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This paper investigates the stability and accuracy of the aeroacoustic Time-Reversal (TR) simulation using the
Pseudo-Characteristic Formulation (PCF). To this end, the forward simulation of acoustic wave propagation in
1-D and 2-D computational domain with a uniform mean flow was implemented using the PCF of the Linearised
Euler Equations (LEE). The spatial derivatives in the opposite propagating fluxes of the PCF were computed using
an overall upwind-biased Finite-Difference (FD) scheme and a Runge-Kutta scheme was used for time-integration.
The anechoic boundary condition (ABC) was implemented for eliminating spurious numerical reflections at the
computational boundaries, thereby modelling a free-space. The stability of 1-D forward and TR (with only time-
reversed acoustic pressure as the input at the boundary nodes) simulations were analysed by means of an eigenvalue
decomposition, wherein it was shown that opposite upwinding directions must be considered while using the
overall upwind-biased FD scheme. Furthermore, the implementation of ABC was found to be crucial for ensuring
the stability of the forward simulation over a large time duration and the 2-D TR simulations. The overall central
Dispersion-Relation Preserving (DRP) FD schemes were however, found to be unstable and unsuitable for TR
simulation. The accuracy of both the forward and the TR simulations using the PCF was assessed by comparing the
simulation results against the corresponding analytical solutions of a spatially and temporally evolving Gaussian
pulse. It was shown that numerically reversing the mean flow direction during TR (using the PCF) and only the
time-reversed acoustic pressure as input at the boundaries is sufficient to accurately back-propagate the waves and
localise the initial emission point of the pulse in 1-D or 2-D computational domain.

1. INTRODUCTION

The acoustic Time-Reversal (TR) method, developed by
Fink, et al.,1, 2 is a promising method to localise acoustic
sources in time-domain and is explained by the following two-
step procedure:

1. In the first step, the acoustic pressure field radiated by
the source(s) is recorded by microphone line arrays (LAs)
in a Time-Reversal Mirror (TRM) during experiments, or
stored at the boundary nodes (virtual microphones) dur-
ing forward simulations, either (a) over LAs completely
enclosing the sources, or (b) over a limited angular aper-
ture LA(s) that only partially encloses the source(s).

2. In the second step, the recorded acoustic pressure time-
history is reversed in time followed by emission from
“numerical sources” at the boundary nodes. The back-
propagated acoustic pressure signals undergo a construc-
tive interference to form spatio-temporal maxima3 during
TR simulations, which corresponds to the spatial location
of the source(s). Method (a) which uses the enclosing
LAs, can account for almost the total acoustic power radi-

ated; therefore, back-propagation from this configuration
yields the most accurate prediction of the source location,
characteristics, and strength. Method (b), however, can
account for only a fraction of the acoustic power radiated,
thereby limiting the ability of TR to identify the location
and nature of sources.4

Fink, et al.2 provide an excellent review of the TR method
and discuss its applications in various fields such as hydro-
dynamics, ultrasound medical imaging, and diagnostic and
non-destructive testing. The TR method has also been used
for long-range communication in deep underwater acoustics,5

structural dynamics for health monitoring,6 in the presence
of a reflecting surface,7 and in electromagnetic wave propa-
gation.8 Different methods have been presented to enhance
the focal-resolution of TR, namely an active cancellation tech-
nique called the Time-Reversal Acoustic Sink (TRAS), devel-
oped by Bavu, et al.,9 and a passive radial damping approach
mimicking an acoustic sink called the Point-Time-Reversal-
Sponge-Layer (PTRSL), developed by the present authors.10

The application of the TR method in Computational Aeroa-
coustics (CAA) for localising sound sources in a flow field is,
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however, relatively new. Deneuve, et al.11 made use of the TR
method for the first time to localise aeroacoustics sources. The
forward evolution of the pressure and velocity fields was sim-
ulated by the numerical solution of the 2-D homoentropic non-
linear Euler equations using the Pseudo-Characteristic For-
mulation (PCF) proposed by Sesterhenn,12 wherein the spa-
tial derivatives in the opposite propagating fluxes were com-
puted using an overall upwind-biased Finite-Difference (FD)
scheme.13 As the forward evolution was implemented numer-
ically, it was possible to obtain both the pressure and particle
velocity time-histories at the boundary nodes of the rectangular
computational domain. Furthermore, the field variables corre-
sponding to the final time instant (during forward simulation)
were also stored at all nodes of the domain, and these data
were used as an initial condition during the TR simulation.
Both the time-reversed pressure and particle velocity, along
with the subsonic inflow boundary conditions, were imposed
on the computational boundaries during the TR simulation.

The main limitation in the TR simulation (using the PCF12)
of Deneuve, et al.11 is the use of time-reversed particle velocity
histories at boundary nodes. This is because, in an experimen-
tal set-up, only the acoustic pressure may be measured using a
microphone LA(s), while it is difficult to simultaneously mea-
sure the acoustic particle velocity history. Transducer arrays
that can measure both the acoustic pressure and acoustic par-
ticle velocities (using 3-D intensity probes) are available with
present technology; however, such transducers are usually very
expensive. Hence, for practical considerations, measurement
of only the acoustic pressure is feasible, and naturally the al-
gorithm implementing the TR simulation using the Linearised
Euler Equations14, 15 (LEE) must depend only on the time-
reversed acoustic pressure history as the input for accurately
localising the acoustic source(s). It is noted that the mean flow
profile (about which the Euler equations are linearized) may be
measured experimentally using hot-wire anemometry (or other
techniques), and that the simulations using the LEE can ac-
curately model the interaction between acoustic perturbations
and the mean flow field.3 Another limitation of the TR simula-
tion of Deneuve, et al.11 is use of the acoustic pressure and ve-
locity histories stored at all the nodes during the final instant of
the forward simulation as the initial condition in the TR simu-
lation. Experimentally measuring and storing the acoustic field
over the entire experiment is impossible.

The accuracy, as well as the stability analysis, of TR simu-
lation of the LEE using only the time-reversed acoustic pres-
sure history as the input are, therefore, necessary. Padois, et
al.3 demonstrate the accuracy of TR simulation for localising
time-harmonic aeroacoustic sources using only the experimen-
tally obtained acoustic pressure time-history measured over a
microphone LA in a TRM located outside of the flow in an
Anechoic Wind Tunnel (AWT). Their TR simulations, based
on the numerical solution of the 2-D LEE using the 4th order
Dispersion Relation Preserving (DRP) central FD schemes,16

were able to satisfactorily estimate the monopole and dipole
source locations in a shear flow field. However, their TR sim-
ulation of the LEE was not implemented using the PCF, which
splits the derivative of acoustic variables into a pair of oppo-
site propagating fluxes12 or “pseudo-waves”. This feature of
the PCF makes it ideally suited for the use of upwind-biased
FD schemes in comparison to the Flux-Vector Splitting (FVS)
approaches.17, 18 The use of upwind-biased FD schemes is pre-

ferred over the central DRP schemes16 because the non-zero
damping (at the unresolved high-frequencies) in the former is
crucial for ensuring the temporal stability of the TR simula-
tion of the LEE, which has not been analysed in the previ-
ous works.3, 4, 10, 11 Indeed, the temporal stability of forward
simulation of the LEE based on the PCF and using an overall
(a) upwind-biased FD scheme or (b) central DRP FD scheme
has also not been analysed previously,11–13 although the stabil-
ity of the overall compact FD schemes used for the forward
simulation of the simple 1-D scalar wave equation is estab-
lished.19 Furthermore, although the aeroacoustic TR simu-
lation is shown to accurately localise sound sources in flow
fields,3, 4, 10, 11 the results have not been compared against the
corresponding analytical solution, and hence are not formally
validated.

This work, therefore, analyses the temporal stability and ac-
curacy of both the forward and TR simulations of the 1-D and
2-D LEE implemented using the PCF based on (a) an overall
upwind-biased FD scheme, and (b) an overall central DRP FD
scheme.16, 20 The test cases consist of propagation of an acous-
tic pulse in both a 1-D and 2-D free-space with mean flow,
modelled by the implementation of anechoic boundary condi-
tion (ABC) at (1) the terminations of a 1-D duct, and (2) the
computational boundaries of a 2-D domain, respectively. The
motivation of this analysis is to examine in detail the accu-
racy of the TR simulation using only the time-reversed acous-
tic pressure history as the input Dirichlet conditions3 at the
boundaries of the 2-D computational domain (involving the
propagation of cylindrical wave fronts). The present work is
a part of a larger study that aims to investigate the suitability
of TR for experimental aeroacoustics, with a view to obtain
important insights into the mechanism of flow-induced turbu-
lent noise generation. Indeed, the authors have implemented
TR simulations on experimentally-obtained acoustic pressure
data sampled on two LAs of microphones to demonstrate the
dipole source nature (at the Aeolian tone) of the flow-induced
noise generated by a circular cylinder located in a cross-flow
in the AWT of The University of Adelaide.21 However, the TR
is at an early stage in the field of aeroacoustics, and important
fundamental work such as that presented here is essential to
provide a strong foundation for its future applications.

The paper is organised as follows: Section 2 describes the
numerical method for implementing the 1-D/2-D forward and
TR simulations of the LEE based on the PCF using the overall
upwind-biased FD schemes and implementation of ABC. Sec-
tion 3 analyses the stability of 1-D forward and TR simulations
using the PCF and two classes of overall FD schemes — (a) the
upwind-biased FD scheme and (b) the central DRP FD scheme
by means of an eigenvalue decomposition. Section 4 analyses
the accuracy of 1-D/2-D forward and TR simulation results by
comparison against the corresponding analytical solution. The
important contributions of this work are then summarised in
Section 5.

2. METHODOLOGY: NUMERICAL IMPLE-
MENTATION OF THE SIMULATIONS

In this section, the numerical implementation of the forward
and TR simulations on 1-D and 2-D computational domains
(in Cartesian coordinates) is described. To this end, the ho-
mogenous 2-D LEE of continuity and momentum (assuming
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Figure 1. (a) A schematic illustrating the discretisation of a 1-D duct of finite length L (modelling a 1-D free-space) into finite parts (∆x), convention to number
the nodes and fluxes (X±

linear propagating towards the positive and negative x directions, respectively). (b) A 2-D computational domain fully surrounded by a
sponge-layer domain modelling a 2-D free space. The half-length of the computational domain and width of the sponge-layer domain are Lx and ∆Lx along
the x direction, respectively, Ly and ∆Ly along the y direction, respectively. The direction of uniform mean flow is considered towards the positive x direction
in parts (a) and (b).

homoentropic flow) are considered, and are shown below.14, 15

∂ρ̃

∂t
+ U0

∂ρ̃

∂x
+ ρ0

(
∂ũ

∂x
+
∂ṽ

∂y

)
= 0; (1a)

ρ0
∂ũ

∂t
+ ρ0U0

∂ũ

∂x
+
∂p̃

∂x
= 0; (1b)

ρ0
∂ṽ

∂t
+ ρ0U0

∂ṽ

∂x
+
∂p̃

∂y
= 0; (1c)

where {p̃(x, y, t), ρ̃(x, y, t), ũ(x, y, t), ṽ(x, y, t)} are the
acoustic pressure (Pa), acoustic density (kgm−3), and acous-
tic particle velocities (ms−1) along the x and y direction,
respectively, U0 is the subsonic uniform mean flow velocity
(ms−1) towards the positive x direction, ρ0 is the ambient
density, taken as 1.21 kgm−3, and t is the forward time
(s). Furthermore, isentropic conditions are assumed, so that
c20 = p̃/ρ̃, where c0 denotes the uniform sound speed, taken
as 343.14 ms−1 in this work. The 1-D homogenous LEE may
be obtained by neglecting the spatial variation along the y
direction, i.e. ignoring Eq. (1c) and dropping the (∂ṽ/∂y)
term from Eq. (1a).

2.1. Forward Simulation
2.1.1. Pseudo-Characteristic Formulation (PCF) of

the Linearised Euler Equations (LEE)

The forward simulations are implemented by first recasting
the homogenous 2-D LEE shown in Eqs. (1a–c) in the PCF11–13

as

∂p̃

∂t
= −ρ0c0

2

(
X+

linear +X−linear + Y +
linear + Y −linear

)
; (2a)

∂ũ

∂t
= −1

2

(
X+

linear −X
−
linear

)
; (2b)

∂ṽ

∂t
= −1

2

(
Y +

linear − Y
−

linear

)
− c0M0

∂ṽ

∂x
; (2c)

where

X±linear = ±c0(1±M0)

{
1

ρ0c0

∂p̃

∂x
± ∂ũ

∂x

}
; (3)

Y ±linear = ±c0
{

1

ρ0c0

∂p̃

∂y
± ∂ṽ

∂y

}
; (4)

and M0 = U0/c0 is the Mach number of subsonic uniform
mean flow. In Eqs. (2–4), X+

linear denotes the acoustic flux
propagating towards the positive x direction with an enhanced
speed of c0(1 + M0), while X−linear denotes the acoustic flux
propagating towards the negative x direction with a reduced
speed of c0(1 − M0), respectively. Similarly, Y ±linear denotes
fluxes propagating with a speed c0 towards the positive and
negative y directions, respectively. It is noted that the splitting
of the LEE into a pair of opposing fluxes (X±linear, Y

±
linear) facili-

tate a straightforward implementation of the upwind-biased FD
schemes and anechoic boundary condition (ABC),11, 13 which
is necessary for suppressing the unresolved spurious high fre-
quency waves, thereby stabilising the simulations. Further-
more, the c0M0(∂ṽ/∂x) term in Eq. (2c) denotes acoustic dis-
turbances advected by the mean flow towards the positive x
direction.13

2.1.2. Spatial and Temporal Discretization

An overall upwind-biased FD scheme is formulated for
computing the spatial derivatives of the acoustic pressure and
velocities in the opposing fluxes (X±linear, Y

±
linear) in Eqs. (2a–c).

To this end, a 1-D computational domain along the x direction
of a finite length L modelled by a duct (with only planar wave
propagation) is considered in Fig. 1(a). This domain is dis-
cretized into Nnodes number of equally spaced nodes of mesh
size ∆x = L/(Nnodes − 1).

The spatial derivative (∂φ/∂x)+ of the acoustic field vari-
able φ (p̃, ũ or ṽ) in the X+

linear flux for the entire 1-D domain
is computed using the overall upwind-biased FD schemes for-
mulated in Table 1. It is noted that the use of optimised down-
wind FD schemes20, 22 at the penultimate and last nodes of the
boundaries, as well as the use of 3rd and 5th order upwind-
biased schemes23 near the boundary nodes, is necessary be-
cause sufficient upwind nodes do not exist near the boundary
for use of the 7-point, 4th order optimised upwind-biased DRP
FD scheme.22

The overall upwind-biased FD schemes used for computing
the spatial derivative (∂φ/∂x)− in theX−linear flux for the entire
1-D domain is similarly formulated by making use of opposite
upwinding directions at a node i (with the sign of the sten-
cil coefficients reversed). The efficiency of implementing the
overall upwind-biased FD schemes is increased by recasting
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Table 1. Overall upwind-biased FD Scheme for computing (∂φ/∂x)+ in the flux X+
linear

Nodes FD Scheme and formal order of accuracy Stencil Coefficients

i = Nnodes

1
∆x

k=6∑
k=0

b60
−kφ(Nnodes − k),


b60
0 = 2.1922803, b60

−1 = −4.7486114, b60
−2 = 5.1088519,

b60
−3 = −4.4615671, b60

−4 = 2.8334987, b60
−5 = −1.1283289,

b60
−6 = 0.2038764.

4th order (Tam20)

i = Nnodes−1
1

∆x

k=1∑
k=−5

a51
k φ(i+ k),


a51
−5 = −0.0306490, a51

−4 = 0.2022259, a51
−3 = −0.6347280,

a51
−2 = 1.2962997, a51

−1 = −2.1430548, a51
0 = 1.1088873,

a51
1 = 0.2010190.

4th order (Zhuang and Chen22)

5 ≤ i ≤ Nnodes−2
1

∆x

k=2∑
k=−4

a42
k φ(Nnodes − 1 + k),


a42
−4 = 0.0161405, a42

−3 = −0.1228213, a42
−2 = 0.4553323,

a42
−1 = −1.2492596, a42

0 = 0.5018904, a42
1 = 0.4399322,

a42
2 = −0.0412145.

4th order (Zhuang and Chen22)

i = 4
1

∆x

k=2∑
k=−3

a32
k φ(4 + k),

{
a32
−3 = −1/30, a32

−2 = 1/4, a32
−1 = −1,

a32
0 = 1/3, a32

1 = 1/2, a32
2 = −1/20.

}
5th order (Li23)

i = 3
1

∆x

k=1∑
k=−2

a21
k φ(3 + k), {

a21
−2 = 1/6, a21

−1 = −1, a21
0 = 1/2, a21

1 = 1/3.
}

3rd order (Li23)

i = 2
1

∆x

k=5∑
k=−1

a15
k φ(2 + k),

{
a15
−1 = −a51

1 , a15
0 = −a51

0 , a15
1 = −a51

−1, a15
2 = −a51

−2

a15
3 = −a51

−3, a15
4 = −a51

−4, a15
5 = −a51

−5.

}
4th order (Zhuang and Chen22)

i = 1
1

∆x

k=6∑
k=0

b06
k φ(1 + k),

{
b06
0 = −b60

0 , b06
1 = −b60

−1, b06
2 = −b60

−2, b06
3 = −b60

−3

b06
4 = −b60

−4, b06
5 = −b60

−5, b06
6 = −b60

−6.

}
4th order (Tam20)

them in the following matrix form:

∂{φ}+

∂x
≈ 1

∆x
[R1]{φ}; (5a)

∂{φ}−

∂x
≈ 1

∆x
[R2]{φ}; (5b)

where {φ} = {φ1, φ2, φ3, . . . , φN nodes}T . The spatial deriva-
tives in the fluxes Y ±linear are also computed using Eqs. (5a, b)
while the (∂ṽ/∂x) term in Eq. (2c) is computed using Eq. (5a),
as the mean flow direction is towards the positive x direction.
The use of two different stencil groups at a given node (or
opposite upwinding directions) ensures that the inbuilt dissi-
pation in upwind-biased schemes damps only the unresolved
high-frequency waves and does not induce spatially growing
oscillations with time, which is important for temporal stabil-
ity. This is explained by the following discussion:

A harmonic wave p̃(x, t = 0) = ejk0x is considered as
an initial disturbance where j =

√
−1 and k0 is the exact

wavenumber. The numerical solution of the wave propagating
towards positive x direction is given by24

p̃(x, t) = ej(k0x−ω̃t) = ej(k0x−k̃c0t) =

ej[k0−Re(k̃)]c0t︸ ︷︷ ︸
dispersion

· eIm(k̃)c0t︸ ︷︷ ︸
dissipation

· ejk0(x−c0t)︸ ︷︷ ︸
exact solution

; (6)

where ω̃ is the numerical angular frequency and k̃ = ω̃/co is
the numerical wavenumber given by β = k0∆x ≈ k̃∆x =

−j
{∑k=M

k=−N a
NM
k ej(kβ)

}
, in which β is the exact non-

dimensional wave number and aNMk are stencil coefficients of
a N +M + 1 point FD stencil. Equation (6) indicates that for
non-dispersive and non-dissipative frequency region given by
{k0 − Re(k̃)} → 0 and Im(k̃) → 0, respectively, the numeri-
cal solution is an accurate approximation to the exact solution.
However, for the unresolved or dispersive frequency region,

i.e. {k0 − Re(k̃)} 6= 0, the dissipation should be such that
Im(k̃) < 0 to ensure temporal stability of the numerical solu-
tion of the wave propagating towards the positive x direction.
Similarly, for temporal stability of the numerical solution of
the wave propagating towards the negative x direction, the dis-
sipation should be such that Im(k̃) > 0 in dispersive frequency
region.

The 3rd order Total-Variation-Diminishing (TVD) Runge-
Kutta scheme25 is used for time-integration during the 1-D
and 2-D forward simulations, as well as for TR simulations.
The time-step ∆t is computed a-priori forward simulations in
accordance with the Courant–Friedrichs–Lewy (CFL) number
equal to 0.2 considered to ensure accuracy of the forward/TR
simulations. Equal mesh size given by ∆x = ∆y = 0.005 m
is taken along the x and y directions, respectively, in the 2-D
simulations. Furthermore, the same mesh size, ∆x = 0.005 m,
is also considered during the 1-D simulations. It is noted
that amongst all the FD schemes used to formulate the overall
upwind-biased FD scheme (in Table 1), the 4-point, 3rd order
standard upwind-biased FD scheme23 has the least DRP range
given by αDRP = k̃max∆x ≈ 0.62, and determines the maxi-
mum wavenumber k̃max that can be accurately propagated (i.e.
without significant dispersion). For the mesh sizes (∆x, ∆y)
and c0, the maximum wavenumber resolution band evaluates
to k̃max = [0, αDRP/∆x] = [0, 124] m−1.

2.1.3. Implementation of the Anechoic Boundary
Condition (ABC)

The ABCs are implemented at the computational bound-
aries to model a 1-D free-space (represented by a 1-D duct
extending infinitely on both sides, as shown in Fig. 1(a)) and
a 2-D free-space shown in Fig. 1(b). For the case of 1-D
free-space, the ABC is implemented by setting the incoming
fluxes to zero at the finite terminations of the duct,11, 13 i.e.
X+

linear

∣∣
x=0

= 0 and X−linear

∣∣
x=L

= 0, which implies that the
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impedance p̃i−1/(−ũi−1) = p̃i=Nnodes/ũi=Nnodes = ρ0c0, i.e.
the characteristic impedance of the medium. Hence, the acous-
tic wave impinging on the boundaries is completely transmit-
ted without suffering any reflection. The use ofX+

linear

∣∣
x=0

= 0

and X−linear

∣∣
x=L

= 0 boundary conditions is equivalent to
the first order Clayton-Engquist-Majda (CEM) ABCs given
by26–28

(
∂p̃

∂t
− c0 (1−M0)

∂p̃

∂x

) ∣∣∣∣
x=0

= 0; and (7)(
∂p̃

∂t
+ c0 (1 +M0)

∂p̃

∂x

) ∣∣∣∣
x=L

= 0; (8)

respectively, which is exact for the 1-D acoustic wave propa-
gation in a mean flow.

The 2-D computational domain given by |x| ≤ Lx, |y| ≤ Ly
fully surrounded by a sponge-layer domain of widths ∆Lx and
∆Ly along the x and y directions, respectively, as shown in
Fig. 1(b) models a 2-D free-space. At the exterior computa-
tional boundary, the first-order radiation boundary condition
of Tam and Webb16 (henceforth, referred to as Tam’s ABC) is
used. The Tam’s ABC condition reads

1

V (θ)

∂p̃

∂t
+
∂p̃

∂r
+

p̃

2r
= 0 ⇒

1

V (θ)

∂p̃

∂t
+ cos θ

∂p̃

∂x
+ sin θ

∂p̃

∂y
+

p̃

2
√
x2 + y2

= 0; (9)

where r = (x2 + y2)1/2 is the radius of the point P on the ex-
terior computational boundary from the initial position of the
peak of Gaussian pulse (i.e. the known source location) de-
noted by origin O, θ is the angle with respect to the x axis, and
V (θ) = c0

(
M0 cos θ + (1−M2

0 sin2 θ)1/2
)

is the convective
sound speed (due to subsonic mean flow M0), considering the
directional dependence. It is noted that since the acoustic field
at the exterior computational boundary comprises only the out-
going waves, the spatial derivatives (∂p̃/∂x, ∂p̃/∂y) in Eq. (9)
are computed in accordance with the value of θ at a particular
node. This is discussed as follows:

1. 0 ≤ θ ≤ π/2, ∂p̃/∂x and ∂p̃/∂y are both computed using
Eq. (5a);

2. π/2 < θ ≤ π, ∂p̃/∂y and ∂p̃/∂x are computed using
Eq. (5a) and Eq. (5b), respectively;

3. π < θ ≤ 3π/2, ∂p̃/∂x and ∂p̃/∂y are both computed
using Eq. (5b); and

4. 3π/2 ≤ θ < 2π, ∂p̃/∂y and ∂p̃/∂x are computed using
Eq. (5b) and Eq. (5a), respectively.

In order to further suppress the spurious reflections during the
2-D forward simulations, the incoming fluxes near the exte-
rior computational boundary are damped over several nodes
(Nsponge) of a sponge-layer domain13 with a width of ∆Lx =
Nsponge∆x and ∆Ly = Nsponge∆y along the x and y direc-
tions, respectively, fully surrounding the computational do-
main. The damping is implemented using the following equa-

tions:

Y ∓linear(x,±Ly ± (Nsponge − n)∆y)→ (10a)

Y ∓linear(x,±Ly ± (Nsponge − n)∆y)×Gsponge(n); (10b)

X∓linear(±Lx ± (Nsponge − n)∆x, y)→ (10c)

X∓linear(±Lx ± (Nsponge − n)∆x, y)×Gsponge(n);
(10d)

where

Gsponge(n = 0) = 0 and Gsponge(n) = e
− 1

2

(
αsponge

(
Nsponge−n
Nsponge−1

))2

for n = [1, 2, . . . , Nsponge − 1]. Here, αsponge is the damping
coefficient taken equal to four in this work. It is noted that im-
plementation of Tam’s ABC (with or without the inclusion of
sponge-layer domain) at boundaries of the 2-D computational
domain is crucial for the temporal stability of forward simula-
tion of a pulse propagating in a free-space over a large time du-
ration. The condition (∂ṽ/∂x)

∣∣
x=−Lx−∆Lx

= 0 is also imple-
mented to suppress the incoming waves at the x = −Lx−∆Lx
boundary advected by the mean flow, thereby preventing insta-
bility.

2.2. Time-Reversal (TR) Simulation
The 2-D forward simulations are implemented over a suffi-

ciently large time-interval t = [0, T ] such that the pulse com-
pletely propagates out of the domain, whereby the acoustic
pressure p̃(x, y, t) and particle velocities ũ(x, y, t), ṽ(x, y, t)
are stored at the nodes of all four computational boundaries,
i.e. at x = ±Lx, |y| ≤ Ly and y = ±Ly , |x| ≤ Lx after every
time-step. The 2-D TR simulation is implemented by first in-
troducing the following transformations3, 4, 10, 11 in Eqs. (2–4):

t→ T − t̃; (11a)

p̃(x, y, t)→ p̃(x, y, t̃); (11b)

ũ(x, y, t)→ −ũ(x, y, t̃); (11c)

ṽ(x, y, t)→ −ṽ(x, y, t̃); (11d)

to obtain the time-reversed 2-D LEE (in the PCF) shown as
follows:10, 11

∂p̃

∂t̃
= −ρ0c0

2

{
X̃+

linear + X̃−linear + Ỹ +
linear + Ỹ −linear

}
; (12a)

∂ũ

∂t̃
= −1

2

(
X̃+

linear − X̃
−
linear

)
; (12b)

∂ṽ

∂t̃
= −1

2

(
Ỹ +

linear − Ỹ
−

linear

)
− c0(−M0)

∂ṽ

∂x
; (12c)

where

X̃±linear = ±c0(1∓M0)

{
1

ρ0c0

∂p̃

∂x
± ∂ũ

∂x

}
; (13a)

Ỹ ±linear = ±c0
{

1

ρ0c0

∂p̃

∂y
± ∂ṽ

∂y

}
; (13b)

and t̃ denotes the reverse time. It is noted that the time-reversed
2-D LEE given by Eqs. (12a–c) are identical to Eqs. (2a–c),
except that the direction of subsonic mean flow is reversed in
X̃±linear fluxes and in the (∂ṽ/∂x) term. The reversal of mean
flow direction (M0 → −M0) during the numerical TR sim-
ulation (and not in the physical sense) is essential to ensure
TR invariance.3, 4, 10, 11 Furthermore, the derivative (∂ṽ/∂x) in
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Eq. (12c) is computed using Eq. (5b) due to reversal of the
mean flow.

The 2-D TR simulation is implemented using either (a) only
p̃(x, y, t̃), or (b) both p̃(x, y, t̃) and −ũ(x, y, t̃), −ṽ(x, y, t̃)
as input Dirichlet boundary conditions3 (which enables the
back-propagation of waves into the domain) at x = ±Lx and
y = ±Ly boundaries after every reverse time-step. It is noted
that the sponge-layer domain is not used during the 2-D TR
simulation; rather, it is found that implementation of the CEM
ABC26–28 at all four boundaries given by(

∂p̃

∂t̃
± c0(1∓M0)

∂p̃

∂x

) ∣∣∣∣
x=±Lx

= 0; (14a,b)(
∂p̃

∂t̃
± c0

∂p̃

∂y

) ∣∣∣∣
y=±Ly

= 0; (14c,d)

and at the four corners of the 2-D domain, the use of special
corner ABC28 given by

∂p̃

∂t̃
+

c0√
2

(1−M0)
∂p̃

∂x
+

c0√
2

∂p̃

∂y

∣∣∣∣
x=Lx,y=Ly

= 0; (15a)

∂p̃

∂t̃
− c0√

2
(1 +M0)

∂p̃

∂x
+

c0√
2

∂p̃

∂y

∣∣∣∣
x=−Lx,y=Ly

= 0; (15b)

∂p̃

∂t̃
− c0√

2
(1 +M0)

∂p̃

∂x
− c0√

2

∂p̃

∂y

∣∣∣∣
x=−Lx,y=−Ly

= 0; (15c)

∂p̃

∂t̃
+

c0√
2

(1−M0)
∂p̃

∂x
− c0√

2

∂p̃

∂y

∣∣∣∣
x=Lx,y=−Ly

= 0; (15d)

is necessary for the temporal stability of 2-D TR simula-
tions.4, 10 In comparison to Tam’s ABC, the CEM ABC and the
special corner ABC are relatively less accurate in modelling
non-reflective boundaries. Nonetheless, it is implemented at
the computational boundaries because unlike the forward sim-
ulation, the radial distance r of a boundary node from the
source location during TR simulation is not known; rather,
the robustness of TR algorithm (in a 2-D free-space) must
be demonstrated through accurate localization of the source(s)
with implementation of approximate ABCs that does not de-
pend on an a-priori estimate of the source location. It is
noted that in Eqs. (14a), (15a), and (15d), the spatial derivative
∂p̃/∂x at nodes on the x = Lx boundary is computed using
Eq. (5a), while ∂p̃/∂x at nodes on the x = −Lx boundary in
Eqs. (14b), (15b), and (15c) is computed using Eq. (5b). Fur-
thermore, in Eqs. (14c), (15a), and (15b), the spatial derivative
∂p̃/∂y at nodes on the y = Ly boundary is computed using
Eq. (5a), while ∂p̃/∂y at nodes on the y = −Ly boundary in
Eqs. (14d), (15c), and (15d) is computed using Eq. (5b). In
addition, the incoming normal acoustic fluxes (of the PCF12 of
the 2-D LEE) are also set to zero at the computational bound-
aries, i.e. X̃±linear

∣∣
x=∓Lx

= Ỹ ±linear

∣∣
y=∓Ly

= 0 to reinforce

the ABCs during TR simulation.4, 10 The boundary condition
(∂ṽ/∂x)

∣∣
x=Lx

= 0 is implemented for the stability of 2-D TR
simulation. The 1-D TR simulation is implemented by ignor-
ing Eq. (12c) and the Ỹ ±linear fluxes in Eq. (12a) and solving the
resultant time-reversed 1-D LEE (in the PCF) with only the
time-reversed acoustic pressure as the input Dirichlet condi-
tion at the boundary nodes. However, it is found that the use
of ABC at the boundary nodes is not necessary for stability of
1-D TR simulation.

3. STABILITY ANALYSIS OF THE 1-D
FORWARD AND TR SIMULATIONS:
EIGENVALUE DECOMPOSITION

The temporal stability of the forward and TR simulations in
the 1-D infinite duct with mean flow using the overall upwind-
biased FD scheme and the PCF is evaluated using eigenvalue
decomposition. The objective of this analysis is to establish
the stability associated with the implementation of the correct
upwinding directions in the antagonistic fluxes of the PCF and
the appropriate boundary conditions using a 1-D test case.

3.1. Forward Simulation
An eigenvalue problem for an acoustic pulse propagating

in the 1-D duct with a mean flow is formulated. To this end,
the [R1] and [R2] matrices are used for computing the spatial
derivatives of {p̃} and {ũ} in the X̃±linear fluxes, respectively,
in the PCF of the 1-D LEE. Rearranging the resultant equa-
tions in terms of the linear combination of {p̃} and {ρ0c0ũ}
yields the following set of semi-discretised ordinary differen-
tial equations:

d{p̃}
dt

= − c0
2(∆x)

{[
(1+M0)[R1] + (M0−1)[R2]

]
{p̃}

+
[
(1+M0)[R1]− (M0−1)[R2]

]
{ρ0c0ũ}

}
; (16a)

d{ρ0c0ũ}
dt

= − c0
2(∆x)

{[
(1+M0)[R1] + (1−M0)[R2]

]
{p̃}

+
[
(1+M0)[R1]− (1−M0)[R2]

]
{ρ0c0ũ}

}
. (16b)

By substituting {p̃} = {p̂}eωt and {ρ0c0ũ} = {ρ0c0û}eωt
in Eqs. (16a, b) and subsequent algebraic manipulations, the
following eigenvalue problem is obtained:

[A]
{
{p̂}Nnodes {ρ0c0û}Nnodes

}T
= λ

{
{p̂}Nnodes {ρ0c0û}Nnodes

}T
;

(17a)
where ω represents the dimensional eigenvalues (complex, in
general), {p̂} and {ρ0c0û} denote the corresponding eigenvec-
tors, the matrix [A] is given by

[A]2Nnodes×2Nnodes = −1

2
×[

(1+M0)[R1]+(M0−1)[R2] (1+M0)[R1]−(M0−1)[R2]
(1+M0)[R1]+(1−M0)[R2] (1+M0)[R1]−(1−M0)[R2]

]
;

(17b)

and λ = (ω∆x)/c0 denotes the corresponding non-
dimensional eigenvalues of the [A] matrix. The solution of
Eqs. (16a, b) is now obtained in terms of the matrix exponen-
tial as29{

p̃(t) ρ0c0ũ(t)
}T

= e[A]
c0t
∆x

{
p̃(t = 0) ρ0c0ũ(t = 0)

}T
;

(17c)
whereby it becomes evident that the stability of the overall
FD scheme depends on the whether the Re(λ) is positive or
negative. It is noted that Eqs. (16a, b) are cast in a semi-
discrete form because only the spatial derivatives of the acous-
tic variables are approximated by overall FD schemes, and
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time-integration is not considered at this stage. Thus, by as-
suming modes of the form {φ̃} = {φ̂}eωt, discretisation errors
due to numerical time-integration are avoided. Therefore, in
the eigenvalue problem for the forward simulation given by
Eqs. (17a, b), a perfect time-integration is considered19 and
the stability of only spatial discretisation is analysed. Similar
conclusions also hold for the eigenvalue analysis of the 1-D
TR simulation. Furthermore, it is noted that no boundary con-
ditions are specified in Eq. (17a). However, in order to anal-
yse the temporal stability of the forward simulation of a pulse
propagating in the 1-D infinite duct, it is necessary to imple-
ment the ABCs by setting X+

linear

∣∣
x=0

= 0 and X−linear

∣∣
x=L

= 0
in Eqs. (17a, b), thereby leading to

[Aanechoic]
{
{p̂}Nnodes {ρ0c0û}Nnodes

}T
=

λ
{
{p̂}Nnodes {ρ0c0û}Nnodes

}T
; (18)

where [Aanechoic] is defined by Eq. (19), which is the eigenvalue
problem incorporating the ABC at both boundaries of the finite
1-D duct.

Figure 2(a) presents the eigenvalue loci of the eigenvalue
problem posed in Eq. (18) using the overall upwind-biased FD
schemes forX±linear fluxes that are used to simulate the test case
1 with Nnodes = 1500 for M0 = 0 and M0 = 0.30. It is evi-
dent from Fig. 2(a) that the eigenvalue loci of Eq. (18) consists
of closed loop(s) located on the negative side of the real-axis
(Re(λ) axis), indicating that opposite upwinding directions in
theX±linear fluxes of the PCF (by means of [R1] and [R2] matri-
ces, respectively) are necessary for temporal stability. Further-
more, the implementation of the ABC at the first and last node
of the computational domain (unlike Lu and Sagaut,13 wherein
the ABC was implemented at the first and the last five nodes of
the 2-D domain) entirely shifts the eigenvalue loci to the neg-
ative side of the Re(λ) axis. Indeed, none of the eigenvalues
have positive real parts (regardless of their magnitude), and in
order to justify this claim, an exaggerated view of the eigen-
value loci near the imaginary axis in Fig. 2(b) is presented.
The lone eigenvalue in each of the loci shown in Fig. 2(b) lo-
cated ‘almost’ at the origin has a negative real part of the or-
der of 10−7, thereby implying rather slow decay, but most im-
portantly, a stable solution. Therefore, the implementation of
ABC prevents the occurrence of eigenvalues with small posi-
tive real parts (of the order of 10−3), which are liable to induce
instabilities over large duration (or at later instants) of the for-
ward simulation.30

The effect of a subsonic mean flow on the eigenvalue locus
of the overall upwind-biased FD scheme is also illustrated in
Fig. 2, wherein the mean flow is shown to ‘bifurcate’ the locus
horizontally so that there exists two different loci on the neg-
ative side of the Re(λ) axis of the λ plane. One of the eigen-
value locus corresponding to the wave propagation ‘along’ the
direction of superimposed mean flow is shifted farther towards
the negative side of the Re(λ) axis, thereby implying an en-
hanced stability, whereas the eigenvalue locus corresponding
to the wave propagation ‘against’ the direction of mean flow is
shifted towards the imaginary-axis (Im(λ) axis). However, for
subsonic mean flow, this locus is still entirely situated on the
negative side of the Re(λ) axis, thereby allaying any concerns
on the stability issue. These two loci converge or coalesce into
a single locus that is oriented vertically near the Im(λ) axis.

The effect of the number of nodes Nnodes on the eigenvalue
locus of the overall upwind-biased FD scheme was also stud-
ied for the case of zero mean flow (results not shown here).
It was observed that with an increase in Nnodes the eigenvalue
envelope expands further towards the negative side of the real
axis, thereby indicating enhanced stability. However, these en-
velopes do not converge; rather, they expand monotonically as
Nnodes is increased, thereby indicating that there does not ex-
ist a set of discrete natural frequencies for a finite length duct
with ABC on both the sides which essentially models a system
extending infinitely in both the directions.31

Another stability analysis (shown in Fig. 3) was performed
for M0 = 0 using an overall central FD scheme formulated as:
(1) the 7-point, 4th order accurate central DRP FD scheme of
Tam,16 which are used at the interior nodes 4 ≤ i ≤ Nnodes −
3, and (2) the 7-point optimised backward or downwind FD
schemes,20 which are used at the nodes i = 1, 2, 3 and i =
Nnodes − 2, Nnodes − 1, Nnodes. (In this case, [R1] = [R2] =
[R0], thus the spatial derivatives in X̃±linear is computed using
the [R0] matrix.)

It is observed from Fig. 3, that this overall central DRP FD
schemes encounter a mild instability problem associated with
the implementation of ABC at the first and last node only. This
is because instability starts creeping into the solution (due to
the eventual growth in the exponential solution due to very
small real parts of the eigenvalues) after the pulse has com-
pletely propagated outside the domain. To circumvent this
problem, the ABC was implemented at two or more nodes on
each side of the boundary, wherein it is observed that in the
last three cases presented in Fig. 3, the eigenvalue loci increas-
ingly shifts entirely towards the negative side of the Re(λ) axis
of the λ plane, thereby stabilising the 1-D forward simulation
using the overall central DRP FD scheme.

3.2. TR Simulation

The temporal stability of the 1-D TR simulation is inves-
tigated by first deriving the semi-discretised form of the 1-D
LEE for implementing the TR simulation. To this end, the
mean flow direction is reversed (M0 → −M0) in Eqs. (16a,
b), whereby the following matrix form is obtained:

d

dt̃

{
{p̃}
{ρ0c0ũ}

}
=

c0
∆x

[A0]

{
{p̃}
{ρ0c0ũ}

}
; (20a)

where

[A0]2Nnodes×2Nnodes = −1

2
×[

(1−M0)[R1]−(1+M0)[R2] (1−M0)[R1]+(1+M0)[R2]
(1−M0)[R1]+(1+M0)[R2] (1−M0)[R1]−(1+M0)[R2]

]
;

(20b)

Equation (20a) presents the homogeneous ordinary differen-
tial matrix form of the time-reversed 1-D LEE for the tempo-
ral solution of the spatially discretized acoustic pressure and
velocity fields. (The forward time t in Eqs. (16a, b) is simply
replaced with the reverse time t̃ in Eq. (20a).) The time-history
of the acoustic pressure p̃(i = 1, t̃) and p̃(i = Nnodes, t̃) at the
boundary nodes are, however, known a-priori for t̃ = [0, T ]
at discrete time-instants from the 1-D forward simulations.
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[Aanechoic]2Nnodes×2Nnodes =

− 1

2



(M0 − 1)
[
R1,1

2 . . . R1,Nnodes
2

]
1×Nnodes

(1−M0)
[
R1,1

2 . . . R1,Nnodes
2

]
1×Nnodes A2,1 . . . A2,Nnodes

...
. . .

...
ANnodes−1,1 . . . ANnodes−1,Nnodes


(Nnodes−2)×Nnodes

 A2,Nnodes+1 . . . A2,2Nnodes

...
. . .

...
ANnodes−1,Nnodes+1 . . . ANnodes−1,2Nnodes


(Nnodes−2)×Nnodes

(1 +M0)
[
RNnodes,1

1 . . . RNnodes,Nnodes
1

]
1×Nnodes

(1 +M0)
[
RNnodes,1

1 . . . RNnodes,Nnodes
1

]
1×Nnodes

(1−M0)
[
R1,1

2 . . . R1,Nnodes
2

]
1×Nnodes

(M0 − 1)
[
R1,1

2 . . . R1,Nnodes
2

]
1×NnodesA

Nnodes+2,1 . . . ANnodes+2,Nnodes

...
. . .

...
A2Nnodes−1,1 . . . A2Nnodes−1,Nnodes


(Nnodes−2)×Nnodes

A
Nnodes+2,Nnodes+1 . . . ANnodes+2,2Nnodes

...
. . .

...
A2Nnodes−1,Nnodes+1 . . . A2Nnodes−1,2Nnodes


(Nnodes−2)×Nnodes

(1 +M0)
[
RNnodes,1

1 . . . RNnodes,Nnodes
1

]
1×Nnodes

(1 +M0)
[
RNnodes,1

1 . . . RNnodes,Nnodes
1

]
1×Nnodes



;

(19)

Therefore, for the analysis of the temporal stability of TR sim-
ulations, the rows i = 1 and i = Nnodes of the [A0] ma-
trix (corresponding to the semi-discretised continuity equa-
tion at boundary nodes) are discarded, while the correspond-
ing columns i = 1 and i = Nnodes are rearranged in the [BTR]
matrix shown as follows:

d{Ψ}
dt̃

=
c0
∆x

[ATR]{Ψ}+
c0
∆x

[BTR]

{
p̃1

p̃Nnodes

}
2×1

; (21a)

where

{Ψ}(2Nnodes−2)×1 ={
p̃2(t̃) . . . p̃Nnodes−1(t̃) ρ0c0ũ1(t̃) . . . ρ0c0ũNnodes(t̃)

}T
; (21b)

[ATR] is given by Eq. (21c), and

[BTR](2Nnodes−2)×2 =



A2,1
0 A2,Nnodes

0
...

...
ANnodes−1,1

0 ANnodes−1,Nnodes
0

ANnodes+1,1
0 ANnodes+1,Nnodes

0
...

...
A2Nnodes,1

0 A2Nnodes,Nnodes
0


. (21d)

It is noted that Eq. (21a) is an inhomogeneous matrix dif-
ferential equation. The inhomogeneity in Eq. (21a) is as-
cribed to the presence of the non-zero acoustic pressure vec-
tor {p̃1 p̃Nnodes}T . This vector acts as a numerical source dur-
ing each time-step of TR simulations and initiates and sus-
tains a back-propagation of acoustic pulses in the computa-
tional domain during t̃ = [0, T ] which eventually coalesces
at t̃ = T . It is also noted that solving the time-reversed 1-D
LEE in the inhomogeneous form is equivalent to the numerical
time-integration of Eq. (20a) immediately followed by the en-
forcement of time-reversed acoustic pressure p̃(i = 1, t̃) and
p̃(i = Nnodes, t̃) at the boundary nodes. The stability of im-
plementation of the 1-D TR simulation using the PCF and the
overall upwind-biased FD scheme can now be assessed using

the exact temporal solution of Eq. (21a) expressed as{
p̃2 . . . p̃Nnodes−1 ρ0c0ũ1 . . . ρ0c0ũNnodes

}T
=

c0
∆x

e[ATR]
c0 t̃
∆x


τ=t̃∫
τ=0

e−[ATR]
c0τ
∆x [BTR]

{
p̃1(τ)

p̃Nnodes(τ)

}
dτ

 .

(22)

Equation (22) is a formal representation of the exact tempo-
ral solution; however, the TR simulation is not implemented
using this formal solution. This is because the exact func-
tion expressing the variation of the vector {p̃1(τ) p̃Nnodes(τ)}T
with time τ is not known a-priori, rather p̃(i = 1, t̃) and
p̃(i = Nnodes, t̃) time-histories are known at only discrete val-
ues of t̃. Nonetheless, Eq. (22) can be used for a stability anal-
ysis of the TR method by examining the eigenvalues of the
[ATR] matrix. The TR simulations are stable if all the eigen-
values of the [ATR] matrix have negative or zero real parts
(provided that the parameters of the [BTR] matrix and the in-
homogeneous vector {p̃1(τ) p̃Nnodes(τ)}T are finite). It is for
this reason that the inhomogeneous part of Eq. (21a) is disre-
garded in formulating the eigenvalue problem. On substituting
{Ψ}T = {Ψ̂}T eωt̃ in Eq. (21a) and subsequent algebraic ma-
nipulations, the following eigenvalue problem is posed:

[ATR]{Ψ̂}T = λ{Ψ̂}T ; (23a)

{Ψ̂}T =
{
p̃2 . . . p̃Nnodes−1 ρ0c0ũ1 . . . ρ0c0ũNnodes

}T
; (23b)

where λ denotes the non-dimensional eigenvalues of the [ATR]
matrix.

Figure 4 presents the eigenvalue loci of the [ATR] matrix for
Nnodes = 1500. It is observed from Fig. 4(a) that the eigen-
value loci for M0 = 0 and M0 = 0.30 consists of a closed
loop mostly located on the negative side of the Re(λ) axis,
thereby demonstrating the stability and robustness of the 1-
D TR simulations by considering two different upwinding di-
rections (to compute the spatial derivatives in opposing fluxes
X̃±linear) while using the overall upwind-biased FD schemes for-
mulated here. Figure 4(b) depicts an exaggerated view of the

International Journal of Acoustics and Vibration, Vol. 20, No. 4, 2015 233



A. Mimani, et al.: STABILITY AND ACCURACY OF AEROACOUSTIC TIME-REVERSAL USING THE PSEUDO-CHARACTERISTIC FORMULATION

Figure 2. Eigenvalue loci of the overall upwind-biased FD scheme obtained from Eq. (18): Illustration of the stability with implementation of the ABC and the
bifurcating effect of a mean flow.

Figure 3. Stabilising effect of enforcing ABC on the first two (or more) and the last two (or more) nodes of the computational domain on the eigenvalue loci of
the overall central DRP FD scheme.

eigenvalue loci near the imaginary axis. It is observed that the
enlarged eigenvalue loci forM0 = 0 andM0 = 0.30 have very
small positive real parts whose magnitudes are of the order of
10−5 or even smaller. This suggests a mild instability problem
in the strict sense, which might be a concern only over a large
duration of TR simulation. Indeed, it is observed that these
mild instabilities do not affect the accuracy and robustness of
TR (shown in subsections 4.1.2 and 4.2.2) in predicting the
initial location of the pulse.

The eigenvalue loci of the [ATR] matrix using the overall
central DRP FD schemes16, 20 are presented in Fig. 5(a) for
Nnodes = 1500. Two different mean flow values given by
M0 = 0 and M0 = 0.30 are also considered for evaluating
the stability of overall central DRP FD schemes.16, 20

It is observed from Figs. 5(a, b) that for both the station-
ary medium as well as for the moving medium, the eigenvalue
loci resemble a straight line aligned vertically along the imag-
inary axis. Some of the eigenvalues have large positive real
parts (of the order of 10−1) which signify the rapid growth of
instabilities during the TR simulations. An enlarged view of
the eigenvalue loci is depicted in Fig. 5(b), wherein it is ob-

served that the eigenvalues are clustered along the imaginary
axis. The magnitudes of the real part of these eigenvalues are
of the order 10−4 (an order of magnitude greater than the un-
stable eigenvalues shown in Fig. 4(b)). Therefore, based on
these features of the eigenvalue loci shown in Fig. 5, it may
be concluded that the overall central FD schemes have eigen-
values with relatively larger positive real parts, and thus are
more prone to instabilities. To conclude, the overall central
DRP FD scheme (without the Artificial Selective Damping32

(ASD)) is thus unsuitable for simulation of Euler equations for
TR application. It may however be mentioned that inclusion
of the extraneous ASD terms in the LEE while using the over-
all central DRP FD scheme stabilizes the 1-D TR simulation.
This is because the eigenvalue loci would shift entirely to the
negative side of the Re(λ) axis of the λ plane (so that none of
the eigenvalues have a positive real part), and its shape would
resemble the eigenvalue loci of the overall upwind-biased FD
scheme shown in Fig. 4. Indeed, similar conclusions also hold
for the effect of ASD on the 1-D forward simulation using the
overall central DRP FD scheme. It is important to note that the
damping in the ASD stencil is directly proportional to the in-
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[ATR](2Nnodes−2)×(2Nnodes−2) =

 A2,2
0 . . . A2,Nnodes−1

0
...

. . .
...

ANnodes−1,2
0 . . . ANnodes−1,Nnodes−1

0


(Nnodes−2)×(Nnodes−2)

 A2,Nnodes+1
0 . . . A2,2Nnodes

0
...

. . .
...

ANnodes−1,Nnodes+1
0 . . . ANnodes−1,2Nnodes

0


(Nnodes−2)×NnodesA

Nnodes+1,2
0 . . . ANnodes+1,Nnodes−1

0
...

. . .
...

A2Nnodes,2
0 . . . A2Nnodes,Nnodes−1

0


Nnodes×(Nnodes−2)

A
Nnodes+1,Nnodes+1
0 . . . ANnodes+1,2Nnodes

0
...

. . .
...

A2Nnodes,Nnodes+1
0 . . . A2Nnodes,2Nnodes

0


Nnodes×Nnodes


;

(21c)

verse mesh Reynolds number (R−1
∆ ), and therefore in practice,

R−1
∆ is chosen in a rather ad-hoc manner (and is specific to

a particular CAA problem) such that the ASD does not induce
any inaccuracy due to over-damping.32 It is noted that the fore-
going remarks on the stability of 1-D simulations also hold for
overall upwind-biased or central FD schemes formulated using
other available FD schemes such as the wavenumber extended
schemes of Li,23 optimised scheme of Lockard,33 and the 15-
point central DRP FD scheme of Tam.34

4. RESULTS AND DISCUSSION: ACCURACY
ANALYSIS OF THE SIMULATIONS

The accuracy of the 1-D and 2-D forward simulation and
the TR simulation (implemented using only the time-reversed
acoustic pressure as input at the boundary nodes) is analysed
by comparison with the corresponding analytical solution of
the acoustic pressure field due to the propagation of an acoustic
pulse in a mean flow field involving planar wave fronts in the
1-D duct and cylindrical wave fronts in the 2-D free-space.

4.1. Test Case 1: Propagation of a Gaussian
Pulse in an Infinite 1-D Duct with Mean
Flow

The initial acoustic pressure field φ(x) is taken as a Gaus-
sian function. Therefore, p̃(x, t = 0) = φ(x) = εe−α(x−x0)2

where ε is the initial amplitude of the pulse, x0 denotes the
initial location of the peak of the Gaussian pulse in the 1-D do-
main given by 0 ≤ x ≤ 1, and α pertains to the sharpness of
the pulse and decides the maximum wavenumber content com-

puted by the Fourier transform 1√
2π

x=∞∫
x=−∞

e−αx
2

e−jk0xdx =(
e−

k2
0

4α /
√

2α

)
. In the ensuing simulation results, ε = 0.1 Pa

and α = 100 m−2, and therefore the maximum wavenum-
ber content k0 of the 1-D Gaussian pulse is less than 40 m−1,
thereby indicating that the spatial discretisation and the overall
upwind-biased FD scheme warrants an accurate acoustic wave
propagation. Furthermore, x0 = 0.5 m and M0 = 0.3 are
considered; hence, ∆t1 = 2.2418× 10−6 s based on the CFL
number equal to 0.2.

4.1.1. Forward Simulation

Figures 6(a–d) compare the spatio-temporal evolution of the
acoustic pressure field predicted by the 1-D forward simula-
tion against the corresponding analytical solution of the prop-

agation of a Gaussian pulse in an infinite 1-D duct with mean
flow (given by Eq. (24)) at time-instants (a) t = 0 (Initial con-
dition), (b) t = 200∆t1, (c) t = 400∆t1, and (d) t = 700∆t1,
respectively.

p̃analytical(x, t) =
1

2
×

Pulse propagating along the positive x direction︷ ︸︸ ︷
φ(x− (1 +M0)c0t) + φ(x+ (1 +M0)c0t)︸ ︷︷ ︸

Pulse propagating along the negative x direction

 . (24)

An excellent agreement is observed from Fig. 6(a–d) be-
tween the forward simulation and the analytical solution at
all time-instants, thereby establishing the accuracy of 1-D for-
ward simulations. It is observed that the initial Gaussian pulse
starts decaying and splitting into two Gaussian pulses of equal
amplitude but propagating in opposite directions with unequal
speeds (due to convective effect of mean flow). The pulse prop-
agating towards the positive x direction propagates at an en-
hanced speed c0(1 +M0) = 1.3c0 and leaves the domain ear-
lier than the pulse that propagates towards negative x direction
at the reduced speed c0(1−M0) = 0.7c0.

The forward simulations were carried out for a large time-
interval t = [0, T1 = 3000∆t1] during which the pulse com-
pletely propagates out of the domain and the acoustic pressure
and particle velocities are vanishingly small (less than machine
precision) beyond this interval.

In order to formally assess the accuracy, a L1 norm error
between the p̃(x, t) and ρ0c0ũ(x, t) fields predicted by the for-
ward simulations and the corresponding 1-D analytical solu-
tions is defined as

Lp1(t) =
1

L

x=L=1∫
x=0

∣∣p̃analytical(x, t)− p̃(x, t)
∣∣ dx; (25a)

Lu1 (t) =
1

L

x=L=1∫
x=0

ρ0c0
∣∣ũanalytical(x, t̃)− ũ(x, t)

∣∣ dx; (25b)

and has been evaluated at every time-step of the forward sim-
ulations. It is observed from Fig. 7(a) that for the initial time
duration of forward simulation t = [0, 1500∆t], the Lp1(t) and
Lu1 (t) norm errors are equal and of the order 10−7 for the over-
all upwind-biased scheme, whereas the p̃(x, t) and ρ0c0ũ(x, t)
fields are of the order 10−2 (maximum value over the domain
0 ≤ x ≤ 1) during this interval, thereby formally validating
the 1-D forward simulation using the PCF and overall upwind-
biased FD schemes.
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Figure 4. Eigenvalue loci of the [ATR] matrix shown in Eq. (21c) for Nnodes = 1500 based on the overall upwind-biased FD scheme: Illustration of stability
and the bifurcating effect of a mean flow M0.

Figure 5. Eigenvalue loci of the [ATR] matrix shown in Eq. (21c) for Nnodes = 1500 based on the overall central DRP FD schemes: Illustration of instability
during the TR simulation due to a few eigenvalues with large positive real parts.

The 1-D forward simulations were also implemented using
the overall central DRP FD schemes16, 20 (discussed in Sec-
tion 3) wherein a numerically stable and accurate solution was
obtained. Indeed, the Lp1(t) and Lu1 (t) norm errors in this
case were almost identical to that of the overall upwind-biased
FD schemes due to the similar resolution characteristics (DRP
property) of the 4th order, the 7-point central DRP FD stencil16

and the 4th order, and the 7-point optimised upwind-biased FD
stencil.22 However, it was observed that the relative execution
time of the forward simulations per time-step using the overall
central DRP FD scheme is approximately half that taken by the
overall upwind-biased FD schemes.

4.1.2. TR Simulation

Figures 6(d–a) show the p̃(x, t̃) field predicted by the 1-D
TR simulation using only the time-reversed acoustic pressure
as input at the boundary nodes (i = 1, Nnodes) at discrete time-
instants (d) t̃ = 2300∆t1, (c) t̃ = 2600∆t1, (b) t̃ = 2800∆t1,
and (a) t̃ = T1 = 3000∆t1 (the final time-instant of the TR
simulation), respectively. It is noted that during the 1-D TR

simulation, the ABCs have not been implemented at the finite
termination of the duct. The p̃(x, t̃) field obtained by the 1-D
TR simulation is found to be in excellent agreement with the
p̃(x, t) field predicted by the forward simulation, and also with
the time-reversed analytical solution (obtained by replacing t
with T − t̃ in Eq. (24)) at the corresponding time-instants. It
is observed that two Gaussian pulses of equal amplitude back
propagate into the computational domain at unequal speeds
(the pulse propagating from the x = 0 and the x = L boundary
propagate at a speed of 0.7c0 and 1.3c0, respectively), undergo
constructive interference, and eventually coalesce at t̃ = T1

to form a single amplified Gaussian pulse at the same spa-
tial location (x = x0) and amplitude as the initial Gaussian
pulse (at t = 0 during the forward simulation), thereby reveal-
ing the correct source location and amplitude. For formally
assessing the accuracy, a L1 norm error between the p̃(x, t̃)
and ρ0c0ũ(x, t̃) fields predicted by the 1-D TR simulation and
the corresponding time-reversed analytical solutions has also
been evaluated at every time-step of the TR simulation. The
Lp1(t̃) and Lu1 (t̃) versus t̃ graphs are presented in Fig. 7(b). It
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Figure 6. The acoustic pressure field p̃(x, t) computed using the forward simulation of a Gaussian pulse propagating in a 1-D infinite duct (shown in Fig. 1(a))
with mean flow M0 = 0.3 towards the positive x direction at time-instants t = (a) 0, (b) 200∆t1, (c) 400∆t1, and (d) 700∆t1, and comparison with the
analytical solution (given by Eq. (24)). The time-reversed acoustic pressure field p̃(x, t̃) obtained during the TR simulation using only the time-reversed acoustic
pressure as input at the boundary nodes at the reverse time-instants t̃ = (a) 2300∆t1, (b) 2600∆t1, (c) 2800∆t1, and (d) T1 = 3000∆t1 demonstrates
one-to-one correspondence with the forward simulation and the analytical solution.

is noted that analysing the L1 norm errors is meaningful only
over the time interval t̃ = [1500∆t, 3000∆t] corresponding
to arrival of the acoustic pulses at the computational bound-
aries until the coalescing of the two pulses to form a single
amplified acoustic pressure pulse at time t̃ = T1. The order
of magnitude of L1 norm errors is approximately 10−5 over
the interval t̃ = [2000∆t, 3000∆t], whereas the order of mag-
nitudes of p̃(x, t̃) and ρ0c0ũ(x, t̃) over the same time interval
is approximately 10−2, while the peak of the Gaussian pulse
in p̃(x = L/2, t̃ = T1) is of the order 10−1. This confirms
the accuracy of TR simulations using only the time-reversed
acoustic pressure as input at the boundary nodes for the 1-D
test case.

4.2. Test Case 2: Propagation of a Gaussian
Pulse in a 2-D Free-space with Uniform
Mean Flow

The initial acoustic pressure field φ(x, y) is taken as a 2-
D Gaussian pulse given by p̃(x, y, t = 0) = φ(x, y) =

εe−α{(x−x0)2+(y−y0)2}, where α = 100 m−2, ε = 0.1 Pa
and x0 = y0 = 0 denotes its peak in the 2-D domain |x| ≤
(Lx + ∆Lx), |y| ≤ (Ly + ∆Ly), where Lx = Ly = 0.5 m,

while Nsponge = 30, therefore, ∆Lx = ∆Ly = 30 × 0.005 m
= 0.15 m. The maximum wavenumber content in the 2-D
Gaussian pulse is determined by computing the Hankel trans-
form of order zero35 of the function f(r) = e−αr

2

and is given

by e−
k2
0

4α /(2α). For the values of α considered, the maximum
wavenumber content k0 is less than 55 m−1, thereby ensuring
an accurate propagation of the pulse with the mesh-size con-
sidered here.

4.2.1. Forward Simulation

Figures 8(a–d) depict the spatio-temporal evolution of the
Gaussian pulse in a 2-D free space (over the domain |x| ≤
0.65 m, |y| ≤ 0.65 m) with a uniform mean flow M0 = 0.3
considered along the positive x direction obtained by the for-
ward simulation at time-instants (a) t = 0 (Initial condition),
(b) t = 300∆t2, (c) t = 600∆t2, and (d) t = 1000∆t2, where
∆t2 = 2.2418× 10−6 s.

It is noted that the domain shown in Figs. 8(a–d) also in-
cludes the sponge-layer domain which is necessary to damp
the incoming spurious reflections at the exterior computational
boundaries. Furthermore, in Figs. 8(a–d), the direction of the
uniform mean flow along the positive x direction is indicated
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Figure 7. Temporal variation of (a) the L1(t) error norms in the 1-D forward simulation and (b) the L1(t) error norms in the 1-D TR simulation: Quantification
of the accuracy of the simulations using the PCF of the LEE and the overall upwind-biased FD scheme.

by an arrow, the colorbar depicts the magnitude of acoustic
pressure in Pa (Nm−2), and the known location of the peak of
the Gaussian pulse in Fig. 8(a) is indicated by a circle O. The
same symbol and unit conventions are also followed for the re-
maining 2-D simulations. Figures 8(a–d) demonstrate that the
2-D Gaussian pulse collapses and the cylindrical wave fronts
expand radially such that the center of pulse is convected with
a speed c0M0 towards positive x direction due to mean flow.

The accuracy of the 2-D forward simulation results (shown
in Figs. 8(a–d)) is assessed by comparison against the corre-
sponding analytical solution of the acoustic pressure field due
to the spatio-temporally evolving Gaussian pulse in a 2-D free-
space given by16

p̃(x, y, t) =
ε

2α

ξ=ξ0→∞∫
ξ=0

ξe−
ξ2

4α cos(c0ξt)J0(ξη) dξ; (26)

where J0(·) is the ordinary Bessel function of zero order and
η = {(x− c0M0t)

2 + y2}1/2. Figures 9(a–d) depict the com-
parison of the acoustic pressure field p̃(x, y = 0, t) along the
x axis t = [0, 300∆t2, 600∆t2, 1000∆t2], respectively, ob-
tained using forward simulation and the analytical solution,
wherein an excellent agreement is observed between the two
approaches, especially during the initial time-instants. At
t = 1000∆t2, the forward simulation results exhibit a small
deviation from the analytical solution as may be observed from
Fig. 9(d). It is however noted that the p̃(x, y = 0) field pre-
dicted by the forward simulation and the corresponding analyt-
ical solution are both of the order 10−3, while the discrepancy
between the two approaches (due to small wave reflections that
back propagate into the computational domain despite the use
of Tam’s ABC at the x = 0.65 m boundary and the use of
sponge-layer near nodes of this boundary) is of the order of
10−4. This indicates that a reasonable estimate of the p̃(x, y, t)
field may be obtained by means of forward simulations based
on the PCF of 2-D LEE, overall upwind-biased FD schemes,
and the implementation of ABC. Indeed, the forward simula-
tions were carried out for t = [0, 5000∆t2] during which the
Gaussian pulse completely propagates out of the 2-D domain,

and the acoustic pressure and particle velocity fields tend to
zero.

The p̃(x, y, t) field obtained using the overall central DRP
FD scheme16, 20 based on the PCF and implementation of ABC
was found to be similar to that shown in Figs. 8(a–d), (the re-
sults are not shown for brevity), thereby demonstrating the sta-
bility and accuracy of the 2-D forward simulations using the
overall central DRP FD scheme.

4.2.2. TR Simulation

Time-reversed Acoustic Pressure as Input
Figures 10(a–d) show the p̃(x, y, t̃) field predicted by the 2-

D TR simulations (over the domain |x| ≤ 0.5 m, |y| ≤ 0.5 m,)
using only the time-reversed acoustic pressure history as in-
put at all four computational boundaries, i.e. x = ±0.5 m
and y = ±0.5 m at (a) t̃ = 4000∆t2, (b) t̃ = 4400∆t2,
(c) t̃ = 4700∆t2, and (d) t̃ = T2 = 5000∆t2 (the final
time-instant of TR simulation). The ‘reversed’ direction of
mean flow is indicated by an arrow in Figs. 10(a–d), while
the predicted location of the peak of the Gaussian pulse in
Fig. 10(d) is indicated by a cross X. (These same symbolic
conventions are also followed for the remaining results.) It is
noted that the use of time-reversed acoustic pressure Dirichlet
boundary conditions as input at the four computational bound-
aries results in the generation of both the incoming acoustic
wave fronts (that propagates into the domain, converges and
eventually coalesces to form the initial Gaussian pulse) and
the outgoing waves that tend to propagate outside the compu-
tational domain. In order to prevent the spurious numerical
reflections at the boundaries due to the outgoing waves from
back-propagation into the domain and thereby inducing insta-
bility, the CEM ABC and the special corner ABCs were im-
plemented at the boundaries,4, 10, 21 crucial for stabilising the
2-D TR simulations. Furthermore, ∂ṽ/∂x|x=Lx = 0 condition
was also implemented to prevent instability due to incoming
disturbances advected by ‘reversed’ mean flow.

Figure 10(d) indicates that the predicted location of the peak
of the Gaussian pulse is co-incident with the known peak lo-
cation. Indeed, a comparison of p̃(x, y, t̃) field in Figs. 10(a–
d) with the corresponding p̃(x, y, t) field shown in Figs. 8(d–
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Figure 8. The forward simulation of acoustic pressure field p̃(x, y, t) due to a Gaussian pulse propagating in a 2-D free-space with uniform mean flowM0 = 0.3
towards the positive x direction at t = (a) 0, (b) 300∆t2, (c) 600∆t2, and (d) 1000∆t2. It is noted that different colorbar scales are used in parts (a–d).

a), respectively, demonstrates an accurate back- propagation
of cylindrical acoustic waves from the boundaries during 2-D
TR simulations using only the time-reversed acoustic pressure
as input. A similar conclusion may also be drawn on com-
paring the time-reversed p̃(x, y = 0, t̃) field with the forward
p̃(x, y = 0, t) field shown in Fig. 9.

Time-reversed Acoustic Pressure and Particle Velocities as
Input: A Comparison

The p̃(x, y, t̃) field obtained by the 2-D TR simulations us-
ing both the time-reversed acoustic pressure and acoustic par-
ticle velocities as input (shown in Figs. 11(a–d)) is compared
to that obtained using only the time-reversed acoustic pressure
as input (shown in Figs. 10(a–d)) at the corresponding reverse
time-instants.

It is observed that the p̃(x, y, t̃) fields obtained in Figs. 10(a–
d) and 11(a–d) are similar. In particular, Figs. 10(d) and 11(d)
predicting the initial location of peak of the Gaussian pulse
are identical. Similar conclusions may also be made from

Figs. 9(a–d). This demonstrates that measuring the acoustic
particle velocity histories at the computational boundaries is
unnecessary and the use of only the time-reversed acoustic
pressure as input is sufficient for an accurate localization of
sound sources in flows by means of 2-D TR simulations.

It is also observed by means of numerical experiments that
the use of an overall central DRP FD scheme16, 20 for 2-D TR
simulations using (a) only the time-reversed acoustic pressure
as input, or (b) both the time-reversed acoustic pressure and
acoustic particle velocities as input is unsuitable due to insta-
bility problems (despite implementing the ABC at the bound-
ary nodes). This temporal instability is attributed to the iden-
tically zero damping in the central FD schemes. Hence, the
unresolved spurious numerical waves generated at the compu-
tational boundaries due to implementation of Dirichlet bound-
ary conditions3 cannot be suppressed and thus propagate in the
domain leading to instability.
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Figure 9. Spatio-temporal evolution of the acoustic pressure field along the x axis, i.e., p̃(x, y = 0): Comparison of the analytical solution with results of the
forward simulation, the TR simulation with only time-reversed acoustic pressure as input and TR simulation with both, the time-reversed acoustic pressure and
particle velocity as input at the computational boundaries.

5. CONCLUSIONS

The temporal stability and accuracy of the forward and TR
simulations of the Linearised Euler Equations (LEE) based on
the Pseudo-Characteristic Formulation (PCF) and using two
different classes of overall Finite-Difference (FD) schemes, (a)
upwind-biased schemes and (b) central DRP schemes, have
been analysed. The important contributions of this investiga-
tion are:

1. The stability of the 1-D forward and TR simulations us-
ing the overall upwind-biased FD scheme has been estab-
lished by means of a matrix eigenvalue decomposition,
wherein it is shown that two opposite upwinding direc-
tions must be considered for computing the spatial deriva-
tives in the opposing fluxes of the PCF. The implementa-
tion of ABC is necessary to ensure stability of both, the
1-D and 2-D forward simulation of a pulse propagating
in a free-space (with mean flow) over an arbitrarily large
time duration. The stability of 1-D TR simulation using
only time-reversed acoustic pressure as input is due to the
use of upwind-biased schemes near the boundary and in-
terior nodes, and the use of optimised downwind schemes
at and near the boundary nodes having DRP property over

a large range of wave numbers. Unlike the 1-D TR sim-
ulation, the ABC must be implemented for ensuring the
stability of the 2-D TR simulation using overall upwind-
biased schemes.

2. The stability of the forward simulation using the overall
central DRP FD schemes16, 20 in the PCF is also ensured
by implementation of the ABC, wherein the execution
time-step of the central DRP FD scheme is found to be
almost half that of the overall upwind-biased FD scheme.
However, for the 1-D TR simulations, some of the eigen-
values of overall central DRP FD schemes16, 20 (without
ASD32) are shown to have significantly large positive real
parts, which implies the manifestation of instabilities to-
wards the final time-instants. In fact, for the 2-D TR simu-
lations, these instabilities manifest during the initial time-
instants. Therefore, it may be concluded that the overall
central DRP FD schemes are unsuitable for the TR simu-
lation.

3. It is demonstrated that the use of both the time-reversed
acoustic pressure and acoustic particle velocity histories
as input during TR simulation is unnecessary. Rather,
use of (a) only the time-reversed acoustic pressure his-

240 International Journal of Acoustics and Vibration, Vol. 20, No. 4, 2015



A. Mimani, et al.: STABILITY AND ACCURACY OF AEROACOUSTIC TIME-REVERSAL USING THE PSEUDO-CHARACTERISTIC FORMULATION

Figure 10. The acoustic pressure field p̃(x, y, t̃) due to back-propagation of a Gaussian pulse in a 2-D free-space obtained by means of the TR simulation using
only the time-reversed acoustic pressure as input Dirichlet conditions at the nodes on the computational boundaries at reverse time-instants t̃ = (a) 4000∆t2,
(b) 4400∆t2, (c) 4700∆t2, and (d) T2 = 5000∆t2. (The direction of uniform mean flow is reversed.)

tory as input at computational boundaries, and (b) the nu-
merically reversed mean flow profile (which is known,
a-priori during the forward simulation4, 7, 10, 36 or experi-
mentally measured using hot-wire anemometry3) is suf-
ficient to warrant an accurate back-propagation of waves
and thereby localise the sound source(s) in flow fields us-
ing the TR method.

4. The accuracy of the forward and TR simulation (using
the overall upwind-biased FD schemes and PCF) is estab-
lished by comparing the 1-D/2-D simulation results of the
propagation of a Gaussian pulse in a free-space to the cor-
responding analytical solution. The physical significance
of the accuracy analysis of TR simulation, in particular,
is that for acoustic pressure and velocity fields at every
forward time-instant t, there exists corresponding time-
reversed acoustic pressure and velocity fields at reverse
time t̃ = T − t, thus, analytically validating the aeroa-
coustic TR simulation for the first time using simple test
cases of back-propagation of a pulse in a free-space.
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