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The inherent feature of the Least Mean Squares (LMS) algorithm is the step size, and it requires careful adjustment.
Small step size, required for small excess mean square error, results in slow convergence. Large step size, needed
for fast adaptation, may result in loss of stability. Therefore, many modifications of the LMS algorithm, where
the step size changes during the adaptation process depending on some particular characteristics, were and are still
being developed.

The paper reviews seventeen of the best known variable step-size LMS (VS-LMS) algorithms to the degree of
detail that allows to implement them. The performance of the algorithms is compared in three typical applications:
parametric identification, line enhancement, and adaptive noise cancellation. The paper suggests also one general
modification that can simplify the choice of the upper bound for the step size, which is a crucial parameter for
many VS-LMS algorithms.
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Figure 1. Adaptive filtering problem.

1. INTRODUCTION

In applications where adaptation is needed, the LMS algo-
rithm is probably the most frequently used algorithm. It is
simple, fast, and surprisingly robust. Despite its simplicity,
the complete mathematical analysis of the LMS algorithm as
well as exact rules for the step size adjustment are not cur-
rently known, which is probably due to its highly nonlinear
character.1 Therefore, new VS-LMS algorithms appear in the
literature every few years with the aim to be useful in practical
applications.

The basic block diagram illustrating the LMS algorithm op-
eration is shown on Fig. 1.1 The adaptive filter W is fed with
the input sequence u(n). The output of the filter, y(n), is com-
pared with the desired signal, d(n), to produce the error signal,
e(n). The algorithm adjusts the filter to minimize the error.

If the adaptive filter is of finite impulse response (FIR) type,
with the taps stored in a row vector:

w(n) = [w0(n) w1(n) . . . wL−1(n)]
T

; (1)

where T denotes transpose, the LMS algorithm updates the
filter taps according to the well-known formula:2

w(n+ 1) = w(n) + µu(n)e(n); (2)

where µ is the step size parameter and u(n) is a row vector
containing the input signal samples. The latter may be, de-
pending on the application, of spatial type:

u(n) = [u0(n) u1(n) . . . uL−1(n)]
T

; (3)

or of temporal type, with regressive samples of the same input
signal:

u(n) = [u(n) u(n− 1) u(n− 2) . . . u(n− L+ 1)]
T
. (4)

The problem with the step size choice can be summarized
as follows. Large step size allows for fast adaptation, but also
gives large excess mean square error (EMSE, see Section 4.1
for definition). Too large step size may lead to the loss of sta-
bility of the system using the LMS algorithm. On the other
hand, too small step size gives slow convergence, and even if
it results in small excess MSE, it cannot be accepted in many
practical applications.

At this point a very important remark should be made about
theoretical convergence of the LMS algorithm. First of all,
there are different types of convergence,3 e.g. convergence of
the mean (the poorest), convergence in the mean, convergence
in the mean square sense, etc. However, if convergence in the
mean square sense of the LMS algorithm (2) is desired, and the
algorithm operates in real conditions (not noise-free environ-
ment), such convergence can only be proved for the vanishing
step size, i.e. for µ n→∞−−−−→ 0.3, 4 In other words, no constant
step-size LMS algorithm can result in convergence in the mean
square sense, or stronger. On the other hand, it is possible to
bound the EMSE within certain limits, depending on the step
size.

The idea of variable step-size is not new. Actually, the Nor-
malized LMS (NLMS) algorithm may be considered as the first
variable step-size modification of the LMS, and NLMS was
proposed in 1967 independently by Nagumo et al.5 and Albert
et al.6 Next VS-LMSes were proposed in 1986 by Harris et
al.,7 and by Mikhael et al.8 Many VS-LMS algorithms were
developed since then: the search for ‘variable step LMS’ in
article titles only on Scopus or IEEEXplore returns more than
130 publications. The research in this field is by no means
finished, new results are still being published.9, 10
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The VS-LMS algorithms may be grouped by the techniques
they use to adjust the step size. One of these techniques is
the adjustment of the step size based solely on the input signal
u(n). Historically, it is the oldest idea, because the NLMS
acts in this way.5 Due to popularity of the NLMS, it may also
be considered the most popular technique. Another algorithm
using this concept is the one proposed by Mikhael8 (if FIR
filter is considered).

The next technique relates the step size to the error signal.
This technique is based on the observation that the step size
should be small when the error is small in order to provide
small EMSE. On the other hand, when the error is large, it
is desirable to operate with large step size to adapt the filter
taps fast. This technique was used by Kwong,11 Aboulnasr,12

Pazaitis13, and Zou.14

Finally, there is a technique combining the use of the input
signal and the error signal. It is a technique used by majority
of the algorithms presented in this paper, namely by Harris,7

Shan,15 Karni,16 Benveniste,17 Evans,18 Mathews,19 Ang,20

Benesty,21 Wahab,22 Hwang23 and Wang.24 In many solutions
this technique is based on the orthogonality principle, which
states that (under some assumptions) the necessary and suffi-
cient condition for the mean-square error to attain its minimum
value is that the error signal e(n) and the input signal u(n) are
orthogonal.1

The VS-LMS algorithms may also be grouped based on the
number of additional parameters which have to be adjusted be-
fore running each of the algorithms. Surprisingly, the group
of algorithms needing no parameters, i.e. algorithms running
fully autonomously, has only two members: Mikhael’s algo-
rithm8 and Wang’s algorithm.24 Next follows the group con-
taining only one parameter to adjust, and this group contains
only the NLMS algorithm.5 Very large is the group of the
algorithms needing an upper bound for the step size in addi-
tion to one or two parameters; this group includes Shan’s algo-
rithms15 (one of them known as the correlation-LMS), Karni’s
algorithm,16 Benveniste’s algorithms,17 and Mathews’ algo-
rithms.19 Three parameters, but without an upper bound for
the step size, are also required by Benesty’s algorithm.21 The
remaining algorithms are parametrized by more than three val-
ues, with the maximum of eight in case of Zou’s algorithm.14

The goal of this paper is to review the VS-LMS techniques
developed by different authors for different uses and to com-
pare them in three typical applications: identification, line en-
hancement, and adaptive noise cancellation. The paper also
suggests how to reduce by one the number of parameters re-
quired to run those algorithms which use the upper bound for
the step size. The paper is organized as follows. In the next
section, all the algorithms considered in this paper are detailed
to a degree which allow them to be implemented. However,
to make the paper of reasonable length, we will omit all the
derivations leading to the final formula as well as all the deriva-
tions of MSE, learning curves, etc. Section 3 describes a pos-
sible way of reduction of the number of parameters in case
of some of the algorithms. Section 4.1 describes the results
of simulation of the system identification case. Section 4.2
describes the results of simulation of the line enhancer. Sec-
tion 4.3 describes the results of simulation of the adaptive noise

cancellation system. Finally, some concluding remarks are
given in Section 5.

2. VS-LMS ALGORITHMS

In this section, VS-LMS algorithms are described in chrono-
logical order. The majority of the algorithms described below
use common (scalar) step size, and fall under the equation:

w(n+ 1) = w(n) + µ(n)u(n)e(n); (5)

where µ(n) is the (variable) step size calculated with an appro-
priate formula.

Some of the algorithms allow for individual step sizes for
each of the filter taps; such VS-LMS algorithms are described
by:

w(n+ 1) = w(n) + M(n)u(n)e(n); (6)

where M(n) is a diagonal matrix of the size equal to the adap-
tive filter length.

2.1. Normalized LMS Algorithm
The first modification of the LMS algorithm which can be

considered a variable step-size modification, was developed by
Nagumo and Noda,5 and independently by Albert and Gard-
ner.6 However, the name “Normalized LMS” was not proposed
by the authors, but appears in the literature much later.1

The NLMS algorithm uses the following equation for the
step size:

µ(n) =
µ̄

uT (n)u(n)
=

µ̄∑L−1
i=0 u

2(n− i)
; (7)

where µ̄ > 0 is a scalar which allows for a change of the adap-
tation speed. The upper limit for µ̄ > 0 to provide stability in
some cases is equal to two, but lower values must be used in
many practical applications.1

The NLMS algorithm may be considered as a standard al-
gorithm for the majority of the adaptive signal processing ap-
plications. The normalization of the step size with the input
signal power estimate makes the algorithm invulnerable to the
input signal power changes; therefore, the algorithm does not
require the step size readjustment when such changes occur.
On the other hand, the division operation required by the nor-
malization may be time-consuming and required to be avoided
in some time-critical applications. Nevertheless, the time over-
head introduced by the step-size normalization is the smallest
when compared to the overhead introduced by other VS-LMS
algorithms discussed below.

2.2. VS-LMS Algorithm by Harris et al.
The algorithm proposed by Harris et al. uses individual step

sizes, and the step-size matrix M(n) is constructed as:

M(n) = 2 · diag [µ0(n), µ1(n), . . . µL−1(n)] ;

µmin < µi(n) < µmax, i = 0 . . . L− 1. (8)

The authors suggest that µmax < 1/λmax, where λmax is the
maximum eigenvalue of the autocorrelation matrix Ruu of the
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input signal. µmin, on the other hand, should be chosen to
provide the desired steady-state misadjustment.

With the above restrictions, the individual step sizes are
changed as follows:

µi(n+1) =



µi(n)/α if e(n)u(n− i) alternates sign
on m0 successive samples;

αµi(n) if e(n)u(n− i) has the same sign
on m1 successive samples;

µi(n) otherwise.
(9)

The authors suggest that the typical value for α is 2.
The authors distinguish the following useful cases:

• m0 = 1,m1 = ∞ — the algorithm decreases the step
sizes with every sign change,

• m0 > 1,m1 = ∞ — the algorithm decreases the step
sizes if m0 consecutive sign changes occur,

• m1 > m0 > 0 — such algorithm results in general de-
crease of the step sizes; the authors claim this is useful for
stationary input signal processing,

• m0 = m1 ≥ 1 — the symmetric increase or decrease al-
gorithm; the authors claim this is useful for nonstationary
input signal processing.

This algorithm is parametrized by five parameters, including
the upper bound for the step size.

The algorithm was developed in times when the hardware
was many times less powerful than nowadays. The authors
admit that they tried to achieve performance comparable with
the Recoursive Leas Squares (RLS) algorithm, which was too
hardware-demanding to use. The authors claim that the VS-
LMS algorithm given above can “provide faster convergence
and less misadjustment than the constant µ or LMS algorithm,”
but that the RLS-type algorithms are still faster to converge.
It must be noted, however, that this goal was achieved at the
price of four additional parameters, which makes the algorithm
difficult to adjust.

This algorithm is also one of the two algorithms that pro-
posed for the first time the individual step sizes for each of the
filter taps.

2.3. VS-LMS Algorithm by Mikhael et al.
The algorithm proposed by Mikhael et al.8 can be used for

FIR filters as well as for infinite impulse response (IIR) fil-
ters. It also comes in two flavors: with scalar step size (which
the authors call homogeneous adaptation), and with individ-
ual step sizes. To allow comparison with other algorithms dis-
cussed in this paper, we will introduce the FIR version only.
Moreover, only individual step sizes will be used. Thus, the
algorithm is given by:

M(n) = diag [µ0(n), µ1(n), . . . µL−1(n)] ;

µi(n) =
0.5 |u(n− i)|
L−1∑
l=0

|u(n− l)|3
, i = 0 . . . L− 1. (10)

As mentioned in the introduction, this algorithm is one of
the two that do not require any parameters to run, and it is
its main advantage. The algorithm is also the second of the
two algorithms that proposed the individual step sizes (both the
algorithms appeared in the same year). Although the authors
allow also for scalar step sizes, they insist that the individual
step sizes give better results.

The authors applied the algorithm to the classical adaptive
noise cancellation problem (see Section 4.3), with the station-
ary, white Gaussian noise input. The algorithm resulted in
faster convergence rate than the constant step size LMS algo-
rithm.

2.4. VS-LMS Algorithm by Shan et al.
The original algorithm by Shan et al.15 is given by:

µ(n+ 1) =
α|ρ(n)|

uT (n)u(n)
;

ρ(n) = λρ(n) + (1− λ)ū(n)e(n);

ū(n) =
1

L

L−1∑
l=0

u(n− l); (11)

where α is a scaling factor, ρ(n) is an estimate of the corre-
lation between the input and the error at time instance n, λ is
a forgetting factor used in calculation of the correlation, and
ū(n) is the mean value of the elements in the input vector.
Thus, the algorithm uses the orthogonality principle.1 Typi-
cally, the forgetting factor λ is in range from 0.9 to 1. The
value of the scaling factor α, on the other hand, should be cho-
sen experimentally with the knowledge that it affects both the
tracking capability and the speed of the convergence of the al-
gorithm.

In its first published form, the original algorithm did not in-
clude the absolute value in the numerator of Eq. (11). After
comments on their paper25 the authors added the absolute value
and agreed that µ should be bounded (µ(n) < µmax).26

The algorithm by Shan et al. was simplified afterwards to
the form:

µ(n+ 1) =
α|ρ(n)|

uT (n)u(n)
;

ρ(n) = λρ(n) + (1− λ)u(n)e(n); (12)

which we currently know under the name correlation LMS.
The only difference is that the mean value of the elements
in the input vector is substituted with the instantaneous input
value.

Both the original Shan’s algorithm and the correlation LMS
are members of the group of algorithms requiring no more than
two parameters to adjust in addition to the upper bound for
the step size, which is still a reasonable number. The authors
claim that their algorithm was developed to address the issue
of the robustness of the LMS algorithm to disturbances present
in real adaptive systems and to the sudden changes in the noise
level. As a response, the algorithm with adaptive gain control
similar to the gain control of the RLS algorithm was proposed.
Thus, the algorithm is “insensitive to disturbances but sensitive
to system changes”, i.e. with tracking capabilities.15
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2.5. VS-LMS Algorithm by Karni et al.
The algorithm by Karni et al.16 is given by:

0 ≤ µ(n) ≤ µmax;

µ(n) = µmax

(
1− e−α‖u(n)e(n)‖

2
)

; (13)

where α > 0 is the dumping factor. The authors suggest that
the α > 1 and observe that for α→∞ the algorithm degener-
ates to the conventional LMS, with constant step size equal to
µmax.

Karni’s algorithm requires only one parameter and the upper
bound for the step size to run.

The algorithm was developed to address the issue of high
misadjustment that is a side effect of fast convergence, or more
precisely, of using large step sizes. The authors compare their
algorithm with a two-stage method, which uses large values of
µ during the initial stage of adaptation to speed up the conver-
gence, and smaller values afterwards to minimize the misad-
justment. The authors claim that their algorithm gives better
results (both the convergence speed and the misadjustment),
especially under nonstationary environment conditions.

2.6. VS-LMS Algorithm by Benveniste et al.
Benveniste et al. proposed a VS-LMS algorithm in the

book.17 The author of this work failed to find this book; how-
ever, as the algorithm was cited by many authors, it is repro-
duced here after reference20 and.27 The algorithm may be used
with scalar step size, and in this case it is defined as:

µ(n) = µ(n− 1) + ρe(n)uT (n)φ(n); µ(n) < µmax,
(14)

φ(n+ 1) = φ(n)− µ(n)u(n)uT (n)φ(n) + u(n)e(n);
(15)

where ρ is a small positive value used to control the conver-
gence and MSE, and φ(n) is an estimate of the gradient vector
— the vector of derivatives of the filter coefficients with the
respect to the step size. After reference20 we observe that a
larger value of ρ results in faster convergence and may result
in lower overall MSE, but may also cause a large fluctuations
of MSE in short range of time; we also observe that the behav-
ior of the algorithm is not influenced very much if the value of
ρ varies in range [10−4 . . . 10−2].

Benveniste’s algorithm can also be used in individual step-
sizes form. In this case, the step-size matrix is constructed as:

M(n) = diag [µ0(n), µ1(n), . . . µL−1(n)] ; (16)

0 < µi(n) < µmax, i = 0 . . . L− 1;

where:

µi(n) = µi(n− 1) + ρe(n)u(n− i)φi(n); (17)

φi(n+ 1) = φi(n)− µi(n)|u(n− i)|2φi(n) + u(n− i)e(n).
(18)

In both its forms, Benveniste’s algorithm requires one pa-
rameter and the upper bound for the step size to run.

2.7. VS-LMS Algorithm by Kwong et al.
The algorithm given by Kwong et al.11 is given by:

µ′(n+ 1) = αµ(n) + γe2(n);

µ(n+ 1) =


µmax if µ′(n+ 1) > µmax;
µmin if µ′(n+ 1) < µmin;
µ′(n) otherwise;

(19)

where 0 < α < 1 and γ > 0 are tuning parameters, and 0 <
µmin < µmax are chosen to provide tracking capability and
stability, respectively. The authors claim that typical value for
α, working well in many simulations they performed, is 0.97.
The parameter γ influences both the speed of convergence and
the EMSE, and it should be small — 4.8 ·10−4 was used in the
original paper.

The algorithm was developed with the goal to have the step
size dependent on the square of the error. The authors’ moti-
vation was that the error is frequently large when fast adapta-
tion is required, while the step size may be lowered when the
error becomes low. Moreover, simple relation of the step size
and the error made it possible to provide theoretical analysis of
this VS-LMS algorithm, even in case of the nonstationary en-
vironment. The authors compared their results with the results
obtained with the algorithms by Harris (Sec. 2.2), and obtained
comparable performence.

Kwong’s algorithm requires four parameters to run, includ-
ing the upper bound for the step size. Two of them are the
maximum and minimum step size, which usually do not inter-
act with other parameters; therefore, the number of the param-
eters to adjust is still reasonable.

2.8. VS-LMS Algorithm by Evans et al.
The paper by Evans et al.18 discusses two similar algo-

rithms. The first one is identical with Harris’s algorithm de-
scribed in Section 2.2, the second differs only in the step size
update equation (9), which is additive rather than multiplica-
tive:

µi(n+1) =



µi(n)− α if e(n)u(n− i) alternates sign
on m0 successive samples;

µi(n) + α if e(n)u(n− i) has the same sign
on m1 successive samples;

µi(n) otherwise.
(20)

Naturally, the value α can no longer be equal to 2, but should
be chosen as some small value (2−10 was used for the exper-
iments presented by the authors). The authors claim that this
algorithm gives slightly better performance that the algorithm
defined by (9). The number of parameters parametrizing the
algorithm is identical as in the case of Harris’s algorithm.

2.9. VS-LMS Algorithm by Mathews et al.
Mathews’s algorithm19 is another algorithm that can use

both the individual and common step sizes. In the first case
the step-size matrix is again a diagonal matrix with the upper
bound on each of the diagonal elements, as in Eq. (16). The
individual step sizes are calculated as:

µi(n) = µi(n−1)+ρe(n)e(n−1)u(n−i)u(n−i−1); (21)
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where ρ is a small positive value allowing to control the con-
vergence process. The authors used the values in range 10−4 ≤
ρ ≤ 6 · 10−3 and claim that the choice does not influence the
steady-state performance.

In the second case, common step size (also subject to the
upper bound µmax) is updated as:

µ(n) = µ(n− 1) + ρe(n)e(n− 1)uT (n− 1)u(n). (22)

For some hypothetical input sequences, the algorithm may
fail to start when µ(0) = 0; therefore, the authors suggest to
initialize the step size with some small value. The choice of
µ(0) > 0 may also improve the initial speed of convergence of
the algorithm.

The concept the algorithm is based on is to change the step
size in a manner proportional to the negative of the gradient of
the squared estimation error, with respect to the step size. An
algorithm offering very good converge speed and small mis-
adjustment resulted. Moreover, the authors claim that this al-
gorithm offers “close-to-the-best-possible performance” when
applied in nonstationary conditions.19

This algorithm requires two parameters and the upper bound
for the step size to run, but one of them is the minimum step
size, and the authors claim that the choice the other (ρ) is not
critical.

2.10. VS-LMS Algorithm by Aboulnasr et al.
The algorithm by Aboulnasr et al.12 is based on the algo-

rithm by Kwong (see Eq. (19)) and the observation that the
instantaneous energy of the error signal it uses may lead to
unexpected behavior in the presence of measurement noise.
Therefore, Aboulnasr proposes to calculate an estimate of the
autocorrelation between e(n) and e(n − 1), and use this es-
timate to control the step size instead of e2(n). The estimate
may be calculated as:

p(n) = βp(n− 1) + (1− β) e(n)e(n− 1); (23)

where 0 � β < 1 is an exponential weighing factor control-
ling the averaging process. Then, the estimate should be used
in calculation of µ′(n+ 1) as:

µ′(n+ 1) = αµ(n) + γp2(n). (24)

Finally, the same limits on the step size should be applied as in
Eq. (19). Also, the meaning of the parameters α and γ is the
same as in the case of Kwong’s algorithm.

As stated previously, the proposed modification introduced
by this algorithm makes it immune to the uncorrelated mea-
surement noise. The authors claim that this raises the perfor-
mance of the algorithm in case of stationary environments, and
offers performance comparable with the algorithms by Kwong
and Mathews in case of nonstationary environments. Unfor-
tunately, the modification rises the total number of parameters
parametrizing the algorithm up to five, which is a number un-
suitable for many practical applications.28

2.11. VS-LMS Algorithm by Pazaitis et al.
A very original algorithm by Pazaitis et al.13 uses the kur-

tosis of the error signal to control the step size. The authors

propose two different equations for the step size update:

µ(n) = α|Kurt (e(n)) |; (25)

and
µ(n) = µmax

(
1− e−α|Kurt(e(n))|

)
; (26)

where α is a positive constant controlling both the speed of
convergence and the excess MSE. The authors suggest that the
value of α should be in range [1, 10] for the update according to
Eq. (26), whereas it should be approximately an order smaller
for the update according to Eq. (25). The authors also observe
that the simpler-to-use update by Eq. (25) may require addi-
tional upper bound to ensure convergence; therefore, only the
algorithm defined by Eq. (26) will be considered in this paper.

To apply Eqs. (25)–(26) in practice, an estimate of the kur-
tosis must be calculated. The authors suggest to calculate this
estimate as:

Ce4(n) = Ê
{
e4(n)

}
− ρ(n)Ê2

{
e2(n)

}
; (27)

where Ce4(n) is the estimate, Ê is an estimate of the expected
value, and ρ(n) is used to trace the changes in the characteris-
tics of the noise. The latter factor should be calculated recur-
sively as:

ρ(n+ 1) = ρ(n) +

δ sgn
(
Ê
{
e4(n)

}
− ρ(n)Ê2

{
e2(n)

})
Ê2
{
e2(n)

}
; (28)

where δ is a small positive constant (the authors used δ = 0.01
in their simulations).

The authors suggest to calculate the estimates of the ex-
pected values using rectangular window of some size, or to
calculate them recursively as:

Ê
{
e2i(n)

}
= βÊ

{
e2i(n− 1)

}
+ (1− β)e2i(n), i = 1, 2

(29)
(this paper uses the recursive calculation of the estimates).

Both the rectangular window size and the forgetting factor
β are additional parameters that need to be selected before ap-
plication of the algorithm; therefore, the number of parameters
to adjust is equal to four, including the upper bound for the
step size. This number is rather high and may be unsuitable
for some practical applications.

The main advantage of the algorithms lies in the originality
of using higher order statistics to adjust the step size. In theory,
this should result in the algorithm immune to the disturbance
noise, if the noise is Gaussian. However, the main advantage is
also a main disadvantage, as in practice higher order statistics
are hard to estimate.

2.12. VS-LMS Algorithm by Ang et al.
Ang et al.20 proposed a simplification of Benveniste’s algo-

rithm given by Eqs. (14)–(15). The simplification applies to
the gradient vector Eq. (15), which is now calculated as:

φ(n+ 1) = αφ(n) + u(n)e(n); (30)

where α is a constant smaller than but close to one. The authors
explain that the algorithm may be viewed as a filtering of the
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noisy gradient of u(n)e(n) with a first-order low-pass filter
with transfer function 1

1−αz−1 . This should result in a more
stable adaptation of the step size. Moreover, for α = 0, this
algorithm is reduced to Mathews’s algorithm (Eq. (22)).

Ang’s algorithm may also be used with the individual step
sizes, in which case Eq. (18) is simplified to:

φi(n+ 1) = αφi(n) + u(n− i)e(n). (31)

Unfortunately, the modification by Ang et al. adds another
parameter when comparing with Benveniste’s algorithm, so the
total number of parameters is equal to three, including the up-
per bound for the step size.

2.13. VS-LMS Algorithm by Benesty et al.
The algorithm by Benesty et al.21 is given by:

µ′(n) =
1

δ + uT (n)u(n)

(
1− σv

ε+ σ̂e(n)

)
;

µ(n) =

{
µ′(n) if σ̂e(n) ≥ σv,
0 otherwise,

; (32)

where σv is standard deviation of the system noise (see below),
σ̂e(n) is an estimate of standard deviation of the error, and δ
and ε are small positive constants to avoid division by zero.

The authors suggest to estimate the power of the error signal
using the recursion:

σ̂2
e(n) = λσ̂2

e(n− 1) + (1− λ)e2(n); (33)

where the exponential parameter λ can be calculated as λ =
1− 1

KL , with K ≥ 2.
The concept of the system noise v(n) comes from an as-

sumption that the desired signal d(n) is a sum of the response
of some optimal filter Wo and the zero-mean noise v(n):

d(n) = wT
o u(n) + v(n); (34)

in this case, σ2
v = E[v2(n)]. In some applications, the standard

deviation of the system noise may be known before running the
algorithm, but usually it must also be estimated, e.g. using an
a posteriori error:

ε(n) = y(n)−wT (n+ 1)u(n). (35)

The estimation of σ̂2
v = E[ε2(n)] may be performed using the

recursion in Eq. (33).
The authors showed that the proposed algorithm performs

better in acoustic echo cancellation simulations than the
NLMS, giving faster convergence and lower excess MSE.
However, the authors assumed the knowledge of the variance
of the system noise σ2

v for these experimets.
The total number of parameters required by this algorithm

may be different in different implementations. In the optimistic
case, when we fix the δ and ε at some small value, and when
we estimate both the variances with the same forgetting factor,
only one parameter remains to be adjusted (the forgetting fac-
tor or theK multiplier). However, if we assume the knowledge
of σ2

v , this variance becomes the second parameter. The sec-
ond parameter also appears when we decide to estimate both
the variances with different forgetting factors. Thus, the au-
thor’s claim that the algorithm is “nonparametric” should be
treated as an exaggeration.

2.14. VS-LMS Algorithm by Wahab et al.
The algorithm by Wahab et al.22 was developed by calcula-

tion of the optimal step size that minimizes the cost function
defined as a quadratic norm of the difference between the new
filter weights w(n+ 1) and the optimal ones. Practical imple-
mentation of their algorithm is given by:

µ(n) =
e2(n)− e(n)v̂(n)

e2(n)‖u(n)‖2
; (36)

where v̂(n) is an estimate of the noise defined as in Eq. (34).
The authors propose to estimate the noise as:

v̂(n) = g(n)e(n); (37)

where

g(n) = 1− exp

(
ασ̂2

v

σ̂2
u(n)(ρσ̂2

e(n)− σ̂2
v)

)
; (38)

where σ̂2
v is the system noise power, σ2

u(n) is the input signal
power, σ2

e(n) is the error signal power, ρ ≥ 1 and α are pos-
itive constants used to make a compromise between tracking
capabilities and the EMSE (for calculation of σ̂2

v and σ̂2
e see

Section 2.13). The authors suggest to estimate the input signal
power using rectangular window: σ̂2

u(n) = ‖u(n)‖2/L.
The authors claim that the derivation of their algorithm takes

the disturbance noise into account; therefore their algorithm
outperforms the algorithms by Ang or Aboulnasr in noisy en-
vironments. Moreover, the authors claim that their algorithm
is less influenced by inproper choice of the adjustment param-
eters.

Please note that the algorithm by Wahab is equivalent to the
NLMS in case of noise-free environment (v(n) ≡ 0). Note
also the possible problems in practical implementation of the
algorithm introduced by two subtractions, which may make the
step size negative. Another disadvantage is that this algorithm
is parametrized by as many as four parameters.

2.15. VS-LMS Algorithm by Hwang et al.
The algorithm by Hwang et al.23 is based on the algorithm

by Kwong given by Eq. (19). The authors observed that the
parameter γ from Eq. (19) should be large when fast conver-
gence is required (e.g. at the start of an operation), but should
be small during steady-state operation and when the system
noise is high. The authors suggest to adjust this parameter us-
ing an estimate of the correlation between the input and the
error in the vector form:

p̂(n) = βp̂(n− 1) + (1− β)u(n)e(n); (39)

where 0 < β < 1 is an exponential parameter. Then, the step
size should be adjusted as:

µ(n+ 1) = αµ(n) + γs‖p̂(n)‖2e2(n); (40)

with γs > 0.
The authors demonstrate the advantages of the algorithm

using adaptive channel estimation application: the algorithm
converges fast despite of large ranges of γs and different levels
of noise.
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Unfortunately, the modification raises the number of param-
eters required to run the algorithm up to five, including the
upper bound for the step size. This may create a serious disad-
vantage for many practical applications.28

2.16. VS-LMS Algorithm by Wang et al.
Algorithm by Wang et al.24 is given by:

µ′(n) =

∑n
i=1 ε(i)e(i− 1)uT (i− 1)u(i)∑n
i=1 e

2(i− 1)uT (i− 1)u(i)
; (41)

µmin < µ′(n) < µmax;

µ(n) =
µ′(n)

uT (n)u(n)
; (42)

where:
ε(n) = d(n)−wT (n− 1)u(n). (43)

The authors suggest that the lower bound on µ′(n) may be
set to any small positive value, e.g. 10−10, and the upper bound
may be set to µmax = uT (n)u(n). If such values are used,
the algorithm is the other algorithm of the two mentioned in
Section 1 that do not require any parameters to run, which is
its greatest advantage. Judging by the simulation results the
authors present, this algorithm offers performance comparable
with other VS-LMS algorithms, e.g. Aboulnasr’s algorithm.

2.17. VS-LMS Algorithm by Zou et al.
The algorithm by Zou et al.14 combines the algorithms by

Kwong (Eq. (19)) and by Aboulnasr (Eq. (24)) and is com-
posed of three steps. In the first step, the new step size is cal-
culated as:

µ(n+ 1) = αµ(n) + γp2(n);

µmin < µ(n+ 1) < µmax; (44)

where 0 < α < 1 and γ > 0 are tuning parameters (as in
Aboulnasr’s algorithm). In the next step, the time-averaged
correlation between two successive error signal samples p(n)
is updated as:

p(n+ 1) = (1− β(n)) p(n) + β(n)e(n)e(n− 1). (45)

Finally, the new time-averaged error signal power β(n) is cal-
culated as:

β(n+ 1) = ηβ(n) + λe2(n);

βmin < β(n+ 1) < βmax; (46)

where 0 < η < 1 and λ > 0 are tuning parameters (as in
Kwong’s algorithm).

The authors observe that 0 < β(n) < 1; therefore, one
should choose βmax < 1. The authors claim that the algo-
rithm combines the advantages of the algorithms by Kwong
and Aboulnasr: good ability to cope with the noise and good
tracking capability. Moreover, the authors claim that very
good convergence speed and low misadjustment are achieved,
too. However, the algorithm requires eight parameters to be
adjusted—this is definitely too many to use the algorithm in
practical applications.28

3. UPPER BOUND FOR THE STEP SIZE

The majority of the algorithms described above require the
upper bound for the step size µmax. In fact, the only algo-
rithms that do not require the choice of µmax are NLMS and
algorithms by Mikhael (Sec. 2.3), by Benesty (Sec. 2.13) and
by Wahab (Sec. 2.14). Please note that µmax must be chosen
very carefully in order to guarantee convergence as well as not
impose too much restrictions on the step size. Moreover, the
upper bound for the step size may depend on the experiment
conditions (see Section 4.3 for an example). This is quite op-
posite of the minimum step size, which can be chosen very
roughly.

It is possible to simplify the choice of the upper bound for
the step size by assuming it to be similar to the LMS algorithm
stability sufficient condition:29

µmax(n) = ε
2

uT (n)u(n)
; (47)

where 0 < ε < 1 is a scaling factor. Although it may seem
as substitution of one upper bound by another, there are sub-
stantial differences. Namely, contrary to the (constant) µmax,
the ε factor may be roughly chosen from a well-defined range
(0 . . . 1) (theoretically) or [0.5 . . . 0.9] (in practice). For exam-
ple, a value 0.8 (assumed for the experiments presented below)
or 0.9 will work well in many typical applications. The choice
of ε is so easy that we may assume that this technique allows
us to lower the number of parameters for each algorithm using
µmax by one. On the other hand, calculation of the µmax(n) in
each iteration requires additional processor power.

To check how the proposed modification influences stability
and performance of the VS-LMS algorithms, in the next sec-
tion we will show simulations with constant upper bound for
the step size as well as with modification defined by Eq. (47).

4. SIMULATIONS

The VS-LMS algorithms described in the previous section
have been tested in three typical applications: system identi-
fication, adaptive line enhancement (ALE) and adaptive noise
cancellation (ANC).33 The main problem that occurred during
the simulations and concerned especially algorithms with more
than two parameters was that it was not easy to adjust the pa-
rameters because of parameter interactions. This remark does
not apply to the maximum and minimum step sizes, which are
relatively easy to choose.

In this sense, the most difficult algorithms to parametrize
were those by Aboulnasr, Hwang, Zou, and Wahab. Algo-
rithms presenting moderate complication (two parameters to
adjust, except for the minimum and maximum step sizes) are
those by Kwong, Shan, Ang and Benesty. This group also in-
cludes algorithms by Harris and Evans, which have three pa-
rameters, but two of them are integers in the range from 1 to
3.

Another problem was the need to readjust algorithms for dif-
ferent applications. Moreover, the need to readjust the algo-
rithm for one application (ANC) after changing the noise level
has also arisen during the experiments.
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Figure 2. System Identification block diagram.

Despite these difficulties, an effort was taken to adjust the
algorithms in a way that allows them to obtain the best possi-
ble results with regards to the quantities discussed below. One
more remark must be observed: the adjustment of the param-
eters was performed with the aim of obtaining the behavior
which really exhibits the step-size variation. This remark is
important because it was very easy to adjust the parameters in
the way that the VS-LMS algorithm operated with the (almost)
maximum allowed step size. Moreover, this behavior some-
times minimized the sum of MSE — mainly due to maximiza-
tion of the speed of convergence. However, it did not allow it
to minimize the misadjustment and variation of the parameters
of an adaptive filter during the steady state. Therefore, such
adjustment was considered wrong.

4.1. Simulation of System Identification

The first application the VS-LMS algorithms were tested
against is system identification — see Fig. 2. In this appli-
cation, the LMS algorithm input signal u(n) is the signal used
to excite the unknown object, while the LMS algorithm de-
sired signal d(n) is a sum of the object output signal y(n) and
the output noise n(n) (the disturbance). Observe that in this
case the output noise is the same as the system noise v(n) in
Eq. (34). This desired signal is compared to the output of the
identified model to produce the error signal e(n).

System identification presents many challenges,30 but for
the purpose of this paper, a relatively simple case of identifi-
cation of white-noise excited FIR filter was chosen. Moreover,
the exact match in the structure of the object and the model was
assumed (no modeling error). This, together with the control
over the output noise power, allowed us to observe some im-
portant differences in the behavior of the VS-LMS algorithms.

It should be noted that in case of an identification of a
stationary FIR object, the LMS filter should converge to the
Wiener solution.1 Therefore, it is possible to perform the zero-
order analysis of the steady-state phase of the LMS adaptation,
with the assumption of the small step size. If we define the

instantaneous MSE as:

J(n) = E(|e(n)|2); (48)

we may express this MSE as:

J(n) = Jmin + Jex(n); (49)

where Jmin is the minimum achievable error, and Jex(n) is
called excess MSE (EMSE).

Assuming that the identified model converges to the original
filter, the minimum achievable MSE is equal to the variance of
the system noise n(n):

Jmin = E(n2(n)). (50)

Furthermore, form the small step-size theory it follows that in
the steady state the MSE can be expressed as:

J(∞) = Jmin + µJmin

L∑
k=1

λk
2− µλk

≈ Jmin +
µJmin

2

L∑
k=1

λk;

(51)
where λk are the eigenvalues of the input signal autocorrelation
matrix.1 Thus, the EMSE is approximately equal to:

Jex(∞) ≈ µJmin

2

L∑
k=1

λk; (52)

which means that it depends on the variance of the system
noise. For this reason it is convenient to define additional quan-
tity, called misadjustment, as:

M =
Jex(∞)

Jmin
≈ µ

2

L∑
k=1

λk. (53)

Please note that the misadjustment depends only on the step
size and the properties of the input signal u(n) (in the form
of the eigenvalues of the autocorrelation matrix), and does not
depend on the system noise n(n).

In the experiments described below EMSE was used to eval-
uate each of the algorithms in a quantitative manner in the form
of the sum of the EMSE for the whole experiment:

∑
EMSE =

N∑
n=0

Jex(n); (54)

where N is the number of iterations in each experiment (N =
4096 in case of identification experiments). This parameter
shows overall performance of the algorithm, combining the
speed of convergence and the resulting EMSE. However, to
observe the last two quantities separately, the estimate of the
misadjustment was also calculated, as the mean value of 100
samples of EMSE, divided by the variance of the system noise.
Time of convergence was calculated as a number of samples
after which the EMSE falls below the value 10−2:

τ = min
n

[
Jex(n) < 10−2

]
. (55)

The last quantity calculated for evaluation of the identifi-
cation performance was the variance of two of the identified
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Figure 3. Excess MSE in identification experiments for selected algorithms.

Figure 4. Step sizes in identification experiments for selected algorithms.

coefficients calculated during the steady state at the end of the
experiment.

The results of the identification experiments are presented
in Table 1. This results were obtained after averaging 250 in-
dividual runs, with different excitation sequences and system
noise sequences. The identified object was in a form of FIR fil-
ter with initial coefficients 0.5, 1.1, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3,
0.2, 0.1. In the middle of the experiment, that is after 2048 iter-
ations, the coefficients were changed to 0.3, -0.5, 0.2, 0.8, 0.5,
0.3, 0.1, 0.1, 0.0, 0.0. The signal to noise ratio was equal to 20
dB, and the assumed minimum and maximum step sizes were
equal to 10−7 and 0.03. The table presents results for the orig-
inal algorithm, i.e. the algorithm operating with µmax = 0.03
as well as for the algorithm operating with variable µmax, as
described in Section 3.

By observing the sum of EMSE for the original algorithms
we may conclude that the best algorithm is the algorithm by
Benesty, the second is the algorithm by Wahab, and the third
the algorithm by Mikhael. By consulting the time of conver-
gence we notice that the algorithm by Benesty is the best due
to its speed of convergence (the second by the same criterion
is the algorithm by Mikhael, the third by Wahab). On the other
hand, the algorithm by Benesty exhibits poor steady-state per-
formance, poorer even than LMS and NLMS — the conclusion
that arises after examination of the misadjustment. So, if speed
of convergence is not critical, but accuracy is in value, the best

algorithm is the one by Zou, beating only slightly the one by
Pazaitis (second form, Eq. (26)) and by Hwang. Finally, the
variance of the estimates allows us to award the algorithms by
Zou, Pazaitis (both forms), and Aboulnasr.

With the analysis of the same quantities for the algorithms
using variable maximum step size, we may conclude that this
modification usually influences the algorithms positively. Ad-
ditionally, the speed of convergence can be significantly im-
proved, as can be seen in case of the algorithms by Harris, by
Shan, or by Karni. Sometimes, even if the speed of conver-
gence is worse, the overall performance is comparable due to
better steady-state performance (e.g. the algorithm by Aboul-
nasr and by Pazaitis, second form).

Figure 3 presents the excess MSE in the identification ex-
periments for selected algorithms. Considering the NLMS as
a reference, we observe that the algorithm by Harris (included
here for historical reasons, as the next VS-LMS algorithm af-
ter the NLMS) is dramatically slower to converge. On the
other hand, the algorithms by Mikhael and Pazaitis, although
faster to converge, do not achieve the excess MSE as low as
the NLMS. Only the algorithm by Benesty maintains both the
fast convergence speed and low excess MSE.

Figure 4 shows the step sizes (µ(n)) used by the algorithms
discussed above during the experiments. We observe that the
algorithms result in different values of the step sizes, compared
to the NLMS. The algorithm by Harris decreases the step size
rapidly at the begining of the simulation; therefore, it is very
slow to converge. The algorithm by Mikhael uses approxi-
mately three times higher value of the step size than the NLMS;
thus it converges fast, but results in slightly higher excess MSE
in the steady state. The algorithms by Pazaitis and Benesty
use what we may consider to be a reasonable approach: they
start with higher step sizes, and start to decrease them once the
initial convergence is finished (compare with Fig. 3). How-
ever, the algorithm by Benesty exploits this technique much
more efficiently that the algorithm by Pazaitis, and therefore it
achieves both the fast convergence speed and the low excess
MSE.

4.1.1. Further observations

More conclusions can be drawn if we analyze the sys-
tem identification results obtained for different signal to noise
ratios (the results of experiments, including the plots of
the MSE, the EMSE, the misadjustment and the step sizes,
are organized in the form of a web page, and available at
http://zpss.aei.polsl.pl/dbismor/vslms/; the results can also be
e-mailed as a compressed archive by emailing a request to Dar-
iusz.Bismor@polsl.pl). From Eq. (52), it follows that different
EMSE levels should be observed for different SNRs: the lower
the system noise, the lower the EMSE should be observed.
On the other hand, the misadjustment should not depend on
the system noise variance and SNR (Eq. (10)). Such behavior
was not observed for the algorithms by Harris, by Kwong, by
Shan, by Karni, and by Wahab. For those algorithms the EMSE
tended to reach similar, high values for different SNRs. This
means that the algorithms mentioned above may give higher
than expected EMSE values.
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Figure 5. Adaptive line enhancer block diagram.

4.2. Simulation of Adaptive Line
Enhancement

The Adaptive Line Enhancement (ALE), introduced by
Widrow in 1975, is a technique used to detect highly correlated
signals (mainly sinusoids) buried in a wideband noise.2 Nowa-
days, ALE is used in many applications, e.g. instantaneous
frequency estimation, spectral analysis, and speech enhance-
ment.31, 32 The block diagram of the adaptive line enhancer
(ALE) is presented in Fig. 5. The input signal to the ALE,
d(n), is usually a mixture of highly correlated signals (e.g.
sines) and uncorrelated signals (e.g. white noise or speech
recording). This signal is the desired signal for the adaptive
LMS filter, while its delayed version constitutes the LMS in-
put signal: u(n) = d(n − ∆). The delay, ∆, is also called
decorrelation delay.1

In the experiments presented below, the input signal to the
ALE was a short (1.8 s) recording of speech contaminated with
four sine signals or with chirp signal. This application tests
completely different aspects of the VS-LMS algorithms, as the
speech recording can be considered to be a non-stationary sig-
nal. Thus, the ALE filter coefficients must be constantly ad-
justed, except for the short periods between syllables, and only
in case of the contamination with the four sines. In case of the
chirp signal, its frequency changes during the whole experi-
ment, and no steady state occurs at all.

The performance of the VS-LMS algorithms in the ALE ap-
plication was evaluated by the means of two quantities. The
first one was the sum of MSE during the whole experiment.
Please note that excess MSE could not have been used due to
the lack of the Wiener filter model, which implies impossibil-
ity to calculate the system noise. Moreover, even the calcula-
tion of MSE was difficult due to the fact that ALEs may have
different amplifications (gains). Therefore, some scaling was
necessary before comparing the original speech signal with the
ALE output e(n). Scaling by the maximum absolute value was
chosen in this case, with the omission of the first 1000 samples
to account for the zero initial conditions.

The second quantity used to compare the algorithms perfor-
mance was the final signal to noise ratio (SNR). This quantity
was calculated by the means of the spectrum of the error signal
e(n). It was observed that the spectra of the speech record-
ing and the contaminating signals did not overlap during the
last 400 ms of the recording. This allowed us to calculate the
power of the speech recording and the contaminating signal
(after filtration) separately, in different frequency bands.

The speech signal was recorded with the sampling fre-

Figure 6. MSE in ALE experiments for selected algorithms.

quently 8 kHz. The ALE had 10 coefficients, and the decor-
relation delay was equal to 10. In the case of the four sines, the
frequencies were 1.5, 1.8, 2.5 and 3.7 kHz. In case of the chirp
signal, the frequency range was 100–3500 Hz. The minimum
and maximum step sizes were 10−5 and 0.25. The results of
the experiments obtained after averaging 250 individual runs,
are presented in Table 2.

For the chirp signal, the algorithm by Wahab produced the
lowest sum of MSE, while the algorithm by Mikhael was only
slightly worse, and the algorithm by Wang was third. However,
if the SNR is considered, none of these algorithms perform as
well as algorithms by Mathews (with individual step sizes), by
Ang (both versions) and even the NLMS.

Figure 6 presents the MSE in the ALE experiments with the
chirp signal for the selected algorithms. Treating the NLMS as
a reference, we observe that the algorithm by Mathews results
in a very similar MSE curve during most of the simulation.
Near the end of the experiment, the MSE for this algorithm is
noticably higher. The algorithms by Mikhael and Wahab, on
the other hand, result in different MSE curves, but very similar
to each other. The level of the MSE they produce is comparable
with the level produced by the NLMS algorithm.

Figure 7 presents the value of the first filter coefficient dur-
ing the experiments with the chirp signal. From the figure it is
clear that the coefficient does not reach the steady state. How-
ever, the values it takes are very similar for all the presented
algorithms.

For the four sines signal, and judging by the sum of MSE,
the best algorithms are those by Shan, Benveniste, and Ben-
esty. But judging by the SNR, the best algorithms are the one
by Evans, Ang, and Benesty.

In the authors’ opinion, the SNR better represents the abil-
ity of an algorithm to attenuate unwanted contamination —
this observation was confirmed by listening to the played error
signal. If, for example, the SNR was poor (close to zero or
negative), the comprehension of the filtered speech was diffi-
cult. Following this observation, we can distinguish VS-LMS
algorithms unsuitable for ALE, which certainly are algorithms
by Harris, Kwong, Shan, Aboulnasr, Wang, Zou, and Pazaitis.
Also, algorithms by Benveniste, Mathews (version with the
common step size), and Hwang may not work as well as the
others.
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Table 2. Results of line enhancer experiments averaged over 250 runs, ALE length: 10. A dash in the ’Modif’ column means that the particular algorithm does
not use the upper bound for the step size; and thus the modification proposed in Section 3 does not apply.

Chirp Four sines
Algorithm

∑
MSE Final S/N

∑
MSE Final S/N

Orig. Modif. Orig. Modif. Orig. Modif. Orig. Modif.
LMS 14.1 — 26.3 — 20.4 — 18.2 —
NLMS 15.8 — 27.0 — 20.0 — 16.9 —
Harris 22.4 28.4 5.3 5.6 31.5 31.0 -15.7 -18.5
Mikhael 10.5 — 17.7 — 20.1 — 17.3 —
Kwong 43.3 25.1 1.3 1.3 20.9 20.8 8.2 6.4
Evans 24.0 16.6 12.5 13.7 20.6 20.0 18.8 18.0
Shan correlation 26.2 12.5 -2.1 -2.2 19.4 19.8 12.6 11.4
Shan 22.0 15.0 -3.5 -3.4 19.5 20.0 8.4 10.7
Benveniste 13.1 11.0 20.4 17.5 19.5 19.3 6.7 5.9
Benveniste indiv 14.9 11.6 22.3 19.7 19.7 19.6 8.2 8.5
Karni 25.5 19.6 12.3 18.1 22.2 22.5 17.6 17.2
Mathews 20.8 19.9 5.6 5.6 24.1 24.8 3.1 7.0
Mathews indiv 15.8 13.8 27.3 25.8 20.6 20.1 16.5 17.0
Aboulnasr 31.3 28.5 -2.0 -1.7 21.3 21.2 5.0 4.1
Ang 16.4 11.9 27.2 21.8 20.1 19.9 18.1 18.9
Ang indiv 18.9 12.4 27.2 22.9 20.3 20.0 17.2 17.0
Hwang 48.0 22.4 5.0 5.0 21.4 20.7 6.6 7.1
Wang 12.5 — 7.3 — 113.6 — -29.9 —
Zou 46.4 35.5 0.8 1.1 21.7 21.4 13.2 13.8
Pazaitis 46.7 26.2 -0.7 -0.0 21.8 22.4 15.7 17.2
Pazaitis 30.5 22.7 -0.6 0.2 21.6 21.9 8.8 18.1
Benesty 12.9 — 26.6 — 19.6 — 18.1 —
Wahab optimal 9.8 — 16.9 — 20.1 — 17.2 —

Figure 7. First filter coefficient in ALE experiments for selected algorithms.

It must also be noted that introduction of the variable max-
imum step-size modification does not always positively influ-
ences the performance, especially if we judge the algorithms
by the sum of MSE. However, if we consider the SNR only,
the set of algorithms for which the performance is significantly
reduced is limited to the algorithms by Karni and Ang.

4.2.1. Further observations

The best way to evaluate the ALE performance
is by analyzing the spectrograms (available at
http://zpss.aei.polsl.pl/dbismor/vslms/). By comparing

the spectrograms for the four sines signal, we immediately
observe complete failure of the algorithms by Harris and
Wang. We also notice very good results obtained with the
NLMS and the algorithms by Mikhael, by Evans, by Karni
and by Benesty — no trace of the four sines can be observed
in the spectrograms for those algorithms. This group may
be extended over the algorithms by Pazaitis, if we introduce
the variable maximum step size modification discussed in
Section 3.

By analyzing the spectrograms for the chirp signal, we ob-
serve that it is not possible to remove the constantly changing
chirp signal completely with this setup. However, the NLMS
and the algorithms by Mathews (individual step sizes), Ang,
and Benesty are doing a very good job to weaken the power of
the chirp considerably. By analyzing the step sizes, we observe
that the most efficient strategy here is to keep the step size as
high as possible during the whole experiment.

4.3. Simulation of Adaptive Noise Cancella-
tion

The Adaptive Noise Cancellation (ANC) block diagram is
presented in Fig. 8. The diagram is similar to the system iden-
tification, except for the presence of the output noise n(n).
However, the conditions and goals of operation of the two sys-
tems are different. One of the differences is in the unknown
system dynamic (P (z−1) in Fig. 8). In case of the system
identification, we seek for the model of this dynamic, while
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Figure 8. Adaptive noise cancellation block diagram.

in case of the ANC, the dynamic is assumed to be too diffi-
cult to be modeled in the whole frequency range. For example,
in the experiments described below, the dynamic P (z−1) was
nonstationary and was implemented as a bank of 300-th order
FIR filters switched each 3 seconds, while the ANC filter had
only 16 or 128 coefficients.

Another difference is the input signal u(n). In case of the
system identification, we usually employ persistently exciting
signals of sufficient degree (white noise, if possible). In case
of the ANC, we usually have no chance to choose the input
signal, which often contains a mixture of narrow-band signals
(e.g. single tones) and band-limited noise. In the experiments
described below, the input signal consisted of two sines, one
with frequency 112 Hz and amplitude 3 and the second with
frequency 200 Hz and amplitude 1. The sines were embedded
in an amount of white noise with different variances.

The performance of the VS-LMS algorithms in ANC appli-
cation was evaluated by the means of three quantities. The first
one was again the sum of MSE during the whole experiment.
The second was the MSE obtained during the steady state of
operation, and it will be referred to as ‘Final MSE’. Please note
that misadjustment cannot be used because there was no addi-
tional noise, which means that Jmin = 0 in Eq. (53). The third
quantity used to evaluate the performance of the algorithms
was the variance of the ANC filter coefficient w0 during the
steady-state operation.

The results of the experiments, with the ANC filter length
16, obtained after averaging 250 individual runs are presented
in Table 3. By analyzing the results for the variance of the
wideband noise 10−2 we come to a surprising conclusion that
none of the VS-LMS algorithms performed better than the
NLMS algorithm — this is clear from both the sum of MSE
and the Final MSE. Slightly worse results are obtained with
the algorithms by Mathews (both versions), Karni, Ang (with
individual step sizes), and Evans. Spectacular failure of the al-
gorithm by Wang should also be noted, as it is one of the only
two algorithms that does not require any parameters to run.
Another conclusion is that very small variance of the coeffi-
cients during the steady state, as e.g. in case of the algorithm
by Pazaitis, is not correlated with high overall performance.

In case of the wideband noise variance 10−4 the advan-
tage of the NLMS algorithm is no more very clear. Although
it still produces the smallest final MSE, the sum of MSE

Figure 9. MSE in ANC experiments for selected algorithms.

Figure 10. Step sizes in ANC experiments for selected algorithms.

is smaller for other algorithms, such as those by Evans and
Karni. Other algorithms with similar performance are corre-
lation LMS and those by Pazaitis, Ang (with individual step
sizes), Shan, Benveniste (with individual step sizes), Kwong,
and Hwang. Again, the algorithm by Wang failed to operate
satisfactorily.

It must be noted that the majority of the algorithms had to
be readjusted when switching from the wideband noise vari-
ance 10−4 to 10−2 — because otherwise they failed to main-
tain convergence. This only does not apply the NLMS and
the algorithms by Harris, Mikhael, Evans, Shan, and by Wang.
The fact that the NLMS did not need to be readjusted empha-
sizes its usefulness in ANC applications.

By analyzing the algorithms with variable maximum step-
size modification, we may conclude that this modification usu-
ally does not degrade the algorithm’s performance. On the
contrary, the modification usually increased the performance
slightly, especially in case of higher wideband noise variance.
The algorithms by Karni and Benveniste are the examples.

Figure 9 presents the MSE curves for the wideband noise
10−2 for the selected algorithms, and Fig. 10 shows the step
sizes for those experiments. From the figures it is clear that,
despite different step size strategies, the algorithms show very
similar speed of convergence. The only noticable difference is
in the final MSE during the stead-state phases, which is slightly
higher for the algorithms by Mikhael and Wahab. The step
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sizes have similar values for the NLMS and the algorithm by
Mikhael, but all the other algorithms presented on the figure
use higher values of the step sizes.

5. CONCLUSIONS

The very first conclusion which arises from the above anal-
ysis of the seventeen most popular variable step-size modifi-
cations of the LMS algorithm presented in this paper is that
there is no VS-LMS algorithm which is the best for all the ap-
plications. Different applications present different challenges
for the adaptation algorithm, thus requiring different step-size
update algorithms for the most efficient operation. This is es-
pecially apparent with stationary data processing (e.g. the sys-
tem identification) as opposed to nonstationary data processing
(e.g. speech signal processing). However, some general guide-
lines for the choice of the proper VS-LMS algorithm are as
follows:

First of all, the more parameters the algorithm requires to
be adjusted prior to operation, the more problematic the use
of this algorithm is. Even in simulations, the choice of more
than two or three parameters requires many time-consuming
trials. This is the effect of parameter interactions: the opti-
mal choice of one parameter is no longer optimal if we change
other parameters. Moreover, the optimal set of parameters is
likely to be different if experiment conditions (e.g. noise level)
change. Thus, the algorithms with more than three parameters
should be considered only if very special properties need to be
obtained, and probably only for simulations.

The above remark does not apply to the lower and upper
bound on the step size, required by many of the algorithms
discussed in this paper. The former is very easy to choose and,
for properly parametrized VS-LMS algorithm, influences only
steady-state error. The latter may easily be substituted with
stability sufficient condition bound given by Eq. (47), with
low computational cost and almost no influence on the per-
formance.

With the regard to the ease of use, the algorithm by Mikhael
(Section 2.3) should be mentioned. This algorithm requires
no parameters to run, and performs reasonably well in both the
stationary and nonstationary data processing. However, this al-
gorithm resulted in higher error levels in the ANC simulations
and may be not very well-suited for this application.

Second, very interesting and original is the algorithm by
Pazaitis (Section 2.11). This algorithm performed very well
in stationary data processing (the system identification). How-
ever, the kurtosis estimation involved in this algorithm requires
substantial number of operations; therefore, this algorithm may
not be applicable for real-time processing.

Finally, for nonstationary data processing, considering the
ease of use, numerical complexity, and performance, the
NLMS algorithm still appears to be unrivaled. However, if an-
other algorithm is desired for some reasons, the algorithm by
Mathews (Section 2.9) should be considered. This algorithm,
based on the orthogonality principle, requires two parameters
to be adjusted (excluding the upper bound for the step size),
presents moderate degree of numerical complexity, and per-
forms very well in both the ALE and the ANC applications.

To conclude, we will repeat this very important finding that
comes from the research reported in this paper: no VS-LMS al-
gorithm appears to be as versatile, easy to use, and well-suited
for real-time applications as the NLMS. In our opinion, despite
the constant effort to develop new VS-LMS algorithms, the 49-
years-old NLMS algorithm is going to dominate the adaptive
solutions for many years on, if not forever.
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