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The dynamic stability of a circularly tapered rotating beam subjected to a pulsating axial external excitation with
thermal gradient was studied for all possible combinations of clamped, guided, pinned, fixed, and free boundary
conditions. The equations of motion and associated boundary conditions were obtained using the extended Hamil-
ton’s principle. Then these equations of motion and the associated boundary conditions were non-dimensionalised.
A set of Hill’s equations were obtained from the non-dimensional equations of motion by the application of the
extended Galerkin method. The zones of parametric instability were obtained using Saito-Otomi conditions. The
effects of various boundary conditions, thermal gradient, taper, and rotational speed on the regions of parametric
instability were investigated and presented through a series of graphs. The results reveal that increasing rota-
tional speed and taper have stabilizing effects, whereas increasing thermal gradient has a destabilizing effect for
all boundary conditions of the beam.

NOMENCLATURE
A(x), A(ξ) Area of a generic section of the beam
A1 Cross sectional area at the end x = l
C0 Hub radius
c0 Dimensionless hub radius, = C0/l
d(x), d(ξ) Diameter of a generic section of the beam
d1 Diameter at the end, x = l
E(x), E(ξ) Young’s modulus at a generic section
E1 Young’s modulus at the end, x = l
I(x), I(ξ) Moment of inertia at a generic section
I1 Moment of inertia at the end, x = l
l Length of the beam
m(ξ) Mass distribution function
P0 Static axial load
P1 Dynamic axial load
p(τ) Dimensionless load
p0 Dimensionless static axial load
p1 Dimensionless dynamic axial load
S(ξ) Moment of inertia distribution function
T (ξ) Elasticity modulus distribution function
t Time
w(x, t) Transverse deflection of the beam
γ Coefficient of thermal expansion of the

beam material
δ Thermal gradient parameter
a∗ Diameter taper parameter
η Dimensionless transverse deflection, = w/l
ξ Dimensionless length, = x/l
τ Dimensionless time, = ct
ρ Density of the beam material

Ω Uniform angular velocity Ω of the
beam about z’-axis

Ω0 Rotational speed parameter
ω Excitation frequency
ω0 Dimensionless fundamental natural frequency
Θ Non-Dimensional excitation frequency, = ω/c
Ψ0 Reference temperature
Ψ1 Temperature at the end, ξ = 1

1. INTRODUCTION

The stability analysis and dynamic behaviour of a rotating
cantilever beam with axial orientation perpendicular to the axis
of spin is very essential for its practical applications such as
turbomachinery blades, rotor blades of helicopter, aircraft pro-
pellers, flexible appendages of spacecraft, satellite antennas,
and robotic manipulators, to name a few. In some cases the
structures have to operate under elevated temperatures. A lin-
ear relation is observed between the Young’s modulus and the
temperature of most engineering materials.

An ample number of publications are available regarding the
design and analysis of rotating structures. The flexural vibra-
tions of a rotating cantilever beam with a tip mass at the free
end has been studied by Bhat.1 He proposed the beam charac-
teristic orthogonal polynomials in the Rayleigh-Ritz method.
Liu and Yeh2 have investigated the influence of restrained pa-
rameters on the Eigen frequencies of rotating uniform and
non-uniform beams with a restrained base using Galerkin’s
method. The stability analysis of a rotating shaft due to pul-
sating torque applied at its end has been studied by Unger and
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Brull.3 They found that instability arising from the combi-
nation resonance has the most adverse effect. Kammer and
Schlack4 adopted the Krylov-Bogoliubov-Mitropolskii (KBM)
perturbation technique to solve the problem of instability due
to the time dependent angular velocity in a rotating Euler
beam. Namachchivaya5 investigated the dynamic stability of
rotating shaft under the excitation of combined harmonic and
stochastic load and derived the stability conditions explicitly
for the first and second order moments considering the shaft
as a two degrees of freedom system. Bauer and Eidel6 stud-
ied the effects on vibration and buckling of a rotating Euler
beam of uniform cross section because of its spin speed, hub
radius and aspect ratio considering an orientation perpendicu-
lar to the axis of rotation. The dynamic stability analysis of
rotating Timoshenko beam with a root flexibility using finite
element method was investigated for the first time by Abbas.7

Ishida et al.8 studied the vibration and stability of a rotating
shaft under a sinusoidal axial force assuming a four degrees of
freedom system. The stability of a tapered cantilever beam on
Winkler foundation subjected to a follower force was studied
by Lee.9 He found that the critical flutter loads of both tapered
beams and beams of a uniform cross section are unaffected by
the presence of viscous damping in the elastic foundation. Lin
and Chen10 studied the dynamic stability of rotating composite
beams using finite element method. Tan et al.12 discussed the
instability of a spinning pre-twisted beam under compressive
axial loads assuming Euler-Bernoulli beam theory (EBT) and
assumed mode method. Banerjee et al.12 applied the dynamic
stiffness method to analyse the free vibration of a rotating taper
beam that follows EBT. They derived some explicit analytical
expressions and used the Wittrick-Williams algorithm for the
solution. Shahba and Rajasekaran13 used the differential trans-
form element method (DTEM) and differential quadrature el-
ement method (DQEL) of lower order to solve the equations
of free vibration and stability of tapered Euler-Bernoulli beam
made of axially functionally graded material. Yang et al.14 de-
veloped a finite element model to study the free vibration of
a rotating uniform Euler-Bernoulli beam. They considered the
coupling of axial and transverse vibration and of elastic defor-
mations and rigid motion. Nayak et al.15 investigated the sta-
bility of a sandwich beam on viscoelastic supports subjected
to a pulsating axial load with temperature gradient. Soltani
et al.16 proposed a numerical solution based on power series
method to derive the critical buckling loads and frequency of
free vibrations for tapered thin beams. Bulut17 studied the dy-
namic stability of parametrically excited rotating tapered beam
and found that the number of instability zones increases with
the taper ratio.

A survey of literature reveals that some work has been done
on parametric instability and dynamic stability of a symmetric
rotating beam, parametric instability of a non-uniform beam
with thermal gradient resting on a Pasternak foundation, and
that of a symmetric sandwich beam for different boundary con-
ditions. However, no work has been done to study the static
and dynamic stability of a rotating tapered beam with thermal
gradient under various boundary conditions. Thus the present
work mainly deals with a theoretical study of a rotating ta-
pered beam with a pulsating load and thermal gradient under
various boundary conditions. The static and dynamic stabil-
ity of a rotating tapered cantilever beam which is fixed at one
end and subjected to an axial pulsating load and a steady, one-

Figure 1. System Configuration.

dimensional temperature gradient at the free end has been re-
ported. The effect of the rotation parameter, geometric param-
eters, taper parameter, and the thermal gradient on the nondi-
mensional static buckling loads zones and also on the paramet-
ric instability zones are investigated.

2. FORMULATION OF THE PROBLEM

2.1. System Configuration
A rotating tapered cantilever beam of length l set off a dis-

tance C0 from the axis of rotation which rotates at a uniform
angular velocity Ω about a vertical z’-axis is capable of oscil-
lating in the x–z plane. The beam is oriented along the x-axis
perpendicular to the axis of rotation as shown in Fig. 1. A pul-
sating axial force P (t) = P0 + P1cosωt is applied at the end
x = C0 + l of the beam along the point of C.G. of the cross-
section in the axial direction, with ω being the frequency of the
applied load, t being the time, and P0 and P1 being the static
and dynamic load amplitudes, respectively.

The following assumptions are made for deriving the equa-
tions of motion:

a) The material of the beam is homogeneous & isotropic in
nature.

b) The deflections of the beam are small and the transverse
deflection w(x, t) is the same for all points of a cross-
section.

c) The beam obeys Euler-Bernoulli beam theory.

d) Extensional deflection of the beam is neglected.

e) A steady one-dimensional temperature gradient is as-
sumed to exist along the central length of the beam.

f) Extension and rotary inertia effects are negligible.

The expressions for potential energy, kinetic energy and work
done are as follows:

V =
1

2

l∫
0

E(x)I(x)

(
∂2w

∂x2

)2

dx

+
1

2

l∫
0

ρA(x)Ω2(C0 + x)

x′∫
0

(
∂w

∂x

)2

dx; (1)

T =
1

2

l∫
0

ρA(x)

(
∂w

∂t

)2

dx+
1

2

l∫
0

ρΩ2A(x)w2dx; (2)
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WP =
1

2

l

∫
0
P (t)

(
∂w

∂x

)2

dx; (3)

where w(x, t) is transverse deflection of the beam.
The application of the extended Hamilton’s principle gives

the following equation of motion and boundary conditions:

δ
t2
∫
t1

(T − V −WP ) = 0; (4)

[E (x) I (x)w,xx],xx + ρA (x)w.tt + ρΩ2I (x)w,xx

− [N (x1)w,x],x + P (t)w,xx = 0; (5)

where N (x1) = 1
2ρA (x) Ω2

[
(C0 + l)

2 − (C0 + x′)
2
]
. The

boundary conditions at x = C0 and x = C0 + l are

[E (x) I (x)w,xx],x + P (t)w,x = 0;

[E (x) I (x)w,xx]x=l = 0;

w,t = 0. (6)

In the above expression w,x = ∂w
∂x , w,xx = ∂2w

∂x2 , w,t = ∂w
∂t ,

w,tt = ∂2w
∂t2 .

Introducing the dimensionless parameters,
ξ = x

l , η = w
l , c0 = C0

l , τ = ct;(
∵ c2 = E(x)I(x)

ρA(x)l4

)
;

∂w
∂x = ∂η

∂ξ and
(
∂w
∂x

)2
=
(
∂η
∂ξ

)2

;

∂2w
∂x2 = 1

l
∂2η
∂ξ2 and

(
∂2w
∂x2

)2

= 1
l2

(
∂2η
∂ξ2

)2

;

∂w
∂t = cl

(
∂η
∂τ

)
and

(
∂w
∂t

)2
= c2l2

(
∂η
∂τ

)2

;

p (τ) = P (t)l2

E1I1
, p (τ) = p0 + p1 cos θτ ;

()′ = ∂()
∂ξ ,

=

() ∂()
∂τ , etc.

The non dimensional equation of motion and boundary condi-
tions can be written as

[S (ξ)T (ξ) η′′] ′′ +m (ξ) η̈ +
[
rgΩ

2
0 + p (τ)

]
η′′

−Ω2
0 [q (ξ) η′]

′
= 0; (7)

and

{[S (ξ)T (ξ) η′′] ′ + p (τ) η′}ξ=1 = 0;

[S (ξ)T (ξ) η′′]ξ=1 = 0;

η (0, τ) = 0;

η′ (0, τ) = 0. (8)

In the above expressions rg = I(ξ)
A1l2

; Ω2
0 = ρA(ξ)Ω2l4

E1I1
;

Ω2
0q (ξ) = N(x1)l2

E1I1
; A (ξ) = A1m (ξ) , E (ξ) = E1T (ξ) ,

I (ξ) = I1S (ξ).

2.2. Approximate Solution
The approximate solution to the non dimensional equations

of motion is assumed as

η (ξ, τ) =
N∑
r=1

ηr (ξ) fr (τ) ; (9)

where fr(τ) is an unknown function of time and ηr(ξ) is a
coordinate function to be chosen so as to satisfy as many of
the boundary conditions in Eq. (8) as possible. It is further
assumed that ηr(ξ) can be represented by a set of functions (9)
which satisfy the conditions obtained from Eq. (7) by deleting
the terms containing ω0 and p(τ). It is further assumed that
coordinate functions for the various boundary conditions can
be approximated by the ones given in Table 1.

Substitution of the series of solutions in the non dimensional
equations of motion and subsequent application of the general
Galerkin method leads to the following matrix equations of
motion:

[M ]
{
f̈
}

+ [K] {f} − {p0 [H]− p1 cos θτ [H]} {f}

= {0} ; (10)

where f̈ = ∂2f
∂τ2 and {f} = {f1, . . . . . . . . . . . . , fN}T . The var-

ious matrix elements are given by
1∫
0

m (ξ) ηi (ξ) ηj (ξ) dξ =

Mij ;
1∫
0

{
S (ξ)T (ξ) ηi

′′
(ξ) ηj

′′
(ξ) +

Ω2
0 [q (ξ)− rg] ηi′ (ξ) ηj ′ (ξ)

}
dξ = Kij ;

1∫
0

ηi
′ (ξ) ηj

′ (ξ) dξ = Hij ; and

∵ i, j = 1, 2, . . . . . . . . . , N .

2.3. Regions of Dynamic Instability
Let [L] be the modal matrix of [M ]−1[K]. Then by the

introduction of the linear coordinate transformation, {f} =
[L]{v}, {v} being a new set of generalized coordinates yields,

{v̈}+
[
ω2
n

]
{v}+ p1 cos (θτ) [B] {v} = {0} ; (11)

where [ω2
n] is a spectral matrix corresponding to [m]−1[k] and

[B] = −[L]−1[M ]−1[H][L].
Equation (11) can be written as,

v̈n + ω2
nvn + p1 cos (θτ)

m=N∑
m=1

bnmun = 0,

n = 1, 2, . . . . . . , N (12)

Equation (12) represents a system ofN coupled Hill’s equa-
tions with complex coefficients.

Here, ωn and bnm are complex quantities, given by ωn =
ωn,R + jωn,I ; bn,m = bnm,R + jbnm,I .

The boundaries of the region of instability of simple and
combination resonances are obtained using the following con-
ditions by Saito & Otomi.18

Case (A): Simple resonance
In this case, the regions of instability are given: When damp-

ing is present.

∣∣∣∣θ2 − ωµ,R
∣∣∣∣ < 1

4

√√√√P
2

1

(
b2µµ,R + b2µµ,I

)
ω2
µ,R

− 16ω2
µ,I . (13)

And, for the undamped case,∣∣∣∣θ2 − ωµ,R
∣∣∣∣ < 1

4

∣∣P 1bµµ,R
∣∣

ωµ,R
. (14)

International Journal of Acoustics and Vibration, Vol. 21, No. 2, 2016 139



R. Parida, et al.: DYNAMIC STABILITY ANALYSIS OF A CIRCULARLY TAPERED ROTATING BEAM SUBJECTED TO AXIAL PULSATING. . .

Table 1. Coordinate functions.

End arrangement Coordinate function i = 1, 2, . . . . . . , r
P-P η(ξ) = sin(πiξ)
G-P η(ξ) = cos{(2i− 1)πξ/2}
C-P η(ξ) = 2(i+ 2)ξ(i+1) − (4i+ 6)ξ(i+2) + 2(i+ 1)ξ(i+3)

C-C η(ξ) = ξ(i+1) + 2ξ(i+2) + ξ(i+3)

C-CUR η(ξ) = (i+ 3)(i+ 2)2(i+ 1){ξ(i+1) − 2ξ(i+2) + ξ(i+3)}
C-F η(ξ) = (i+ 2)(i+ 3)ξ(i+1) − 2i(i+ 3)ξ(i+2) + i(i+ 1)ξ(i+2)

for µ = 1, 2, . . . . . . , N .

Case (B): Combination resonance of the sum type
This type of resonance occurs when µ 6= v; µ, v =

1, 2, . . . . . . , N and the regions of instability are given:
For the damped case, ∣∣∣∣ω2 − 1

2
(ωµ,R + ωv,R)

∣∣∣∣ <
ωµ,I + ωv,I

8
√
ωµ,Iωv,I

√√√√ P
2
1

ωµ,Rωv,R
(bµv,Rbvµ,R + bµv,Ibvµ,I)

−16ωµ,Iωv,I
. (15)

For the undamped case,∣∣∣∣ω2 − 1

2
(ωµ,R + ωv,R)

∣∣∣∣ < P 1

4

√
bµv,Rbvµ,R

ωµ,Rωv,R
. (16)

Case(C): Combination resonance of the difference type
This type of resonance occurs when µ < v, (µ, v =

1, 2, . . . . . . , N) and the regions of instability are given:
For the damped case, ∣∣∣∣ω2 − 1

2
(ωv,R − ωµ,R)

∣∣∣∣ <
ωµ,I + ωv,I
8
√
ωµ,Iωv,I

√√√√ P̈ 2
1

ωµ,Rωv,R
(−bµv,Rbvµ,R + bµv,Ibvµ,I)

−16ωµ,Iωv,I
.

(17)

For the undamped case,∣∣∣∣ω2 − 1

2
(ωv,R − ωµ,R)

∣∣∣∣ < P 1

4

√
−bµv,Rbvµ,R

ωµ,Rωv,R
(18)

Dynamic stability analysis of the circularly tapered rotating
beam with axial pulsating load and thermal gradient under
various boundary conditions has been carried out by using
Eqs. (14), (16), and (18). From them, regions of instability
are obtained for various cases.

3. NUMERICAL RESULTS AND
DISSCUSSIONS

Numerical results were obtained for various values of the
parameters like rotation parameter, geometric parameter, ta-
per parameter, and thermal gradient. The linearly tapered
cantilever beam with a circular cross-section is assumed to
have a diameter varying according to the relation d (ξ) =
d1[1 + α∗(1− ξ)],
where d1 is the diameter of the beam at the end ξ = 1, and α∗

is the diameter taper parameter.

Figure 2. Stability diagram for pinned-pinned beam with Ω0 = 5 (δ = 0.1,
α∗ = 2).

Consequently, the mass distribution m(ξ) and the moment
of inertia distribution S(ξ) are given by the relations
m (ξ) = [1 + α∗(1− ξ)]2;
S (ξ) = [1 + α∗(1− ξ)]4.

The temperature above the reference temperature at any
point ξ from the end of the beam is assumed to be Ψ =
Ψ0(1 − ξ). Choosing Ψ0 = Ψ1, the temperature at the end
ξ = 1, as the reference temperature, means the variation of
modulus of elasticity of the beam is denoted by
E (ξ) = E1 [1− γΨ1 (1− ξ)] , 0 6 γΨ1 < 1;
E (ξ) = E1T (ξ),
where γ is the coefficient of thermal expansion of the beam
material, δ = γΨ1 is the thermal gradient parameter, and
T (ξ) = [1− δ (1− ξ)], where δ is the thermal gradient along
the length of the beam.

The dynamic stability analysis of the system for various
boundary conditions has been analysed as follows:

If, for the change in value of a parameter, the width of the
instability zone increases or the zone is pulled down or shifted
towards a lower excitation frequency region, the stability of the
system worsens. Otherwise, if with the change in the value of
the parameter, the width of the instability zone decreases or
is pulled up or shifted towards the higher excitation frequency
region, or if the number of instability zones reduces, then the
stability of the system improves. With these above conditions,
the effect of various parameter on the dynamic stability of the
system have been analysed.

The regions of parametric instability of a beam with vari-
ous boundary conditions for two different values of rotational
speed parameters are shown in Figs. 2, 3, 5, 6, 8, 9, 11, 12, 14,
15, 17, and 18.
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Figure 3. Stability diagram for pinned-pinned beam with Ω0 = 15 (δ = 0.1,
α∗ = 2).

Figure 4. Stability diagram for pinned-pinned beam with Ω0 = 5 (δ = 0.4,
δ = 0.8, α∗ = 1).

Figure 5. Stability diagram for guided-pinned beam with Ω0 = 2 (δ = 0.1,
α∗ = 2).

Figure 6. Stability diagram for guided-pinned beam with Ω0 = 5 (δ = 0.1,
α∗ = 2).

Figure 7. Stability diagram for guided-pinned beam with Ω0 = 5 (δ = 0.4,
δ = 0.8 α∗ = 1).

Figure 8. Stability diagram for clamped-pinned beam with Ω0 = 5 (δ = 0.1,
α∗ = 2).

International Journal of Acoustics and Vibration, Vol. 21, No. 2, 2016 141



R. Parida, et al.: DYNAMIC STABILITY ANALYSIS OF A CIRCULARLY TAPERED ROTATING BEAM SUBJECTED TO AXIAL PULSATING. . .

Figure 9. Stability diagram for clamped-pinned beam with Ω0 = 15 (δ = 0.1,
α∗ = 2).

Figure 10. Stability diagram for clamped-pinned beam with Ω0 = 5 (δ = 0.4,
δ = 0.8, α∗ = 1).

Figure 11. Stability diagram for clamped-clamped beam with Ω0 = 5
(δ = 0.1, α∗ = 2).

Figure 12. Stability diagram for clamped-clamped beam with Ω0 = 15
(δ = 0.1, α∗ = 2).

Figure 13. Stability diagram for clamped-clamped beam with Ω0 = 5
(δ = 0.4, δ = 0.8, α∗ = 1).

Figure 14. Stability diagram for clamped-CUR beam with Ω0 = 5 (δ = 0.1,
α∗ = 2).
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Figure 15. Stability diagram for clamped-CUR beam with Ω0 = 15 (δ = 0.1,
α∗ = 2).

Figure 16. Stability diagram for clamped-CUR beam with Ω0 = 5 (δ = 0.4,
δ = 0.8, α∗ = 1).

Combination resonances of the difference-type do not oc-
cur in any of the cases under consideration. While an increase
in the value of Ω0 reduces the width of the first-order simple
resonance zones of clamped-clamped beam, it widens some
of the combination resonance zones and shifts all the regions
to higher excitation frequencies. The combination resonance
regions at Θ = (ω3 + ω1) of a clamped-clamped beam re-
duce in width due to the increase in angular velocity. For a
beam with clamped-free end conditions, a higher rotational
speed reduces the span of most of the instability regions and
makes the beam less susceptible to periodic forces by relocat-
ing them at higher frequencies, whereas a rise in the rotational
speed increases the span of most of the instability regions of a
clamped-pinned beam and relocates them at higher excitation
frequencies. On the other hand, it repositions those around 2ω1

and (ω1 + ω2) at lower frequencies and reduces the width of
the ones at Θ = 2ω2, 2ω3 and (ω3 + ω1). With increase in
the angular velocity of pinned-pinned beam, most of the res-
onance zones are widened, but those near Θ = 2ω2 and 2ω3

are reduced in span. Further, while the instability regions in
the vicinities of 2ω1 shifts to lower frequencies, all others are
repositioned at higher ones.

From the figures, it is observed that increase in rota-
tional speed parameter stabilizes the beams with pinned-
pinned, clamped-clamped, clamped-clamped unrestrained, and

Figure 17. Stability diagram for clamped-free beam with Ω0 = 5 (δ = 0.1,
α∗ = 2).

Figure 18. Stability diagram for clamped-free beam with Ω0 = 15 (δ = 0.1,
α∗ = 2).

clamped-free conditions, whereas it has a destabilizing effect
on guided-pinned and clamped-pinned beams.

The influence of taper parameter and thermal gradient pa-
rameter on the principal region of instability is shown in
Figs. 4, 7, 10, 13, 16, and 19. The figures show the effect
of two values of the thermal gradient parameter δ on the insta-
bility regions for taper parameter α∗ = 1 for all the considered
boundary conditions. It has been observed that, for all cases,
the instability regions experience a slight increase in width and
shift towards lower excitation frequencies with an increase in
the value of δ.

4. CONCLUSION

A computational analysis of the dynamic stability of a ta-
pered cantilever beam with pulsating axial load and thermal
gradient under various boundary conditions was considered.
The programming was developed using MATLAB. The fol-
lowing are the conclusions drawn from the study.

The dynamic stability of a rotating tapered beam under a
pulsating axial load was investigated for all possible combi-
nations of clamped, guided, pinned, and free boundary con-
ditions. Results reveal that, a higher rotational speed make a
clamped-free beam less sensitive to periodic forces. While rise
in the angular velocity reduces the intensity of the simple res-
onances of clamped-clamped beam, it increases the severity of
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Figure 19. Stability diagram for clamped-free beam with Ω0 = 5 (δ = 0.4,
δ = 0.8, α∗ = 1).

some of the combination resonances. It is also observed that
clamped-pinned and pinned-pinned beams may either stabilize
or destabilize with an increase in rotational speed.

An increase in taper parameter reduces the widths of the
principal regions of instability and shifts them towards higher
excitation frequencies, thus making the beam less sensitive
to periodic forces. However, an increase in thermal gradient
widens the principal regions of instability, shifting them to-
wards lower excitation frequencies, thereby making the beam
more sensitive to periodic forces. Thus, it may be inferred that
increasing taper has stabilizing effects on the beams, whereas
increasing temperature gradient has a destabilizing effect on
the beams of all cases.
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