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Unbalance and misalignment are the commonly occurring faults in rotating mechanical systems. These faults are
caused mainly due to improper installation or premature failure of the machine components. Detection and diag-
nosis of faults in rotating machinery is crucial for its optimal performance. In this study artificial neural networks
(ANN) and support vector machine (SVM) techniques have been used to determine the effectiveness of statistical
features for fault diagnosis in rotating mechanical system using healthy and faulty rotors. The vibration signature
responses are obtained and analyzed for healthy shaft without disk (HSWD), healthy shaft with an unbalanced
disk (HSWUD), centrally bent shaft without disk (CBSWD) and centrally bent shaft with an unbalanced disk (CB-
SWUD) with zero bow phase angle. Their predominant features were fed as input for training and testing ANN
and SVM, whereas the relative efficiency of these techniques have been compared for classifying the faults in the
test system. The study concludes that these machine learning algorithms can be used for fast and reliable diagnosis
of rotor faults.

NOMENCLATURE
T Bias or threshold
λi Lagrange multipliers
U(λ) Lagrange function
φhj Bias for hidden layer
nethmn Net input to hidden layer
netomk net input to output layer
µmn nth input of the mth input vector
κi Distance between the margin and the examples

µi that are lying on the wrong side
of the margin

φoj Bias for output layer
Em Sum of squares error
Oo

mk Output of output layer
Vm Sum of squares error
Mo

m Change in weight w.r.t weight change
Oh

mj Output of hidden layer
uhjk Synaptic weight between hidden

and output layer
M Number of iterative step
Zmk Desired output

1. INTRODUCTION

Rotating machinery diagnostics is an essential function in
industrial processes and power generation applications. Fail-
ures in a rotating machinery system are quite common and their
proper diagnosis depends upon accurate detection of the fault
and its location. Most of the faults are caused either because
of the incorrect manufacturing practices or because of the ex-
treme operating conditions. These may result in excessive heat
generation, looseness and other unwanted wears and tears of
the rotating parts causing financial losses. Therefore, a contin-

uous monitoring system is required to detect and diagnose the
faults to avoid any such situation.

Faults associated with the rotor-bearing system like unbal-
anced rotor,;1, 2 bent rotor,;3 misaligned rotor,4 and rotor rub5, 6

are discussed in the literature. Many techniques and tools are
already in practice for the continuous diagnosis of the various
components of the rotating machinery. Li et al.7 used the hid-
den Markov models (HMM) techniques in order to detect vari-
ous faults namely: rotor unbalance, rotor to stator rub, oil whirl
and pedestal looseness in a rotating machinery under speed-up
and speed-down conditions. Rolling element bearings defects
like outer race, inner race, ball spin and cage faults were dis-
cussed by different researchers8–12 using different techniques.
Also, back-propagation learning algorithm and a multi-layer
network have been used to validate the test data for unknown
faults.13

Fault diagnosis of load machines like gearboxes for com-
mon defects like missing tooth and wear of the gear tooth
were carried out using wavelet techniques.14 Kolmogorov-
Smirnov test was used by Kar and Mohanty for the detection
of faulty gears.15 The performance of gear fault was detected
using ANN and SVM by Samanta.16 Support vector machines
(SVM) were used in the fault diagnosis of machines.17

The present work deals with the extraction of statistical fea-
tures from the vibration signatures of a rotor-bearing system
and classification of shaft faults using artificial neural network
(ANN) and support vector machine (SVM). The flow chart for
the shaft health diagnosis is shown in Fig. 1.

A group of statistical features like range, root mean square
value, crest factor, kurtosis, skewness and standard deviation
have been extracted from time domain. The setup details for
simulating the combined unbalance and bent rotor fault in a
real experimental machine have been discussed in Section 2.
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Figure 1. Flow chart of shaft health diagnosis

Figure 2. Line diagram of the experimental setup

Section 3 presents the background of the ANN and SVM. The
wave forms of the healthy and faulty shaft signals are pre-
sented in Section 4. Salient statistical features from the ac-
quired signals were extracted and compiled to form a feature
vector which is fed to ANN/SVM for training and testing it is
discussed in Section 4. The conclusions are discussed in Sec-
tion 5.

2. EXPERIMENTAL SETUP AND DATA
ACQUISITION

The experimental setup consists of a slotted aluminium disc
mounted on a 19.05 mm diameter shaft (cold rolled steel) and
the shaft was supported on two identical roller bearings. The
schematic of the experimental setup is shown in Fig.2. A three
phase 0.75 kW induction motor coupled with a variable fre-
quency drive (VFD) was used for running this arrangement.
Reverse dial gauge method was used to align the shaft with the
motor end shaft. A pair of proximity probes were mounted ra-
dially (in horizontal and vertical directions) with an attachment
on the rotor system.

Two shafts, one healthy (HS) and one centrally bent (CBS)
with a bend of 200 microns were used to simulate different
shaft unbalance conditions. For simulating unbalance, the alu-
minium disc has threaded holes in which nuts and bolts of pre-
determined weight of 17 g could be screwed. The bending nat-
ural frequency (ωn) of the healthy and centrally bent shafts was
59.9 Hz as obtained from the rap test. Data was acquired using
a NI 9234 data acquisition card at the sampling rate of 1651 Hz
for 1.24 seconds. The numbers of acquired samples were 2048.
The system was run from 1.15 Hz to 40.25 Hz with an incre-
ment of 1.15 Hz and data was acquired for healthy and faulty
shaft conditions. These time-domain data were pre-processed
to extract the features which are used as inputs to the classifiers
- ANN and SVM techniques.

3. FEATURE EXTRACTION AND SELECTION

The optimal performance of fault diagnosis of a rotating ma-
chine depends on appropriate features extraction and features
selection techniques. The selection of essential features from
the test machine is an important step towards increasing the
overall effectiveness of the fault diagnosis process. For analyz-
ing signals and extracting features various techniques are used
such as time domain, frequency domain and time-frequency
domain.18

Six statistical features including range, root mean square
value, crest factor, kurtosis, skewness and standard deviation
were used each for horizontal and vertical response (acquired
with a pair of proximity probes) for the healthy and faulty
shafts. Then, statistical features of the healthy and the faulty
shafts were compiled to form a vector as shown in Table 1
along with speed as an additional feature. A total of 140 in-
stances of experiments were used for the present work. These
features are discussed below in detail:

• Range is the difference between the maximum and mini-
mum value of a signal.

• Standard deviation is the measure of dispersion of data
sets from its mean. The more spread of data produce
higher deviation. Mean and standard deviation can be de-
scribed as following:

xmean =
1

m

m∑
i=1

x(i);

xstd =

√√√√√√
m∑
i=1

(x(i)− xmean)
2

m− 1
; (1)

where x(i) is a signal series for i = 1, 2, . . . ,m and m is
the number of data points.

• RMS is used to measure the overall power content of the
signal. Skewness use the normalized third central mo-
ment. Mathematically RMS and skewness can be defined
as:

xrms =

√√√√√ m∑
i=1

(x(i)2

m
;

xskew =

√√√√√√
m∑
i=1

(x(i)− xmean)
3

(m− 1)x3std
. (2)

• Kurtosis measures the relative peak-edness of the distri-
bution as compared to a normal distribution. Crest factor
computes the ratio of the peak level of data over the RMS
level. There-fore, the results from the crest factor show
the peak of data corresponding to an increase in crest fac-
tor value.
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Figure 3. (a, b, c and d) Displacement waveform of the healthy shaft without
disk, healthy shaft with unbalanced disk, centrally bent shaft without disk and
centrally bent shaft with unbalanced disk with BP of 0◦ at ωn/2 respectively

xkurt =

√√√√√√
m∑
i=1

(x(i)− xmean)
4

(m− 1)x4std
;

xcf =
xmax

xrms
. (3)

The faults which are fully developed or are in incipient stage
may not be detected in time domain signals, or could be
masked/buried in the noise along with the signals. But, it has
already been established by many authors that the fault can be
detected using the time domain statistical features even for the
shortest duration of the data acquired for the fault.10, 11, 19 The
displacement waveforms of the HSWD, HSWUD, CBSWD
and CBSWUD with BP of 0◦ at ωn/2 are shown in Fig. 3.

3.1. Artificial neural network
Artificial neural network (ANN) is an interconnected net-

work of models based on the biological learning processses of
human brain. There are a number of applications of the ANNs
in regression analysis, robotics, data analysis, pattern recogni-
tion and control. Multi-layer perceptron (MLP) has been used
by different researchers in the past for different types of faults
and signals taken with the different sensors.20 Essentially, an
ANN consists of an interconnected group of artificial neurons.
These neurons use a mathematical or computational model for
information processing. ANN is an adaptive system that takes
its decisions based on information that passes through the net-
work.21 The neuronal model as explained in Fig. 4 also in-
cludes bias (threshold) which is an external parameter of neu-
ral network with constant input.22

3.2. Back propagation (BP) algorithm
The structure of neurons in a neural network is known as the

network architecture. Three different classes of network ar-

Figure 4. Model of a single non-linear neuron

Figure 5. Back propagation algorithm in multi-layer neural network

chitecture are: single layer feed-forward network, multi-layer
feed-forward network and recurrent networks. Another impor-
tant type of neural networks is a multi-layer feed forward net-
work, which is also known as multi-layer perceptrons (MLPs).
Back propagation (BP) algorithm is shown in Fig. 5. It consists
of two steps which are known as forward pass and backward
pass.

3.3. Support vector machine

Support Vector Machines (SVMs) are a new generation
learning systems which are based on the statistical learning
theory. They belong to the class of supervised learning al-
gorithms in which the learning machine is given a set of in-
puts with the associated outputs. Cristianini (2000) used SVM
for pattern recognition and classification.23 A simple case of
two classes separated by a linear classifier points are shown by
triangles and squares in Fig. 6. The plane that separates the
two classes is called hyper plane, H . H1 and H2 (shown by
dashed lines) are the planes that are parallel to plane H and
pass through the sample points closest to plane H in these two
classes. The planes parallel to H are designated as H1 and H2

and they pass through the sample points nearest to H amongst
these classes. The distance between the two parallel planes is
known as margin. The closest placed data points that are used
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Table 1. Sample input vector for ANN/SVM techniques

Horizontal Proximity Probe Response Vertical Proximity Probe Response
Features
Range RMS Crest Kurto- Skew- Standard Range RMS Crest Kurto- Skew- Standard Speed Class

Factor sis ness Deviation Factor sis ness Deviation
1 2 3 4 5 6 7 8 9 10 11 12 13

0.164 0.053 1.519 1.661 -0.286 0.052 0.343 0.117 1.421 1.965 -0.599 0.113 1.15 HSWD
0.18 0.06 1.464 1.585 -0.037 0.059 0.388 0.124 1.501 1.697 -0.026 0.123 2.3 HSWD
0.105 0.036 1.621 1.643 -0.401 0.035 0.29 0.097 1.607 1.466 -0.029 0.096 1.15 HSWUD
0.127 0.04 1.713 1.573 0.222 0.04 0.334 0.104 1.698 1.626 0.234 0.103 2.3 HSWUD
0.748 0.26 1.492 1.769 0.464 0.251 1.928 0.651 1.518 1.579 -0.13 0.645 1.15 CBSWD
0.79 0.278 1.475 1.545 0.193 0.277 2.035 0.707 1.458 1.561 0.152 0.705 2.3 CBSWD
0.674 0.23 1.527 1.582 -0.066 0.229 1.282 0.454 1.44 1.762 0.47 0.439 1.15 CBSWUD
0.74 0.266 1.46 1.473 0.131 0.266 1.386 0.476 1.489 1.572 -0.122 0.472 2.3 CBSWUD

Figure 6. Hyper-plane classifying two classes : (a) small margin (b) large
margin

to define the margin are recognized as support vectors or mar-
gin of separation.20 The aim of the SVM is to obtain a linear
hyper-plane between the H1 and H2 hyper-planes so that the
margin is maximized.

This problem is solved by reducing it to a convex optimiza-
tion problem: that is minimizing a quadratic function under
linear inequality constraints.23

4. RESULTS

The displacement waveforms of the HSWD, HSWUD, CB-
SWD and CBSWUD with BP of 0◦ at ωn/2 are shown in
Fig. 3. The vibration amplitude of the HSWD is 0.095 mils
(r.m.s. value), whereas for HSWUD it is 0.2482 mils (r.m.s.
value) at ωn/2 rotational speed as shown in Figs. 3(a) and 3(b).

Similarly, for the CBSWD CBSWD with an unbalance run-
ning at 29.9 Hz with a bow phase angle of 0◦, the vibration
responses at (ωn/2) are 0.4974 and 0.6428 mils (r.m.s. value)
respectively. The term bow phase angle at 0◦ means that the
unbalance and the bow are on the same side. So the ampli-
tude of vibration of such a rotor should be higher than that of
a healthy rotor running under same conditions.24

An increase in the amplitude of vibration is an indication
of a deteriorating shaft condition. Also, the rate of increase
of the amplitude is proportional to the degree of defect. It is
quite possible to predict the trend of increase in the amplitude
of the defective shafts by continuously monitoring the vibra-
tion responses. The operator of the machine should be skilled
to predict about the type of the fault after looking into the vi-
bration responses. Skilled operators are more difficult to hire

because of their demand for higher salaries. Therefore, it be-
comes necessary to have an automatic fault diagnostic system
which can predict the defect and advise the operator of an ap-
propriate remedy to the problem.25

ANN/SVM training and classification of faults are carried
out in WEKA software.26 Training vectors are already com-
piled and are put as an input. The defects considered in the
study are classified using ANN/SVM techniques are as fol-
lows: HSWD, HSWUD, CBSWD and CBSWUD zero bow
phase angle.

The training vector extracted from the data is shown in Ta-
ble 1. In Table 2, the magnitudes of the various statistical pa-
rameters like range, root mean square value, crest factor, kur-
tosis, skewness and standard deviation features for every shaft
condition have been mentioned at the rotor speed ωn/2. It is
pertinent to mention here that at ωn/2 speed an increase in the
magnitude of statistical variables namely- range, r.m.s., stan-
dard deviation and skewness was observed with an increase in
the fault condition in comparison to HSWD condition. How-
ever, the crest factor and kurtosis variable values show an in-
crease for HSWD condition and they become almost constant
for all the remaining shaft conditions at this speed.

The effect of speed on the statistical variables identified for
the present study were also studied. It was observed that ex-
cept for crest factor and kurtosis, all other statistical variables
followed a general trend of an increase in the magnitude with
an increase of speed as shown in Figs. 7-10.

From the acquired responses, it was analyzed that the ampli-
tude of the vibrations increase with an increase in rotor speed
(Fig.3). But it becomes very difficult to differentiate shaft
faults individually on the basis of time and frequency domain.
Therefore, ANN and SVM techniques were applied to closely
related faults for speedy diagnosis on the basis of their statisti-
cal features.

These features were fed to WEKA software26 for selecting
the appropriate features in order to make decisions using ma-
chine learning algorithms. In a multi-class prediction, the re-
sults of a test set are often displayed as a two dimensional con-
fusion matrix (Table 3) with a row and column for each class.
Each matrix element showed the number of test examples for
which the actual class was the row and the predicted class was
the column. Results corresponded to large numbers down the
main diagonal and small ideally zero; off-diagonal elements
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Table 2. Magnitudes of the various statistical features at the rotor speed (ωn/2)

Range RMS Crest factor Kurtosis Skewness Standard deviation
HSWD 0.2207 0.0687 1.5235 1.6886 -0.1488 0.0687

HSWUD 1.0431 0.357 1.4714 1.5034 0.0164 0.3571
CBSWD 0.9731 0.3373 1.498 1.508 0.081 0.3374

CBSWUD 1.893 0.6452 1.6146 1.5684 0.2035 0.6454

Figure 7. RMS parameter of HSWD and CBSWD at different shaft speeds

Figure 8. RMS parameter of HSWUD and CBSWUD at different shaft speeds

gave an accurate prediction. After selecting “fault” as an at-
tribute for class, classification was started and the classifier
output consisted of the confusion matrix, detailed accuracy by
class and evaluation of the success of the numeric prediction.

From Table 3, we inferred that ANN correctly predicted 35,
34, 35 and 35 cases, while SVM classified 35, 34, 35 and 35
cases correctly for HSWD, HSWUD, CBSWD and CBSWUD
at zero bow phase angle.

The detailed accuracy of each class has been reported in Ta-
ble 4. It also gives us the information about TP rate (true pos-
itive rate is the number of correctly classified fault divided by
the total number of instances for that fault), FP rate (false posi-

Figure 9. Standard deviation parameter of HSWD and CBSWD at different
shaft speeds

Figure 10. Standard deviation parameter of HSWUD and CBSWUD at differ-
ent shaft speeds

tive rate is the number of incorrectly classified fault divided by
the total number of instances other than the considered fault),
precision, recall and F-measure values for the 4 classes by us-
ing ANN and SVM.

The values of various measures of correct classification of
faults are tabulated in Table 5. In the present study, the results
presented in Table 5 are based on the numeric prediction based
on 140 instances and accuracy achieved is 99.2857 % which is
better than that of reported by Vyas and Kumar13 (90%) and
Kankar et al.19 (95.54 %). Vyas and Kumar’s13 results are
based on 600 instances for different faults and 100 samples for
each fault, whereas Kankar et al.19 have taken 359 instances

International Journal of Acoustics and Vibration, Vol. 20, No. 3, 2015 157



S. Singh, et al.: ROTOR FAULTS DIAGNOSIS USING ARTIFICIAL NEURAL NETWORKS AND SUPPORT VECTOR MACHINES

Table 3. Confusion matrix

HSWD HSWUD CBSWD CBSWUD Classified as
ANN SVM ANN SVM ANN SVM ANN SVM
35 35 0 0 0 0 0 0 HSWD
1 1 34 34 0 0 0 0 HSWUD
0 0 0 0 35 35 0 0 CBSWD
0 0 0 0 0 0 35 35 CBSWUD

Table 4. Detailed accuracy by class

TP rate FP rate Precision Recall Fmeasure Class
ANN SVM ANN SVM ANN SVM ANN SVM ANN SVM
1 1 0.01 0.01 0.972 0.972 1 1 0.986 0.986 HSWUD

0.971 0.971 0 0 1 1 0.971 0.971 0.986 0.986 HSWUD
1 1 0 0 1 1 1 1 1 1 CBSWD
1 1 0 0 1 1 1 1 1 1 CBSWUD

Table 5. Evaluation of the success of the numeric prediction

Parameters Values (ANN) Values (SVM)
Correctly classified instances 139 99.2857 139 99.2857

Incorrectly classified instances 1 0.7143 1 0.7143

Kappa Statistic 0.905 0.9905
Mean absolute error 0.013 0.2506

Root mean squared error 0.0617 0.3128
Relative absolute error 3.456 66.7765

Root relative squared error 14.2276 72.1726
Total number of instances 140 140

for healthy and faulty rotors and bearings. Also, classification
accuracy of SVM and ANN is much better than reported by
Meyer et al.27

5. CONCLUSIONS

This study presents a potential application of machine learn-
ing methods ANNs and SVMs for the fast and reliable detec-
tion of shaft faults. Features were extracted from time-domain
vibration signals using statistical techniques. The roles of dif-
ferent vibration signals obtained with or without a disc at vari-
ous speeds have been investigated. The time responses showed
that the amplitudes of vibration increase with the addition of
different faults. The combined rotor fault that consists of a
centrally bent shaft carrying an unbalanced disk at the cen-
tre has the high response of the vibrations at almost all the
speeds. In total six features have been considered including
range, root mean square value, crest factor, kurtosis, skewness
and standard deviation features for every shaft condition have
been mentioned at the rotor speed ωn/2. The time taken to run
the model by SVM was remarkably less as compared to ANN
technique. In our study a healthy and a centrally bent shaft
(with zero bow phase angle) have been diagnosed using ANN
and SVM at rotor speed ωn/2 with the success rate as high as
99.2857%. No better results have been reported till date using
same conditions at least in the open literature. Present study
focuses on the supervised machine learning whereas unsuper-
vised machine learning studies may also be used for detection
of rotor faults. Furthermore, this technique can be also used
for the diagnosis of multiple fault cases (combination of mis-
alignment, bent rotor and bearing faults). This study presents a
potential application of machine learning methods ANNs and
SVMs for the fast and reliable detection of shaft faults. Fea-
tures were extracted from time-domain vibration signals using

statistical techniques. The roles of different vibration signals
obtained with or without a disc at various speeds have been
investigated. The time responses showed that the amplitudes
of vibration increase with the addition of different faults. The
combined rotor fault that consists of a centrally bent shaft car-
rying an unbalanced disk at the centre has the high response of
the vibrations at almost all the speeds. In total six features have
been considered including range, root mean square value, crest
factor, kurtosis, skewness and standard deviation features for
every shaft condition have been mentioned at the rotor speed
n/2. The time taken to run the model by SVM was remarkably
less as compared to ANN technique. In our study a healthy
and a centrally bent shaft (with zero bow phase angle) have
been diagnosed using ANN and SVM at rotor speed n/2 with
the success rate as high as 99.2857%. No better results have
been reported till date using same conditions at least in the
open literature. Present study focuses on the supervised ma-
chine learning whereas unsupervised machine learning studies
may also be used for detection of rotor faults. Furthermore,
this technique can be also used for the diagnosis of multiple
fault cases (combination of misalignment, bent rotor and bear-
ing faults).
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