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The present work is devoted to a study of the induced temperature and stress fields in an elastic infinite medium
with cylindrical cavity under the purview of two-temperature thermoelasticity. The medium is considered to be an
isotropic homogeneous thermoelastic material. The bounding plane surface of the cavity is loaded thermally by
time exponentially decaying laser pulse. An exact solution of the problem is obtained in Laplace transform space,
and the inversion of Laplace transforms have been carried numerically. The derived expressions are computed
numerically for copper, and the results are presented in graphical form.

1. INTRODUCTION

In-depth research has been conducted on generalized ther-
moelasticity theories in solving thermoelastic problems in
place of the classical uncoupled/coupled theory of thermoelas-
ticity. The absence of any elasticity term in the heat conduction
equation for uncoupled thermoelasticity appears to be unreal-
istic, since the produced strain causes variation in the tempera-
ture field due to the mechanical loading of an elastic body. The
parabolic type of heat conduction equation results in an infinite
velocity of thermal wave propagation, which also contradicts
the actual physical phenomena. By introducing the strain-rate
term in the uncoupled heat conduction equation, the analysis
to incorporate coupled thermoelasticity has been extended by
Biot.1 Although the first paradox was over, the parabolic type
partial differential equation of heat conduction remains, which
leads to the paradox of infinite velocity of the thermal wave.
To eliminate this paradox, generalized thermoelasticity the-
ory was developed subsequently. Due to the advancement of
pulsed lasers, fast burst nuclear reactors, and particle acceler-
ators, which can supply heat pulses with a very fast time-rise,
Bargmann.2 and Boley3 generalized thermoelasticity theory is
receiving serious attention. Chandrasekharaiah reviewed the
development of the second sound effect.4 Recently, mainly
two different models of generalized thermoelasticity are being
extensively used: one proposed by Lord and Shulman and the
other proposed by Green and Lindsay.5, 6 Lord and Shulman
theory (L-S) suggests one relaxation time, and according to
this theory, only Fourier’s heat conduction equation is modi-
fied; however, Green and Lindsay theory (G-L) suggests two
relaxation times, and both the energy equation and the equation
of motion are modified.

The so-called ultra-short lasers are those with pulse duration
ranging from nanoseconds to femtoseconds in general. In the
case of ultra-short-pulsed laser heating, the high-intensity en-
ergy flux and ultra-short duration laser beam, have introduced
situations where very large thermal gradients or an ultra-high
heating speed may exist on the boundaries, according to Sun

et al.7 In such cases, as pointed out by many investigators, the
classical Fourier model, which leads to an infinite propagation
speed of the thermal energy, is no longer valid for Tzou.8, 9 The
non-Fourier effect of heat conduction takes into account the
effect of mean free time (thermal relaxation time) in the en-
ergy carrier’s collision process, which can eliminate this con-
tradiction. Wang and Xu have studied the stress wave induced
by nanoseconds, picoseconds, and femtoseconds laser pulses
in a semi-infinite solid.10 The solution takes into account the
non-Fourier effect in heat conduction and the coupling effect
between temperature and strain rate. It is known that charac-
teristic elastic waveforms are generated when a pulsed laser
irradiates a metal surface.

The two-temperatures theory of thermoelasticity was intro-
duced by Gurtin and Williams,11 Chen and Gurtin,12 and Chen
et al.,13, 14 in which the classical Clausius-Duhem inequality
was replaced by another one depending on two temperatures;
the conductive temperature ϕ and the thermodynamic tempera-
ture T , the first is due to the thermal processes, and the second
is due to the mechanical processes inherent between the par-
ticles and the layers of elastic material, this theory was also
investigated by Iean.15 Abbas solved many problems that dis-
cussed the two-temperature theory of thermoelasticity and also
the thermoelastic medium with cylindrical cavity.16–20

Only in the last decade has the theory of two-temperature
thermoelasticity been noticed, developed in many works, and
found its applications mainly in the problems in which the
discontinuities of stresses have no physical interpretations.
Among the authors who contribute to this theory, Quintanilla
studied existence, structural stability, convergence, and spatial
behavior for this theory.21 Youssef introduced the generalized
Fourier law to the field equations of the two-temperature theory
of thermoelasticity and proved the uniqueness of solution for
homogeneous isotropic material.22, 23 Puri and Jordan recently
studied the propagation of harmonic plane waves,23 and Ma-
gaa and Quintanilla24 have studied the uniqueness and growth
solutions for the model proposed by Youssef.25

The present work is devoted to a study of the induced tem-
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perature and stress fields in an elastic infinite medium with
cylindrical cavity under the purview of two-temperature ther-
moelasticity. The medium is considered to be an isotropic ho-
mogeneous thermoelastic material. The bounding plane sur-
face of the cavity is loaded thermally by non-Gaussian laser
beam with pulse duration of 2 ps. An exact solution of the
problem is obtained in Laplace transform space, and the inver-
sion of Laplace transforms have been carried numerically. The
derived expressions are computed numerically for copper, and
the results are presented in graphical form.

2. THE GOVERNING EQUATIONS

Consider a perfectly conducting elastic infinite body with
cylindrical cavity occupies the region R ≤ r < ∞ of an
isotropic homogeneous medium whose state can be expressed
in terms of the space variable r and the time variable t such
that all of the field functions vanish at infinity.

We can use the cylindrical system of coordinates (r, ψ, z)

with the z-axis lying along the axis of the cylinder. Due to
symmetry, the problem is one-dimensional with all the func-
tions considered depending on the radial distance r and the
time t. It is assumed that there is no external forces act on the
medium.

Thus the field equations in cylindrical one dimensional case
can be put as in:25

(λ+ 2µ)
∂ e

∂ r
− γ ∂ T

∂ r
= ρ

∂2u

∂ t2
; (1)

∇2ϕ =
ρCE
K
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∂
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)
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σrr = 2µ
∂ u

∂ r
+ λe− γ (T − To) ; (4)

σψ ψ = 2µ
u

r
+ λ e− γ (T − To) ; (5)

σzz = λe− γ (T − To) ; (6)

σz r = σψ r = σz ψ = 0; (7)

e =
1
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∂ (r u)

∂ r
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where ∇2 = ∂ 2

∂ r2 + 1
r
∂
∂ r , λ, µ, Lames constants, ρ den-

sity, CE specific heat at constant strain, αT coefficient of
linear thermal expansion, λ = (3λ + 2µ)αT , t is the
time, T is the temperature, T0 is the reference temperature,
θ = (T − To) is the thermo-dynamical temperature increment
such that |θ|To

<< 1, ϕ is the heat conductive temperature,
σij , i, j = r, ψ, z are the components of stress tensor, e is the
cubic dilatation, u is the displacement, K is the thermal con-
ductivity, τo is the relaxation time, a is non-negative parameter
(two-temperature parameter), and Q is the heat source per unit
mass.

2.1. The Mathematical Modeling

The Fourier heat transfer equation due to time exponentially
decaying laser pulse for a one dimensional body can be written
as:7

∇2ϕ =
ρCE
K

(
∂

∂t
+ τo

∂2

∂t2

)
θ +

γTo
K

(
∂
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)
e

− ρI1δ

K

(
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∂
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)[
e−υt−δr

]
; (9)

where I1 = (1 − rf )I0 is the power intensity after surface
reflection; I0 is laser peak power intensity; rf is reflection co-
efficient; υ is laser pulse parameter; and δ is absorption coeffi-
cient.

2.2. Dimensionless of the Governing
Equations

For convenience, we shall use the following non-
dimensional variables:25

(r′, u′, R′, R0) = coη (r, u,R′, R′0) ,

(t′, τ ′o) = c2oη (t, τo) ,

θ′ =
T − To
To

,

ϕ′ =
ϕ− To
To

,

σ′ =
σ

µ
; (10)

where c20 = λ+2µ
ρ and η = ρCE

K .
Hence, we obtain (where the primes are suppressed for sim-
plicity)

∇2e− b∇2θ =
∂2e
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; (11)
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(
∂
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ϕ− θ = ω∇2ϕ; (13)

σrr = β2 ∂ u

∂ r
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(
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) u
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− α θ; (14)

σψψ =
(
β2 − 2

) ∂ u
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− α θ; (15)

σzz =
(
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)
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where, co =
√

λ+2µ
ρ is longitudinal wave speed; η = ρCE

K

is the thermal viscosity; ε1 = γ
ρCE

is the dimensionless me-
chanical coupling constant; α = γTo

µ is the dimensionless ther-
moelastic coupling constant; and ω = a c2oη

2 is the dimension-
less two-temperature parameter, β = (λ+2µ

µ )1/2, b = α
β2 and

ε2 = I1δ
CEToc2oη

.
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2.3. The Solution in the Laplace Transform
Domain

We use the Laplace transform of both sides of the last equa-
tions defined as:

f̄ (s) =

∞∫
0

f (t) e−srdt. (17)

Hence, we obtain

∇2ē = s2ē+ b∇2θ̄; (18)

∇2ϕ̄ = h θ̄ + ε1 h ē− F (s, r) ; (19)

θ̄ = ϕ̄− ω∇2ϕ̄; (20)

σ̄rr = β2ē+ 2
ū

r
− α θ̄; (21)

σ̄ψψ =
(
β2 − 2

)
ē+ 2

ū

r
− α θ̄; (22)

σ̄zz =
(
β2 − 2

)
ē− α θ̄; (23)

ē =
1

r

∂ (r ū)

∂ r
=
ū

r
+
∂ ū

∂ r
; (24)

where F (s, r) = ε3e
−δr, ε3 = ε2(1+τos)

(s+υ) and h =
(
s+ τos

2
)
.

All the state functions in Eqs. (18)–(24) have zero initial value.
An over bar symbol denotes its Laplace transform, and s de-
notes the Laplace transform parameter.

To simplify the solution of the above differential equations,
we will consider the special case of R = r.

Thus, we have

F (s,R) = ε3e
−δR,∇2F (s,R) = ∇4F (s,R) = 0; (25)

By using Eqs. (19) and (20), we get

θ̄ = (1− ω α1) ϕ̄− ω α2 ē+
ωα1

h
F (s,R) ; (26)

where α1 = h
1+ωh and α2 = ε1α1.

By substituting Eq. (26) into Eqs. (18) and (19), we obtain(
∇2 − α1

)
ϕ̄ = α2ē−

α1

h
F (s,R) ; (27)

and (
∇2 − α3

)
ē = α4 ϕ̄−

α4

h
F (s,R) ; (28)

where α3 = s2+α2b(1−ωα1)
1+ωα2b

, α4 = α1b(1−ωα1)
1+ωα2b

.
Eliminating ē from Eqs. (27) and (28), we get[
∇4 − (α1 + α3)∇2 + (α1α3 − α2α4)

]
ϕ̄ = α5F (s,R) ;

(29)
where α5 = (α1α3−α2α4)

h .
In a similar manner, we can show that ē satisfies the equation[

∇ 4 − (α1 + α3) ∇ 2 + (α1α3 − α2α4)
]
ē = 0. (30)

For finite solutions, the solutions of Eqs. (28) and (29) take the
form

ϕ̄ =
F (s,R0)

h
+

2∑
i=1

Ai K0 (pir) ; (31)

and

ē =

2∑
i=1

BiK0 (pir) (32)

where K0() is the modified Bessel function of the second kind
of order zero. A1, A2, B1, and B2 are all parameters depend-
ing on the parameter s of the Laplace transform.
p21 and p22 are the roots of the characteristic equation

p4 − (α1 + α3) p 2 + (α1α3 − α2α4) = 0 (33)

Using Eq. (29), we obtain

Bi = α4Ai, i = 1, 2. (34)

Substituting Eq. (34) into Eq. (32), we get

ē = α4

2∑
i=1

Ai K0 (pir) . (35)

Substituting Eq. (35) into Eq. (24), we obtain

ū = −α4

2∑
i=1

Ai
pi
K1 (pir) (36)

where K1() is the modified Bessel function of the second kind
of order one.
In deriving Eq. (36), we have used the following well-known
relation of the Bessel function:∫

z K0 (z) d z = −z K1 (z) ;

Using Eqs. (31) and (35) in Eq. (26), we obtain

θ̄ =
F (s,R0)

h
+

2∑
i=1

θiAiK0 (pir); (37)

where

θi = (1− ωα1)
(
p2i − α3

)
− ωα2α4 i = 1, 2.

Finally, substituting Eqs. (35), (36), and (37) into Eqs. (21)–
(23), we obtain the stress components in the form

σ̄r r = −αF (s,R)

h

+

2∑
i=1

Ai

[(
β2 α4 − αθi

)
K0 (pir) +

2α4

r pi
K1 (pir)

]
; (38)

σ̄ψψ = −αF (s,R)

h

+

2∑
i=1

Ai

[((
β2 − 2

)
α4 − αθi

)
K0 (pir)−

2α2

r pi
K1 (pir)

]
;

(39)

σzz = −αF (s,R)

h
+

2∑
i=1

[(
β2 − 2

)
α4 − αθi

]
AiK0 (pir) .

(40)
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To complete the solution in the Laplace transform space, we
will consider the medium described above as quiescent and the
bounding plane of the cavity (r = R) traction free, with no
thermal loading accept the laser beam:

ϕ (R, t) = 0. (41)

After using Laplace transform, we have

ϕ̄ (R, s) = 0. (42)

Also, we have
σrr (R, t) = 0. (43)

After using Laplace transform, we get

σ̄rr (R, s) = 0. (44)

Applying the last two conditions gives

2∑
i=1

Ai
(
p2i − α3

)
K0 (piR) = −F (s,R)

h
; (45)

and

2∑
i=1

Ai

[(
β2 α4 − αθi

)
K0 (piR) +

2α4

Rpi
K1 (piR)

]
=
αF (s,R)

h
. (46)

Solving the last system of equations gives[
A1

A2

]
=

[
l11 l12
l21 l22

]−1 [ −1

α

]
F (s,R)

h
(47)

hence A1 = F (s,R)(αl12−l22)
h(l11l22−l12l21) and A2 = F (s,R)(l21−αl11)

h(l11l22−l12l21) ,
where

l11 =
(
p21 − α3

)
K0 (p1r) ;

l12 =
(
p22 − α3

)
K0 (p2r) ;

l21 =
(
β2 α4 − αθ1

)
K0 (p1R) +

2α4

Rp1
K1 (p1R) ;

and

l22 =
(
β2 α4 − αθ2

)
K0 (p2R) +

2α4

Rp2
K1 (p2R) .

Finally, we obtain the solutions in the Laplace transform do-
main as in Eqs. (48)–(52) (top of the next page).

3. NUMERICAL INVERSION OF LAPLACE
TRANSFORM

In order to determine the conductive and thermal tempera-
ture, displacement, and stress distributions in the time domain,
the Riemann-sum approximation method is used to obtain the
numerical results. In this method, any function in Laplace do-
main can be inverted to the time domain as

f(t) =
eκt

t

[
1

2
f̄ (κ) +Re

N∑
n=1

(−1)
n
f̄

(
κ+

i nπ

t

)]
; (53)

where Re is the real part and i is imaginary number unit.
For faster convergence, multiple numerical experiments have
shown that the value of κ satisfies the relation κt ≈ 4.7.8

Figure 1. The conductive temperature with different value two-temperature
parameter.

3.1. Numerical Results and Discussion
With a view to illustrating the analytical procedure presented

earlier, we now consider a numerical example for which com-
putational results are given. For this purpose, copper is taken
as the thermoelastic material for which we take the following
values of the different physical constants:25

K = 386 kg m K−1s−3 αT = 1.78 (10)
−5

K−1;

ρ = 8954 kg m−3; CE = 383.1 m2 K−1 s−2;

To = 293 K; µ = 3.86 (10)
10

kg m−1 s−2;

λ = 7.76 (10)
10

kg m−1 s−2; β2 = 4;

R = 1.0; τo = 0.02;

t = 0.1.

From the above values, we get the non-dimensional values
of the problem as:

b = 0.01041, α = 0.0417232, ε1 = 1.618, ε2 = 102.

Figures 1–5 represent the distributions of the conductive
temperature, the dynamic-temperature, the stress, the displace-
ment and the strain respectively when υ = 0.1, δ = 0.1

and with different value of two-temperature parameter ω =

0.0, 0.01 to stand on the effect of this parameter on all the stud-
ied filed. This group of figures shows that, the two-temperature
parameter has significant effects on all the state of functions of
the thermoelastic materials. The two-temperature parameter
makes the sharp points in the stress, the strain and the displace-
ment distribution disappeared.

Figures 6–10 represent the distributions of the conductive
temperature, the thermo-dynamic temperature, the stress, the
displacement and the strain respectively when ω = 0.01, υ =

0.1 and with different value of absorption coefficient parameter
δ = 0.1, 0.05 to stand on the effect of this parameter on all the
studied filed. This group of figures shows that, the absorption
coefficient parameter has significant effects on all the states
of functions of the thermoelastic materials. When the value
of the absorption coefficient parameter increases, all the state
functions of the material decrease.

Figures 11–15 represent the distributions of the conductive
temperature, thermo-dynamic temperature, stress, displace-
ment, and strain, respectively, when ω = 0.01, δ = 0.1 and
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ϕ̄ =
F (s,R)

h

[
1 +

1

(l11l22 − l12l21)

[
(αl12 − l22)

(
p21 − α3

)
K0 (p1r) + (l21 − αl11)

(
p22 − α3

)
K0 (p2r)

]]
; (48)

θ̄ =
F (s,R)

h (l11l22 − l12l21)[
1 +

(
(1− ωα1)

(
p21 − α3

)
− ωα2α4

)
(αl12 − l22) K0 (p1r) +

(
(1− ωα1)

(
p22 − α3

)
− ωα2α4

)
(l21 − αl11)K0 (p2r)

]
;

(49)

σ̄r r =
F (s,R)

h

[
−α+

(αl12−l22)

(l11l22−l12l21)

[(
β2α4−αθ1

)
K0 (p1r)+

2α4

rp1
K1 (p1r)

]
+

(l21−αl11)

(l11l22−l12l21)

[(
β2α4−αθ2

)
K0 (p2r)+

2α4

rp2
K1 (p2r)

]]
; (50)

ē =
α4F (s,R)

h (l11l22 − l12l21)
[(αl12 − l22)K0 (p1r) + (l21 − αl11)K0 (p2r)] ; (51)

ū = − α4F (s,R)

h p1p2 (l11l22 − l12l21)
[p2 (αl12 − l22)K1 (p1r) + p1 (l21 − αl11)K1 (p2r)] (52)

Figure 2. The thermo-dynamic temperature with different value two-
temperature parameter.

Figure 3. The stress with different value two-temperature parameter.

Figure 4. The displacement with different value two-temperature parameter.

Figure 5. The strain with different value two-temperature parameter.
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Figure 6. The conductive temperature with different value of absorption
coefficient.

Figure 7. The thermo-dynamic temperature with different value of absorption
coefficient.

Figure 8. The stress with different value of absorption coefficient parameter.

Figure 9. The displacement with different value of absorption coefficient.

Figure 10. The strain with different value of absorption coefficient.

with different value of laser pulse parameter υ = 0.1, 0.05 to
stand on the effect of this parameter on all the studied filed.
This group of figures shows that the laser pulse parameter has
significant effects on the distributions of the conductive tem-
perature, the thermo-dynamic temperature and the stress, while
it has weak effects on the distribution of the displacement and
the strain. When the value of laser pulse parameter increases,
all the state functions of the material decrease.

4. CONCLUSION

In this work, a studying of the induced temperature and
stress fields in an elastic infinite medium with cylindrical cav-
ity under the purview of two-temperature thermoelasticity has
been done. The medium has been considered to be an isotropic
homogeneous thermoelastic material. The bounding plane sur-
face of the cavity is loaded thermally by time exponentially
decaying laser pulse and we found the following:

1. The two-temperature parameter has a significant effect on
all the studied fields.

2. The absorption coefficient parameter has a significant ef-
fect on all the studied fields.

3. When the value of the absorption coefficient parameter
increases, all the state functions of the material decrease.
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Figure 11. The conductive temperature with different value of laser pulse
parameter.

Figure 12. The thermo-dynamic temperature with different value of laser
pulse parameter.

Figure 13. The stress with different value of laser pulse parameter.

Figure 14. The displacement with different value of laser pulse parameter.

Figure 15. The strain with different value of laser pulse parameter.

4. The laser pulse parameter has significant effects on the
distributions of the conductive temperature, the thermo-
dynamic temperature, and the stress, while it has weak ef-
fects on the distribution of the displacement and the strain.

5. When the value of laser pulse parameter increases, all the
state functions of the material decrease.
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