Improved Crack Closure Line Position: An Improved Model for Crack Breathing Phenomenon

R. Ramezanpour, M. Ghayour and S. Ziaei-Rad

Department of Mechanical Engineering, Isfahan University of Technology 84156-83111 Isfahan, Iran

(Received 3 October 2012; accepted 15 November 2013)

The dynamic behaviour of a cracked Jeffcott rotor is investigated in this paper. The crack is located at the midpoint of the rotor. It is known that when the static deflection dominates the vibration of the rotating shaft, the crack opens and closes according to the shaft rotation. This phenomenon is known as crack breathing. There are several models for classifying crack breathing phenomena, such as the switching crack model, harmonic approach model, and response-dependent breathing crack model. In order to model the breathing of the crack in the responsedependent breathing crack model, the concept of a crack closure line position (CCLP) is proposed and used by some researchers. The main scope of this work is to present an improved crack closure line position (ICCLP). By using several contour plots over the crack's surface, it is shown that the imaginary line that separates the open and closed parts of a breathing crack should not be considered perpendicular to the crack tip. It is also shown that the improved model positively agrees with those proposed in the literature. The effects of ICCLP on the coefficients of the local flexibility matrix are investigated.

NOMENCI ATURE

NOMENCLATURE			E	N/m^2	modulus of elasticity
Symb	Unit	Decorintion	q_4, q_5	Nm	bending moments (internal
J	m ⁴	area moment of inertia for the		NT / 1	reactions)
1	111	gross section	c_T	Ns/rad	torsional damping coefficient
k	N/m N/rad	cross coupled stiffness	γ	m	crack depth
$\frac{h_{ij}}{dn}$	m	disk diameter	52	rpm	revolutionary speed
ap	m		c_u	Ns/m	longitudinal damping coefficient
e [<i>l</i> _]	111	alobal stiffnass matrix	M(t)	Nm	external torsional excitation
$[\kappa]_g$	mo d	giobal summess matrix	G	N/m²	modulus of rigidity
φ	rad	local flavibility matrix of the	ω_T	rpm	torsional excitation frequency
$[c]_l$		local liexibility matrix of the	A	m^2	cross sectional area of the crack
	1	cracked shall	x, y	m	transversal displacements of
m	кд	mass of the disk			center of disk
ν		Poisson ratio	u	m	longitudinal displacement of
R, a	m	radius and diameter of the shaft,			center of disk
		respectively	α	rad	torsional displacement of center
α	rad	rotor center displacement in			of disk
7		rotational direction	F_z	Ν	longitudinal force (external load)
l	m	shaft length	T	Nm	torsional moment
k_x	N/m	stiffness in x direction	J	kgm ²	mass moment of inertia of the
k_y	N/m	stiffness in y direction			disk
k_u	N/m	stiffness in longitudinal direction	K_{I}^{i}	N/m \sqrt{m}	opening mode of the crack due
k_T	N/rad	stiffness in torsional direction			to internal load "i"
W	Nm	strain energy due to crack	$K^j_{ m III}$	N/m \sqrt{m}	tearing mode of the crack due to
U	Nm	strain energy of uncracked shaft			internal load "j"
t	S	time in seconds	$K_{\rm I}$	N/m \sqrt{m}	total opening mode of the crack
$[C_s]$		total flexibility matrix of the	K_{III}	$N/m\sqrt{m}$	total tearing mode of the crack
- -		uncracked shaft	$F_1, F_2, F_{\mathrm{III}}$		influential functions
$[K]_l$		local stiffness matrix			
η_0	m	location of elemental strip along η' direction	1. INTRODUCTION		
[H]		transformation matrix	Many inves	tigations h	ave been conducted concerning the
h	m	height of the element strip	overall behaviour of cracked shafts in past decades. In gen-		
J_n	m^2	polar moment of inertia for the	eral, a crack in rotating shafts may be classified in three dif-		
P		cross section	ferent ways: o	pened crac	k, closed crack, and breathing crack.
q_1	Ν	longitudinal force (internal	In other words	s, if a crack	ed shaft rotates under external load-
1+		reaction)	ing, then the c	crack opens	and closes regularly per revolution,
c	Ns/m	transversal damping coefficient	which could be said to breathe. This phenomenon is produced		

International Journal of Acoustics and Vibration, Vol. 20, No. 3, 2015 (pp. 123-134)