the proposed method based
on high-pass filters can successfully detect the damage in ac-
tual tests.

6. CONCLUSIONS

In this study, the vibration of Euler-Bernoulli beams un-
der different boundary conditions with an arbitrary number
of cracks are analysed in a recursive way based on the Ado-
mian decomposition method (ADM). Then the high-pass fil-
ters are introduced to detect the damage for beams under dif-
ferent boundary conditions. In this method, the mode shapes
can be filtered and their irregularities due to damage are ex-
tracted. Furthermore, it is possible to determine the depth of
a crack in beams by the peak value at the crack location of
the irregularity profile. The main advantage of the proposed
method is that the information of the undamaged structure is
not required. To further validate the proposed method, the ex-
perimental damage detection was investigated using two alu-
minium cantilever beams with one and two cracks, respec-
tively. The results demonstrate favourable feasibility and ef-
fectiveness of the proposed damage detection method.
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