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Editor’s Space

What I Don’t Know Part 1 of 2

This editorial is taken from one
published in Sound & Vibration,

May 2003 but significantly modified.

Unlike most editorials or articles, where the author tells the
readership what he/she knows, I thought I’d take this opportu-
nity to write about things in acoustics that I don’t know. I’ll
limit them to the most pressing issues.

Calibration Intervals of Instruments. Why do most peo-
ple insist on yearly instrument calibrations? Instrument man-
ufacturers have not been able to provide data to justify the
‘recommended yearly interval,’ a de facto standard. In about
2005 or so, there arose documents (Organization Internationale
Metrologie Legal) that at least suggested the one-year interval
was meaningless. The document stated that the interval should
depend on use (If it sat on a shelf for a year, did it need to
be calibrated?); on history of drift; on criticality of measure-
ments (Suppose you only care about approximate sound levels
or have a limited frequency range.); and on abuse (Suppose
you drop it.). And finally, ISO 17025, a standard for quality
control of test and calibration laboratories, has wording that
states a lab may not put calibration due dates on instruments.
The standard reaffirms that only the user, based on past data
and instrument use, can determine intervals. Conclusion: pick
up a copy of “OIML 10 ILAC_G24_2007” and develop a justi-
fication for your calibration intervals based on experience and
past calibrations.

Use of Microphones. Most measuring microphones are
characterized as ‘free-field’ or ‘pressure/random incidence.’
The former has a well-defined frequency response for an
acoustical field without any reflections and measures the pres-
sure as though the microphone was absent. The latter is for a
random incidence acoustical field (closely approximated by a
pressure response) with the microphone as part of the field. But
when we measure almost anything (community noise, HVAC
noise, industrial noise), the field is never ‘free’ or ‘random in-
cidence.’ This means the well-defined frequency response for
ideal fields is not met and the actual response to the measure-
ment field is unknown. Thus, the accuracy of the measurement
is a function of the spectrum of the sound, which is not known
except by measurement. Conclusion: the uncertainty of mea-
surements is much more than we are led to think.

Windscreens. Just about all acoustical measurements out-
doors include the use of a windscreen placed over the micro-
phone grid. Few people give thought or care about the effects
of the windscreen on the measurement. Ostensibly, the screen
reduces the effects of wind noise at the diaphragm. But, at
the same time, the windscreen adds a transfer function—an
insertion loss—as a function of frequency that modifies the
spectrum measured from that produced. Unless this transfer
function is known with some uncertainty, the accuracy of the

measurements is in dispute. Now, a few manufacturers provide
some insertion loss characteristics of their windscreen but of-
ten the test method is not defined and normally the uncertainty
of the results are not given. However most windscreens are un-
characterized. Experience shows that a windscreen can easily
change a ‘Class 1’ measurement to a ‘Class 2’ measurement,
and worse, it can effect frequency response by more than 5 dB
at higher frequencies. Conclusion: if you want the measure-
ment to be accurate you must know the insertion loss of your
windscreen.

Temperature and Wind Gradients. These phenomena oc-
cur very often and are temporally and spatially varying. They
effect measurements of noise as well as long range propaga-
tion. Because these gradients are probably never measured
over the propagation distance, we know nothing of the accu-
racy of the sound measured from the source. The uncertainty
of the measurement seems to be inversely proportional to mea-
surement time. Conclusion: long-term averages are the only
way to predict, specify and measure outdoor sound pressure
level.

Value of Accuracy Measurements in Acoustics. Why do
we measure down to tenths of dB? What are we going to do
with high accuracy test results? I suggest that the high mea-
surement accuracy is uncalled for in most cases. For example,
what do we really know about the randomness of community
noise? Clearly short-term measurements vary (vehicle pass-
by, etc.), and with changing environments, I suspect yearly de-
scriptors (virtually useless) will never be the same from one
year to another (changing demographics, etc.). Does a very
accurate measurement instrument give any better information?
In industrial noise, except for a few cases, repeatability of a
test will never give the same results within 1-2 dB. In archi-
tectural acoustics, is there a perceptible difference of a ceiling
tile with a sound absorption coefficient of 0.80 or 0.85? I sus-
pect not. The sound power determined from an air-handler in
a reverb room can be measured within 0.1 dB (then add the
2-3 dB uncertainty). Since the quantity we really care about
is sound pressure, and the air-handler is mounted differently
in less-than-ideal-conditions when installed, does that 0.1 dB
matter? Conclusion: the science and sophistication of noise
measurement far exceed the subjective usefulness of the mea-
surements. Class 2 meters could replace many measurements
requiring Class 1 meters with no appreciable difference in real
results.

Richard J. Peppin
Director, IIAV
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Improved Crack Closure Line Position: An Im-
proved Model for Crack Breathing Phenomenon
R. Ramezanpour, M. Ghayour and S. Ziaei-Rad
Department of Mechanical Engineering, Isfahan University of Technology 84156-83111 Isfahan, Iran

(Received 3 October 2012; accepted 15 November 2013)

The dynamic behaviour of a cracked Jeffcott rotor is investigated in this paper. The crack is located at the midpoint
of the rotor. It is known that when the static deflection dominates the vibration of the rotating shaft, the crack
opens and closes according to the shaft rotation. This phenomenon is known as crack breathing. There are several
models for classifying crack breathing phenomena, such as the switching crack model, harmonic approach model,
and response-dependent breathing crack model. In order to model the breathing of the crack in the response-
dependent breathing crack model, the concept of a crack closure line position (CCLP) is proposed and used by
some researchers. The main scope of this work is to present an improved crack closure line position (ICCLP). By
using several contour plots over the crack’s surface, it is shown that the imaginary line that separates the open and
closed parts of a breathing crack should not be considered perpendicular to the crack tip. It is also shown that the
improved model positively agrees with those proposed in the literature. The effects of ICCLP on the coefficients
of the local flexibility matrix are investigated.

NOMENCLATURE

Symb. Unit Description
I m4 area moment of inertia for the

cross section
kij N/m, N/rad cross-coupled stiffness
dp m disk diameter
e m eccentricity
[k]g global stiffness matrix
ϕ rad initial phase angle
[c]l local flexibility matrix of the

cracked shaft
m kg mass of the disk
ν Poisson ratio
R, d m radius and diameter of the shaft,

respectively
α rad rotor center displacement in

rotational direction
l m shaft length
kx N/m stiffness in x direction
ky N/m stiffness in y direction
ku N/m stiffness in longitudinal direction
kT N/rad stiffness in torsional direction
W Nm strain energy due to crack
U Nm strain energy of uncracked shaft
t s time in seconds
[Cs] total flexibility matrix of the

uncracked shaft
[K]l local stiffness matrix
η0 m location of elemental strip along η′

direction
[H] transformation matrix
h m height of the element strip
Jp m2 polar moment of inertia for the

cross section
q1 N longitudinal force (internal

reaction)
c Ns/m transversal damping coefficient

E N/m2 modulus of elasticity
q4, q5 Nm bending moments (internal

reactions)
cT Ns/rad torsional damping coefficient
γ m crack depth
Ω rpm revolutionary speed
cu Ns/m longitudinal damping coefficient
M(t) Nm external torsional excitation
G N/m2 modulus of rigidity
ωT rpm torsional excitation frequency
A m2 cross sectional area of the crack
x, y m transversal displacements of

center of disk
u m longitudinal displacement of

center of disk
α rad torsional displacement of center

of disk
Fz N longitudinal force (external load)
T Nm torsional moment
J kgm2 mass moment of inertia of the

disk
Ki

I N/m
√

m opening mode of the crack due
to internal load “i”

Kj
III N/m

√
m tearing mode of the crack due to

internal load “j”
KI N/m

√
m total opening mode of the crack

KIII N/m
√

m total tearing mode of the crack
F1, F2, FIII influential functions

1. INTRODUCTION

Many investigations have been conducted concerning the
overall behaviour of cracked shafts in past decades. In gen-
eral, a crack in rotating shafts may be classified in three dif-
ferent ways: opened crack, closed crack, and breathing crack.
In other words, if a cracked shaft rotates under external load-
ing, then the crack opens and closes regularly per revolution,
which could be said to breathe. This phenomenon is produced
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by the stress distribution around the crack.1 This is a very
common situation in large turbine-generator rotors.2 Through-
out the two past decades, the main focus of some studies was
the modelling and explanation of the breathing mechanism in
cracked shafts.3–14 Georgantzinos et al. investigated the time
history of local flexibilities associated with a breathing crack
in a rotating shaft.1 The deflections of a beam with a circular
cross-section presenting a crack of different depths was anal-
ysed using quasi-static approximation with the aid of a refined
nonlinear contact-finite element. The partial contact of crack
surfaces was predicted by using this method. In his excel-
lent review paper, Papadopoulos explained many crack mod-
els, such as the open crack model, switching crack model, sec-
ond moment inertia model, breathing models, and harmonic
model approaches.2 The use of strain energy release rate the-
ory (SERR) and its combination with linear fracture mechanics
and rotor dynamics for calculating the compliance matrix have
been considered in detail.

Dimarogonas and Papadopoulos conducted an analysis of a
cracked rotor neglecting the non-linear behaviour of the crack
by assuming a constant stiffness asymmetry and using the the-
ory of shafts with dissimilar moments of inertia.6 Later, they
derived a complete flexibility matrix of the cross-section con-
taining the crack.7 Grabowski suggested switching the stiff-
ness values, from those of an uncracked rotor (closed crack
state) with those of a cracked rotor (fully open state) at a par-
ticular angular position of the rotor (when the crack edge be-
comes vertical).8 Mayes and Davies suggested sinusoidal stiff-
ness variations to model the breathing in a more sensible way,
as a rotor crack is expected to open and close gradually due
to gravity.9 Papadopoulos and Dimarogonas represented stiff-
ness variation by means of a truncated, four term series us-
ing known stiffness matrices corresponding to half-open, half-
closed, fully open, and fully closed cracks.10 Changhe et al.
represented the crack as a hinge with variable stiffness in two
rotor-fixed lateral directions.11 The crack is introduced at the
node of a finite element model. Ballo investigated the flexural
vibrations of a continuous slender shaft with a crack.12 The
mathematical model of the problem has been formulated by
means of the finite element method. However, the crack was
modelled by a switching crack. It has been shown that the
increase in crack depth causes a decrease in the bending stiff-
ness, whereas the nonlinearity is related to the opening and
closing of the crack faces in the process of flexural vibrations.
Subsequently, the theoretical results have been illustrated by
the calculation of the amplitudes and phases of the second and
third harmonics of the forced shaft flexural vibrations. Darpe et
al. proposed a response-dependent non-linear breathing crack
model, which is called crack closure line position (CCLP).13

Considering all six degrees of freedom per node, the stiffness
matrix in a Timoshenko beam element is modified to account
for the effect of the crack. Using this model, they were able to
study the coupling between longitudinal, lateral, and torsional
vibrations. They observed that motion coupling, together with
the rotational effect of the rotor and non-linearities due to their
proposed breathing model, introduced sum and difference fre-
quency in the response of the cracked rotor. Bachschmid et al.
used a 3D FE model to investigate the breathing mechanism
in a rotating shaft.14 Slant and helicoidally cracks are the two
types of crack shape models that they considered. A simplified
model to determine the open area of a crack is also presented

in their work. This simple model has been used for analysing
the non-linear dynamic behaviour of cracked rotating shafts,
which occurs when breathing is governed by the vibration it-
self. It has been concluded that torsional deflections could be
generated by bending moments due to the coupling effects.

Additionally, the response of a cracked rotor is investigated
in some of the literature. Sekhar investigated the dynamic be-
haviour of a cracked rotor—in particular, that of a rotor with
two open transverse cracks.15 The influence of one crack over
the other was studied using finite element analysis while con-
sidering flexural vibrations. Darpe et al. investigated a simple
Jeffcott rotor with two transverse surface cracks.16 However,
they assumed that one crack remains open while the other is
breathing. Also, the effect of the interaction of two cracks
on the breathing behaviour and on the unbalanced response
of the rotor was studied. They observed significant changes in
the dynamic response of the rotor when the angular orientation
of one crack relative to the other is varied. Darpe et al. pre-
sented a novel way to detect fatigue transverse cracks in rotat-
ing shafts.17 In this technique, a transient torsional excitation
was applied for a very short duration at a specific angular ori-
entation of the rotor, and then the transient features of the reso-
nant bending vibration were revealed using wavelet transform.
Subsequently the sensitivity of the proposed methodology to
the depth of crack is investigated. It is mentioned that this
detection method is very specific to the behaviour of the trans-
verse surface crack in a horizontal rotor. Fortunately, a positive
feature of their proposed method was that the response features
were different from the responses of other common rotor faults
under similar excitation. Lin and Chu investigated the dynamic
behaviour of a slant (45o crack angle) cracked rotor.18 Using
the Jeffcott rotor model, the equation of motion was extracted
in four directions. The global stiffness of the system was ob-
tained from concepts of fracture mechanics and strain energy
release rate. They mentioned that a much longer time is re-
quired to compute the steady responses of a breathing cracked
shaft than that of an open cracked shaft and that this is why al-
most all investigators have adopted the open crack model. The
existence of the frequency of torsional excitation is included in
the longitudinal response, and the combined frequencies of the
rotating frequency and the frequency of torsional excitation in
the transverse response are good indicators for slant crack de-
tection.

By using several contour plots over the crack surface, it is
shown in this paper that the imaginary line (crack closure line)
that separates the open and closed parts of a breathing crack
should not be considered perpendicular to the crack tip. Ac-
cording to these plots, a new breathing model called the im-
proved crack closure line position (ICCLP) is introduced. Us-
ing the proposed model, the dynamic behaviour of a cracked
Jeffcott rotor is considered. The effect of this model on the
flexibility of the cracked shaft is investigated in detail. Subse-
quently, steady state responses and their spectrums are investi-
gated.

2. EQUATIONS OF MOTION

Consider a Jeffcott rotor rotating at speed Ω (Fig. 1). It has
a massless shaft and a disk with mass m. A view of the cross-
section of the disk is shown in Fig. 2. In this figure, XOY is
the stationary coordinate, ξoη is the rotational coordinate with
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Figure 1. Jeffcott rotor model.

Figure 2. Cross-sectional view of crack at midpoint of the shaft.

centre o, and ξ′o′η′ is the rotational coordinate that is attached
at the centre of the disk. Coordinate o′ is the centre of the disk,
c is the centre of mass of the disk, α is the angle that is caused
by torsional vibration, and ϕ is the phase angle of the centre of
mass.

The angle position of the centre of mass is

Θ = Ωt+ α+ ϕ; (1)

then
Θ̇ = Ω + α̇, Θ̈ = α̈. (2)

Using the d’Alambert principle (Fig. 3), the equation of mo-
tion in four directions (two transverse, one torsional, and one
longitudinal) can be established as

mẍ+ cẋ+ kxx+ kxyy + kxTα+ kxuu = −mg +

me (Ω+α̇)
2

cos(Ωt+α+ϕ) +meα̈ sin(Ωt+α+ϕ); (3)
mÿ + cẏ + kxyx+ kyy + kyTα+ kyuu =

me (Ω+α̇)
2

sin(Ωt+α+ϕ)−meα̈ cos(Ωt+α+ϕ); (4)
Jα̈+ cT (Ω+α̇) + kxTx+ kyT y + kTα+ kTuu =

M(t) +mge sin(Ωt+α+ϕ) +meẍ sin(Ωt+α+ϕ)−
meÿ cos(Ωt+α+ϕ); (5)

mü+ cuu̇+ kxux+ kyuy + kTuα+ kuu = 0; (6)

where J is the mass moment of inertia of the disk, about o′.
The damping coefficients in the transverse, torsional, and lon-
gitudinal directions are shown by c, cT , and cu, respectively. It

Figure 3. Forces on the centre of mass of the disk.

Figure 4. Internal reactions on the crack.

should be mentioned that these equations are the same as those
presented in the work of Lin and Chu.18 M(t) and e denote the
torsional excitation and eccentricity of the disk, respectively.
Using Eqs. (3)–(6), the stiffness matrix of the system can be
determined as

[k]g =


kx kxy kxT kxu
kxy ky kyT kyu
kxT kyT kT kTu
kxu kyu kTu ku

 . (7)

3. FLEXIBILITY OF A CRACKED ROTOR

Suppose that the internal reactions on the crack are two
bending moments q4 and q5, one torsional moment T , and one
longitudinal force q1 (Fig. 4). Using Castiglione’s theorem, the
local flexibility of the crack can be written as

[c]l = [G1][∆cij ][G2] + [Cs]; (8)

where

∆cij =
∂2W

∂qi∂qj
, [G1] =

[
l

4
,
l

4
, 1, 1

]
, [G2] =

[
l

4
,
l

4
, 1, 1

]
,

[Cs] = diag

(
l3

48EI
,

l3

48EI
,

l

2GJp
,

l

2AE

)
. (9)

In Eq. (9), W is the additional strain energy due to the crack.
It is obvious that local flexibility of the crack is determined if
additional stain energy due to the crack is known, and it can be
expressed as

W =

∫
A

J(A) dA; (10)
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Figure 5. Crack surface.

Figure 6. Mesh over the crack surface for evaluation of first mode over the
cracked surface.

where J(A) is the strain energy density function. In general,
J(A) is a function ofKI, KII, andKIII, which are the stress in-
tensity factors for the opening mode, sliding mode, and tearing
mode, respectively. But here, KII (sliding mode) is neglected.
Thus,

J =
1

E′
[
K2

I + (1 + ν)K2
III

]
; (11)

where E′ = E
1−ν2 and ν is the Poisson’s ratio. Therefore,

according to Eqs. (10) and (11), the additional strain energy
due to the crack can be written as

W =

∫
A

1

E′
[
K2

I + (1 + ν)K2
III

]
dA; (12)

where A is total surface of the crack for the third crack mode
(KIII), and the opening part of the surface of crack for the first
crack mode (KI).18

The crack surface is shown in Fig. 5. Therefore, the stress
intensity factors (SIF) for a transverse crack are
for q1,

K1
I =

q1
πR2

√
πγF1; (13)

K1
III = 0; (14)

for q4,

K4
I =

4q4η0
πR4

√
πγF1; (15)

K4
III = 0; (16)

for q5,

K5
I =

4q5
√
R2 − η20
πR4

√
πγF2; (17)

K4
III = 0; (18)

and for T ,

KT
I = 0; (19)

KT
III =

2T
√
R2 − η20
πR4

√
πγFIII. (20)

It should be noted that the total effect of q4 is zero.18 Ac-
cording to Tada et al.,19

F1 =

√
tan(λ)

λ

[
0.752 + 1.01

γ√
R2 − η20

+

0.37 (1− sin(λ))
3

]
1

cos(λ)
; (21a)

F2 =

√
tan(λ)

λ

[
0.923 + 0.199 (1− sin(λ))

4
] 1

cos(λ)
;

(21b)

FIII =

√
tan(λ)

λ
; (21c)

where
λ =

πγ

4
√
R2 − η20

. (21d)

Therefore, the total strain density functions are

KI =

(
q1
πR2

F1 +
4q4η0
πR4

F1 +
4q5
√
R2 − η20
πR4

F2

)
√
πγ;

(22)

KIII =

(
2T
√
R2 − x20
πR4

)
√
πγFIII. (23)

After calculating the local flexibility of the cracked rotor, the
local stiffness of the system can easily be calculated as

[K]l = [c]−1l ; (24)

and the global stiffness matrix in the inertia coordinate system
is

[K]g = [H]−1[K]l[H]; (25)

where

[H] =


cos(Φ) sin(Φ) 0 0
− sin(Φ) cos(Φ) 0 0

0 0 1 0
0 0 0 1

 , Φ = Ωt+ α. (26)

4. CONSTANT KI CONTOURS OVER THE
CRACK SURFACE

In order to use the CCLP model, the value of stress inten-
sity factor in the first mode (KI) is evaluated over the crack
tip.13 The change in the sign ofKI shows the position of CCLP,
which is assumed to be perpendicular to the crack tip. There-
fore, CCLP separates the crack area into two parts: open and
closed. In this paper, it is shown that the line that separates the
crack surfaces is not perpendicular to the crack tip. A meshed
example that has been used here for drawing constant KI con-
tours is shown in Fig. 6. According to Eq. (22), it is obvious
that the value of KI is dependent on the values of q1, q4, and
q5. Therefore, in order to draw the contours, one is required
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Figure 7. Contours over the crack surface for (a) 0o, (b) 50o, (c) 100o, (d) 150o, (e) 180o, (f) 250o, (g) 300o, and (h) 360o.
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Figure 8. Open and closed areas in different angular positions.14

Figure 9. Evolution of contact area between the crack surfaces for a transverse
crack under bending.1

to solve the equation of motion. On the other hand, the deter-
mination of the solution needs the computation of q1, q4, and
q5. In fact, drawing the constantKI is an interdependent proce-
dure. This procedure is explained here. Using the Runge-Kutta
numerical method, the equations of motion are solved for ∆t
time intervals, which is related to the time that is needed for
one degree rotation of the rotor. Therefore, the values of forces
on the crack surface are known. So KI is a function of η and γ
which are the distances from the vertical axis (∆1) and crack
depth line (∆2), respectively (see Fig. 6).

Suppose that in the initial situation the crack is closed due
to the weight of the rotor; so in t = 0, the stiffness of the sys-
tem is known, and thus the solving of the equations of motion
is possible. It should be noted that, in general, the stiffness of
a cracked rotor system with a closed crack is not equal to the
stiffness of an uncracked rotor. Figure 7 shows the constantKI
contours over the crack surface for 0o, 50o, 100o, 150o, 180o,
250o, 300o, and 360o. Figure 2(b) shows the length of the crack
depth line. According to this figure, two crack surfaces coin-
cide with each other at the zero rotation angle. In other words,
the crack is closed, and therefore all contours have negative
values, which show that the two crack surfaces are in compres-
sion. Due to an increase in the value of the rotation angle, the
crack opens gradually. Therefore, the values on some contours
are positive while the others are negative. As one can see, the
contour with zero value separates the open and closed parts on
the crack surface. At the 90o rotation angle (which is not pre-
sented here in Fig. 7), the open and closed parts of the crack
separate from each other with a straight line that is perpendic-

ular to the crack tip. In a similar way, due to the increase in the
value of the rotation angle, the contour with zero value travels
to the left side of the crack surface. So at the 180o rotation
angle, all the contours have positive values (which means that
the crack is fully open). By increasing the value of the rotation
angle further than 180o, contours with zero value travel from
the right side to the left side of the crack surface. Here, the
contours that are situated on the right side of the zero contour
have a negative sign, and the contours that are situated in the
left side of the zero contour have a positive sign. This means
that the right side of the crack is closing while the left side of
it is opening. At the 360o rotation angle, the whole crack sur-
face is closed, similar to the zero angle. Figure 7 shows that
the separation boundary is not always a straight line, while this
boundary in the CCLP model has been considered as a straight
line.13 Also, it is obvious that this boundary is not perpendic-
ular to the crack tip as has been assumed for the CCLP model.
Bachschmid et al. investigated the breathing phenomenon in
detail using 3D nonlinear FEM.14 The open and closed parts of
the crack surface during the rotation of the rotor are presented
in their work (Fig. 8). According to this figure, the boundary
between the open and closed parts of the crack surface is not a
straight line. Furthermore, this boundary is not perpendicular
to the crack tip. One can therefore claim that these two results
are in good agreement to those presented in this section. Fig-
ure 9 shows the results that are presented by Georgantzinos and
Anifantis, which is evaluated due to bending moments only.1

It is obvious that the results presented in Fig. 9 are not the
same as those are obtained in this paper. However, the overall
schematic of the results are in good agreement with each other.

5. ICCLP MODEL

As mentioned in the previous section, the contour with zero
value is the separation curve that separates the open and closed
surfaces of the breathing crack from each other. Therefore, the
introduced model can be called crack closure curve position
(CCCP) (Fig. 10).

According to Fig. 10, the integration in Eq. (12) should be
calculated over the ACBD area. Since the determination of the
ACBD curve—from every degree of rotation—is almost im-
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Figure 10. Difference in the location of CCCP, CCLP, and ICCLP.

possible, the curve ACB is approximated by the AB line. This
means that the integration in Eq. (12) should be calculated over
the ABD area. Due to this approximation, a new breathing
model is introduced and is called the ICCLP. Figure 10 shows
the position of CCCP and ICCLP. Figure 11 shows the vari-
ations of the elements of the [∆cij ] matrix for a crack depth
a = D/3 and D = 9.5 mm.

In Fig. 11, the dashed lines express the ICCLP model, and
the continuous lines express the CCLP model. It should be
noted that the horizontal axis shows the variations of the posi-
tion of point A, or the CCLP (Fig. 10). According to Fig. 11,
the values of compliance, which are calculated with the IC-
CLP model, are different from those calculated with the CCLP
model.

As it is shown in Fig. 12, for CCLPs less than 90o, the
amount of the open area of the crack that is bounded by the IC-
CLP model is less than that bound by the CCLP model. There-
fore, compliances that are calculated with the CCLP model are
greater than those calculated with the ICCLP model. Also,
according to Fig. 12, it is obvious that for CCLPs between
90o and 180o, the values of compliance for the ICCLP model
are greater than the values of compliance calculated with the
CCLP model. For CCLPs between 180o and 270o, the values
of compliance that are calculated with the ICCLP model are
greater than those calculated with the CCLP model. However,
for CCLPs between 270o and 360o, it is the reverse. It should
be noted that Fig. 11 shows that the use of the ICCLP or CCLP
models does not change the value of some of the compliance
elements, such as c(1, 3), c(2, 3), and c(3, 4). According to
Eq. (22), it is obvious that T does not contribute in KI, so the
value of c(3, 3) is not sensitive to the position of point A; there-
fore, the value of c(3, 3) for CCLP and ICCLP models is the
same. Similarly, the values of c(1, 3), c(2, 3), and c(3, 4) are
equal to zero for both CCLP and ICCLP models. However, it
should be mentioned that KIII is not zero for c(3, 3), while for
c(1, 3), c(2, 3), and c(3, 4) it is zero.

6. NUMERICAL SIMULATION

The parameters that are needed for solving the equations of
motion are summarised in Table 1.

A program has been written in the MATLAB R© environment
to estimate the response of a transverse cracked rotor using the
ICCLP model for crack breathing. The solution process for us-
ing the model mentioned is presented in Fig. 13. According to
this flowchart, the initial displacement is assumed to be equal
to the static deflection of the uncracked rotor and the initial

Table 1. Characteristics of the studied rotor system.

Speed of revolution Ω = 500 rpm
Torsional excitation freq. ωT = 0.6Ω = 300 rpm
External torsional excitation MT = sin(ωT t)
Transverse damp coefficient c = 41.65 kg/s
Torsional damp coefficient cT = 0.0091 kgm2/s
Longitudinal damp coefficient cu = 146.2034 kg/s
Modulus of elasticity E = 210 GPa
Disk mass m = 0.595 kg
Shaft length l = 0.26 m
Shaft diameter d = 9.5 mm
Disk diameter dp = 76 mm
Initial phase angle ϕ = π/6 rad
Poisson’s ratio ν = 0.3
Eccentricity e = 0.1643 mm

stiffness values correspond to that of the cracked rotor. Rota-
tional speed (Ω) and tmax, corresponding to total time of solu-
tion, are known. Knowing the shaft rotational speed, the time
for one degree rotation can be calculated. Using the procedure
mentioned (Fig. 13), the program evaluates the forces that act
on the crack surfaces. Thus, by using these forces, stress in-
tensity factors (SIFs) are evaluated at points along the crack.
Changes in the sign of the SIF over the crack tip determines
the position of point A.

Elements of the stiffness matrix for the CCLP model can
be evaluated using this point. Also, the position of point B is
identified using the zero contour of KI over the crack surface,
and therefore, the stiffness of the system that is calculated for
the CCLP model is corrected for the ICCLP model. The equa-
tion of motion is solved for the ∆t time interval by using this
stiffness matrix, which is assumed to be constant for one de-
gree of rotation. For the next step, this time increment will in-
crease by ∆t, and then the forces that act on the crack will be
evaluated. The equations of motion will be calculated for the
present step using these forces. This iterative procedure will
be repeated until the total time (“t”) is greater than or equal to
tmax. There are two points that should be mentioned about the
proposed algorithm: the tmax parameter should be adopted in
such a way that guarantees the steady state response of the sys-
tem; the second point concerns the selection of the time step
in the Runge-Kutta numerical method, which should be set in
small increments. The small time steps guarantee insignificant
changes in the response of the system. In Fig. 13, the steps that
are embedded in the program for the ICCLP method are deter-
mined by dashed lines. In fact, if this part is removed from the
flowchart, the remaining algorithm can be used for the CCLP
method. As previously mentioned, in order to determine the
position of point B, the contours of KI should be calculated
for the crack surface. It is obvious that the calculation of these
contours is a time consuming procedure, particularly due to the
fact that it should be carried out for every rotation angle. This
is why the time required for the ICCLP model is greater than
that is for the CCLP model.

Figure 14 shows the non-dimensional position of points A
and B (Fig. 10) versus the rotor rotation angle under steady
state conditions. According to Fig. 14, for rotation angles of
less than 90o (and also between 180o and 270o), the position
of point B is always on the right side of point A, which indi-
cates that the separation line is not perpendicular to the crack
tip. However, for rotation angles between 90o and 180o (and
between 270o and 360o), the position of point B is always on
the left side of the position of point A. For angles equal to 0o,
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Figure 11. Variations of the elements of the [∆cij ] matrix for a crack depth a = D/3 and D = 9.5 mm; continuous line: CCLP model; dashed line: ICCLP.
(a) c(1, 1), (b) c(2, 2), (c) c(3, 3), (d) c(4, 4), (e) c(1, 2), (f) c(1, 3), (g) c(1, 4), (h) c(2, 3), (i) c(2, 4), and (j) c(3, 4).
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Figure 11. (cont.) Variations of the elements of the [∆cij ] matrix for a crack depth a = D/3 and D = 9.5 mm; continuous line: CCLP model; dashed line:
ICCLP. (a) c(1, 1), (b) c(2, 2), (c) c(3, 3), (d) c(4, 4), (e) c(1, 2), (f) c(1, 3), (g) c(1, 4), (h) c(2, 3), (i) c(2, 4), and (j) c(3, 4).

Figure 12. Comparison between ICCLP and CCLP from Darpe et al.13

90o, 180o, 270o, and 360o, points A and B coincide with each
other. This is why the values of the crack compliance matrix
for these angles are the same for the models of CCLP and IC-
CLP. However, for angles of 90o and 180o, the open and closed
parts of the crack area are equal to each other.

Figure 15 shows the time domain steady state responses for
the cracked shaft with a transverse crack for four directions
(i.e. two transverse, one torsional, and one longitudinal). In
Fig. 15, the horizontal axis is the time (in seconds) and the
vertical axis is the magnitude of the responses (in metres for

transverse and longitudinal responses and in radians for the tor-
sional response). These responses are evaluated for a cracked
Jeffcott rotor (α = a/D). Furthermore, a continuous line iden-
tifies the CCLP model and a dashed line identifies the ICCLP
model.

According to Fig. 15, in general, the time responses for the
two models are not the same. In other words, except for the
torsional response, the other responses in transverse and longi-
tudinal directions are different. The response in the torsional
direction is the same for two models, and this can be explained

International Journal of Acoustics and Vibration, Vol. 20, No. 3, 2015 131



R. Ramezanpour, et al.: IMPROVED CRACK CLOSURE LINE POSITION: AN IMPROVED MODEL FOR CRACK BREATHING PHENOMENON

Figure 15. Time domain steady state responses for the cracked shaft with a transverse crack. Continuous line: CCLP model; dashed line: ICCLP model.
(a) Vertical displacement, (b) Horizontal displacement, (c) Torsional displacement, and (d) Longitudinal displacement.

by using Fig. 11. According to this figure, the elements that
are related to torsional direction—i.e. c(1, 3), c(2, 3), c(3, 3),
and c(3, 4)—are zero and are thus the same for the two mod-
els. Therefore, the two models show the same behaviour, as
can be seen in Fig. 15(c). Figure 16 displays a comparison be-
tween the amplitude-frequency spectrums of the steady state
responses of the shaft with respect to the two crack breath-
ing models (i.e. CCLP and ICCLP). In this figure, the hori-
zontal axis is the frequency (revolutions per minute), and the
vertical axis is the log scale of amplitude (metres or radians).
According to this figure, the frequency components of the re-
sponses are the same for the CCLP and ICCLP models. Fur-
thermore, there is no difference between the torsional spec-
trums for CCLP and ICCLP models. In fact, they are coinci-
dent with each other. However there is a slight difference in
the amplitude of the spectrums of the responses (except for the
torsional response). It can be seen that by increasing the fre-
quency, the difference between the amplitudes of the responses
calculated by the two models also increases. Figure 17 identi-
fies the reason for this. According to this figure, the difference
between the amplitudes of the frequency components is ob-
servable, especially at high frequencies. In summary, the use
of the two models for crack breathing discussed has no effect
on the frequency components of the responses, but changes in
the amplitude of the spectrums is apparent in some high fre-
quencies.

7. CONCLUSIONS

In this paper, the dynamic behaviour of a cracked Jeffcott
rotor has been investigated. The main scope of this work is

to modify the existing breathing model. Using several con-
tour plots over the crack surface, it has been shown that CCLP,
which separates the open and closed parts of a breathing crack,
cannot be considered perpendicular to the crack tip. A new
breathing model—ICCLP—was introduced and showed that
the results obtained are in good agreement with those proposed
in the literature. The effects of ICCLP on the coefficients of the
local flexibility matrix have also been investigated.

It is concluded that the value of the element of the crack
compliance matrix is not equal for CCLP and ICCLP; it de-
pends on the value of the crack rotation angle when the rotor
in under steady state conditions.

The time response and frequency response of the system
have been compared. It is shown that there are differences
between the responses obtained from the two models. It was
observed that when the value of the frequency increases, the
difference between the amplitudes of the responses computed
from the two models also increases.
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The generation of acoustic disturbances in supersonic laminar cavity flows is investigated by large-eddy simula-
tions of supersonic laminar flow (M = 1.2, 2.0, and 3.0) past a rectangular cavity with a length-to-depth ratio of 2.
Results suggest that well-originated large-scale vortical structures with strong spanwise coherence are present in
the shear layer. Compressibility effects have significant impacts on the shear-layer development and the fluctuation
properties. The dominant mechanism for the acoustic radiation in supersonic laminar cavity flows is shown to be
associated with the successive passage of large-scale vortices over the cavity trailing edge. It is found that Mach
waves radiated from the cavity shear layer may have significant contributions for the noiseradiation in terms of
enhancing the strength of the feedback compression waves.

1. INTRODUCTION

Supersonic flow past cavities has been studied for many
years, both in practical and academic interest. In general, when
the length-to-depth ratio (L/D) of a rectangular cavity is less
than ten, the shear layer reattaches on the cavity aft wall. This
type of cavity flow is termed open cavity flow.1, 2 An unde-
sirable problem in open cavity flow is the existence of intense
resonant noise. For instance, a resonance with a sound pres-
sure level of 160 decibels is observed in a cavity flow at Mach
number 2.0.3 The resonant noise may harm the nearby equip-
ment and the environment, for example, by causing structural
vibrations and fatigue, adverse effects on store separation, and
undesirable noise.

Reviews of cavity flows were conducted by Grace, Colonius,
Rockwell and Naudascher,4 and Lawson and Barakos.5 The
driving mechanism of cavity oscillations is widely regarded
as a feedback mechanism between shear-layer instabilities and
acoustic disturbances. It was first proposed by Powell for the
study of edge tones.6 In 1964, Rossiter developed a semi-
empirical formula to predict the resonance frequencies based
on his extensive experimental data with freestream Mach num-
ber within the range of 0.5 and 1.2.7 Heller et al. improved
Rossiters formula by introducing a temperature recover fac-
tor.8 A typical feedback cycle consists of four key procedures:
(1) the shear layer near the leading edge of the cavity is ex-
cited by acoustic disturbances, which leads to the generation
of discrete vortices; (2) the vortices grow large as they convect
downstream and eventually impact on the cavity trailing edge;
(3) feedback compression waves (upstream-traveling) are ra-
diated near the cavity trailing edge; and (4) the feedback com-
pression waves propagate upstream and excite the shear layer
again. Then, the feedback cycle is closed.

Despite the fact that the feedback mechanism itself has been
well established and accepted, the mechanism driving the self-
sustained oscillations in supersonic cavity flows is still not pre-

cisely resolved. One of the most important factors is the gener-
ation of acoustic disturbances near the downstream cavity lip.
Rossiter observed that discrete vortices are shed periodically
from the leading edge of the cavity and convect downstream
until they encounter the downstream cavity lip.7 He assumed
that the passage of vortices over the trailing edge is responsi-
ble for the acoustic radiation. Heller and Bliss emphasized that
discrete vortices were not usually observed in their experiment
with a Mach number varying from 0.8 to 2.0.9 They stated that
the generation of acoustic disturbances is caused by the peri-
odic mass addition and removal near the cavity trailing edge.
Zhang reported that the compression wave emission is related
to the shear layer deflection, which, in turn, is associated with
the vortex production and convection.10 By description of an
oscillation cycle, Tam et al. stated that the upstream-travelling
compression wave is generated by a pressure wave reflection at
the bottom aft wall.11 An experimental study by Schmit et al.
showed that the entrained waves are the start of the feedback
loop process rather than the shear layer impingement on the
downstream cavity wall, as many references have indicated.12

Supersonic laminar flow past cavities usually exists over the
orbiter launch/reentry trajectories; however, limited investiga-
tions have been conducted. Krishnamurty experimentally ob-
served that the laminar cavity flow produced louder resonant
noise than that of turbulent cavity flow.13 Heller et al. reported
that no resonance was observed in the turbulent cavity flow at
Ma3.0; however, a strong resonant peak occurred in the lam-
inar cavity flow.14 Based on large-eddy simulations of high
subsonic laminar cavity flow, Gloerfelt et al. stated that the
strong unsteadiness of the internal recirculation flow can be
associated with the possible vortex coalescence.15 The phys-
ical mechanisms underlying the self-sustained oscillations in
supersonic laminar cavity flows are in need of more study, es-
pecially on the generation of acoustic disturbances.

This paper aims to address the generation mechanism of
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Figure 1. Computational grids (shown every other five points).

acoustic disturbances in supersonic laminar cavity flows. An
introduction of numerical methods is given in Section 2. In
Section 3, we describe the features of flow fields with an in-
crease of the freestream Mach number. In Section 4, the gener-
ation of acoustic disturbance in the vicinity of the downstream
cavity lip is investigated. This paper will be concluded in Sec-
tion 5.

2. NUMERICAL METHODS

2.1. Flow Conditions
Supersonic flows past a cavity of L/D = 2, W/D = 0.6

were numerically studied, where L is the length of the cavity,
W is the width of the cavity, and D was the depth of the cav-
ity. Three simulations were conducted with freestream Mach
numbers of 1.2, 2.0, and 3.0. The Reynolds number based on
the cavity depth was set to 105. The reference velocity was
set as the sound speed. The boundary layer thickness δ0 was
0.075D.

2.2. Numerical Methods
The governing equations were three-dimensional compress-

ible Navier-Strokes equations in conservative form. Im-
plicit large-eddy simulations (ILES) were conducted, which
rely on numerical dissipation to dissipate high-frequency tur-
bulent energy. In order to meet the low-dispersive and
low-dissipative requirements of computational aeroacoustics
(CAA), a modified seventh-order weighted compact non-
linear scheme (WCNS) was employed for spatial deriva-
tives.16–18 The numerical fluxes were evaluated by the sim-
ple high-resolution upwind scheme (SHUS) which was a
family of advection-upstream-splitting-method (AUSM) type
schemes.19 Viscous terms were evaluated by a sixth-order cen-
tral difference scheme. Alternate directional implicit symmet-
ric Gauss-Seidel (ADI-SGS) scheme was applied for time inte-
gration.20 A second-order temporal accuracy is obtained using
three Newton-like sub-iterations. The CFL number was equal
to 1.2.

The computational domain consisted of inside cavity region
and upper cavity region, as shown in Fig. 1. Structured grids
were adopted, and the total grid points were about 7.0 mil-
lion. The grid had 200×169×80 points inside the cavity and
360×150×80 points in the region above the cavity. The ori-
gin of the coordinate system was located at the middle of the
leading-edge lip. The length from the inflow boundary to the

Figure 2. Distributions of time-averaged streamwise velocities.

Figure 3. Distributions of root-mean-square of pressure fluctuations along the
internal cavity walls.

leading edge x1 was equal to 1.5D, and a length of x2 = 4D
was extended from the trailing edge to the outflow boundary.
A length of 4D was extended in the vertical direction, and no
buffer region was set because of supersonic freestream. The
grid spacing was refined in the near-wall regions. The min-
imum and maximum grid spacing was 0.0005D and 0.012D,
respectively. The Blasius profile was imposed for the initial in-
flow. No-slip adiabatic wall boundary condition is imposed for
all wall boundaries. Zero-gradient pressure condition was em-
ployed at the outflow and upper boundary. Periodic boundary
condition was given in the spanwise direction.

2.3. Validations
The baseline grid was refined by a factor of 1.333 in each

direction for a validation of grid convergence. The fine grid
contains 18.3 million grid points in total. Flow conditions were
the same as those in the Ma2.0 case. Figure 2 shows the dis-
tributions of the time-averaged streamwise velocities. It indi-
cates that the simulation with the baseline grid had almost the
same velocity profiles as that with the fine grid. Figure 3 shows
the distributions of root-mean-square of pressure fluctuations
prms along the internal cavity walls. Apparently, a fairly good
agreement is calculated between the two simulations.

Figure 4 shows the pressure spectra at the mid-point of
the cavity front wall (P1). The sound pressure level (SPL)
was defined by SPL = 20log10(p/pref ), where pref =
2.0 × 10−5[Pa] × p∞. The standard Strouhal number St
was defined by St = fL/U∞, where f is frequency and U∞
is freestream velocity. The resonance frequencies observed
with the baseline grid and fine grid agree well with each other
and also match with the experimental study of Zhuang et al.
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Figure 4. Pressure spectra at the mid-point of the cavity front wall.

(M∞ = 2.0, ReD = 5.4×105,turbulent inflow).21 The differ-
ences in the SPL amplitude do not influence our conclusions
since the objective of this paper is to address the fundamental
physics rather than to accurately predict the cavity tones. The
following simulations are conducted with the baseline grid.

3. FLOW FIELDS

Snapshots of instantaneous flow fields are shown in Fig. 5.
Large-scale vortical structures with strong spanwise coherence
are present in the cavity shear layer. They convect downstream
with their own trajectories and speeds. Plenty of small-scale
vortical structures are observed in the shear-layer region as
well as the internal recirculation region. It shows a good tur-
bulence resolution with the high-order numerical schemes. It
is noted that, in our preliminary two-dimensional simulations,
the cavity shear layer consisted of much larger size of vorti-
cal structures, and behaves more violently than that in these
three-dimensional simulations.

Figure 6 shows the variation of vorticity thickness between
cavity lips, and its slope was used to measure the shear-layer
growth rate. Dashed lines are used to indicate linear shear-
layer growth rates. Basically, the growth of the cavity shear
layer is similar to that of free shear layers. After the upstream
boundary layer separated from the leading edge, the cavity
shear layer started to grow due to the Kelvin-Helmholtz in-
stabilities. In this region, the cavity shear layer was dominated
by a transition procedure from laminar inflow to turbulence,
and a slow shear-layer growth rate appeared near the cavity
leading edge which is quite different from that in turbulent
cavities.22 This transition procedure was impacted by com-
pressibility effects, that is, higher-speed inflow corresponds to
a longer distance to complete this transition procedure. In the
Ma3.0 case, the shear-layer growth rate remains at low values
across the cavity lips, and it seems that the transition proce-
dure does not complete within the cavity length. However, in
the Ma1.2 and Ma2.0 cases, the shear-layer growth rate re-
sumed a standard value after the transition procedure, indi-
cating that the cavity shear layer grows linearly and obeys a
self-similarity rule which can always be observed in free shear
layers. Three-dimensional characteristics are dominant in this
region. Near the cavity trailing edge, the shear-layer growth
rate drops quickly because of the distortion of the mean veloc-
ity.

Two differences may exist between the cavity shear layer

(a) Ma1.2

(b) Ma2.0

(c) Ma3.0

Figure 5. Snapshots of instantaneous flow-fields. Iso-surface of the second
invariant of velocity gradient tensors, Q2nd = 50(a∞/D)2; colored with
streamwise velocity, −0.5 < u/u∞ < 1.

and free shear layers: (1) the cavity shear layer is subjected to
strong acoustic disturbances, which lead to strong spanwise co-
herent vortices near the leading edge. However, the free shear
layers at supersonic speed are generally dominated by oblique
modes, (2) the interactions between the cavity shear layer and
recirculation flows cannot be omitted in the supersonic cavity
flows since high-speed recirculation flow exists inside the cav-
ity.23

In order to assess the fluctuation properties, contours of tur-
bulence kinetic energy (TKE) were plotted in Fig. 7. Great
velocity distortions and deformations are generated near the
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Figure 6. Variations of vorticity shear-layer thickness.

cavity trailing edge due to the impingement of the shear layer,
corresponding high values of TKE near the cavity trailing
edge. The distribution of TKE in the Ma1.2 case has broad
distributions in the vertical direction, while the fluctuations in
the Ma3.0 case are mostly constrained in a thin layer. This re-
sult may be associated with the compressibility effects of high-
speed flows.

4. GENERATION OF ACOUSTIC
DISTURBANCES

In our previous work, the mechanism driving supersonic
laminar cavity oscillations has been verified to be a feed-
back mechanism between discrete vortices and acoustic dis-
turbances.24 The acoustic disturbances in terms of feedback
(upstream-travelling) compression waves were radiated from
the region near the cavity trailing edge. But their generation
mechanism was discussed less. In the present study, we at-
tempt to demonstrate that the generation of acoustic distur-
bances is highly associated with two mechanisms: the suc-
cessive passage of large-scale vortices over the trailing edge
and the reflection of Mach waves. A schematic of large-scale
vortices and Mach waves is plotted in Fig. 8. In the Ma2.0
and Ma3.0 cases, the large-scale vortices convect at supersonic
speed, and intense Mach waves propagate with the large-scale
vortices; in the Ma1.2 case, no Mach wave is radiated from the
cavity shear layer since the convection velocity of large-scale
vortices is at subsonic speed.24

4.1. The Passage of Large-scale Vortices
over the Trailing Edge

Rossiter assumed that the passage of large-scale vortices
over the cavity trailing edge was responsible for the acous-
tic radiation, but no quantitative discussion was given.7 Here,
we attempt to provide more quantitative evidence by use of a
phase-averaging analysis.25

Figure 9 shows the convection trajectories of vortex cores
from the leading edge to the trailing edge of the cavity. The
vortex cores are marked by detecting the maximum value of
Q criterionin the phase-averaged flow fields.24 The upstream
boundary-layer rolls up into two well-originated vortices (S1

and S2) in phases of each acoustic excitation. Vortex pairing
occurs in the Ma1.2 case. Based on our animations and vortex
trajectories in x− y axes, the vortex S1 goes inside the cavity
and is not critical for the generation of acoustic disturbances.

(a) Ma1.2

(b) Ma2.0

(c) Ma3.0

Figure 7. Contours of turbulence kinetic energy (0 < TKE < 0.5∞a2∞).

Therefore, we mainly focus on the impinging and passage of
vortex S2. A quadratic polynomial is used to interpolate the
convection trajectories of vortex S2. It showed that the vortex
S2 impinges on the trailing edge at a phase angle of approx-
imately −2/15π, −2/15π and −1/30π in the Ma1.2, Ma2.0
and Ma3.0 case, respectively. The vortex S1 in the Ma3.0 case
is not shown since it is somehow too flat to be detected. Fig-
ure 10 shows pressure oscillations at P2 (depicted in Fig. 8).
The P2 is selected among several points close to the trailing-
edge lip. All the points have similar variation tendencies but
are different in the amplitude of the pressure.

In Fig. 9 and 10 the lowest pressure values occur when the
cores of the vortex S2 impinges on the cavity trailing-edge lip,
and the lowest pressure values are smaller than the freestream
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Figure 8. Schematic of large-scale vortices and Mach waves.

pressure. It indicates that the pressure decreasing is related
to the vortices impingement. After the core of the vortex S2

passes over the cavity, the pressure value begins to increase.
The feedback compression wave is generated when the large-
scale vortices passes over the trailing edge, rather than when
they impinge on the trailing edge.

A more physical explanation is given here. Before the vor-
tices impingement low pressure values are associated with the
cores of the vortices.26, 27 The pressure gradient near the vor-
tices cores is balanced with the centrifugal force of large-scale
vortices. When the large-scale vortices impinge on the trailing
edge, large velocity distortions and deformations are produced.
The balance between the pressure gradient and the centrifu-
gal force of vortices is broken up. The low pressure values
are consequently no longer associated with the large-scale vor-
tices and begin to spread near the aft wall. After the vortices
impingement the pressure begins to increase since a stagnation
region exists in the adjacent point of two neighbor vortices. In
summary, the successive passage of large-scale vortices over
the cavity trailing edge, which are associated with periodic vor-
ticity productions and pressure pulses near the cavity trailing-
edge lip, results in the generation of acoustic disturbances rep-
resented by internal upstream-traveling compression waves.

4.2. Reflection of Mach Waves
Figures 11 and 12 are plotted to reveal that the reflection of

Mach waves occurs in the Ma2.0 and Ma3.0 cases. Phases-
averaged flow fields are used. The background contours are
the divergence of velocity (−2 < divu < −0.1), and black
contour lines represent the second-order invariant of velocity
gradient tensors (2(a∞/D)2 < Q2nd < 20(a∞/D)2). Fol-
lowing the definition in Li et al., the Mach wave and feedback
(upstream-travelling) compression wave are named as III and
IV, respectively.24 As shown in Fig. 11(a), a Mach wave III
propagates downstream associated with the vortex S2. As time
passes, the Mach wave III encounters the cavity aft wall, and
a small part of it is reflected off the aft wall, as illustrated in
Fig. 11(b). Point R is the reflection position. This reflection
procedure continues as long as the Mach wave travels down-
stream. In Fig. 11(c), an upstream-traveling feedback com-
pression wave IV is generated near the cavity trailing edge.
Figure 11(d) shows that a large part of the Mach wave III has
been reflected off the aft wall, and the feedback compression
wave IV is leaving the aft wall. Similar results are shown in
Fig.12 for the Ma3.0 case. This phenomenon is not observed
in the Ma1.2 case since no Mach wave is radiated.

Figure 13 shows the propagation of compression waves

(a) Ma1.2

(b) Ma2.0

(c) Ma3.0

Figure 9. Convection trajectories of vortices in streamwise direction.

through Line A (depicted in Fig. 8). The x-coordinates are the
streamwise distances, and the y-coordinates represent phase
angles. The contours in Fig. 13 are the variations of divu along
Line A. Roughly, the angle α and β can indicate the stream-
wise velocity of the Mach wave propagating toward the aft wall
and the feedback compression wave propagating against the aft
wall, respectively. Based on the x − t diagrams in Fig. 13(b)
and Fig. 13(c), it is indicates that the phase lag between the
Mach wave reaching the aft wall and the feedback compres-
sion wave leaving the aft wall are very small. It can be con-
cluded that the reflection of Mach wave is one important fac-
tor for the generation of acoustic disturbances in the Ma2.0
and Ma3.0 cases. However, it is not the only reason because
the feedback compression waves have higher strength than the
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(a) Ma1.2

(b) Ma2.0

(c) Ma3.0

Figure 10. Pressure oscillations at P2.

Mach waves, and no Mach wave is radiated in the Ma1.2 case
in which strong self-sustained oscillations are also exhibited.

It is difficult to distinguish the action caused by the pas-
sage of large-scale vortices and the reflection of Mach wave
in the Ma2.0 and Ma3.0 cases. In the Appendix, a two-
dimensional simulation of a laminar free shear layer subjected
to an artificial acoustic source is performed. Results suggest
that the successive passage of large-scale vortices over the tail-
ing edge is the dominant reason for the generation of acoustic
disturbances, but the Mach waves could significantly enhance
the strength of the acoustic disturbances and cavity instabili-
ties. In engineering and presumably in other fields, control-
ling the upstream laminar flow by facilitating shear-layer three-
dimensionality would be desirable in order to suppress the con-

tributions of Mach waves and reduce the pressure oscillations
inside the cavity.

5. CONCLUSIONS

Supersonic laminar flows (M = 1.2/2.0/3.0 and ReD =
105) past a rectangular cavity (L/D = 2) are studied with
high-resolution implicit large-eddy simulations. Results show
that a transition procedure from laminar inflow to turbulence
exists near the leading edge of the cavity before the shear layer
resumes a linear growth rate. Compressibility effects have sig-
nificant impacts on the shear-layer development and fluctua-
tion properties. Two mechanisms are addressed for the gen-
eration of acoustic disturbances in supersonic laminar cavity
flows. First, the successive passage of large-scale vortices over
the cavity trailing edge, associated with periodical vorticity
productions and pressure pulses, is the dominant reason for
the acoustic radiation in the vicinity of the cavity trailing edge.
Secondly, Mach waves may be radiated from the cavity shear
layer once the large-scale vortices convect at supersonic speed
with respect to the sound speed of surrounding streams. The
reflection of Mach waves could take place at the cavity aft wall
and have large contributions for the acoustic radiation in terms
of enhancing the strength of the feedback compression waves.
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APPENDIX

A two-dimensional simulation of laminar free shear layer
subjected to an artificial acoustic source was conducted. The
aft wall and bottom wall of the cavity were removed. The
flow conditions were the same as the Ma2.0 case. The arti-
ficial acoustic source locateed at the same position of the cav-
ity’s right bottom corner. Its definition follows Eqs. (16)-(18)
described in Lele’s work.26 The non-dimensional amplitude
A/∞ are 3.0×10-5, and the frequency f is the same as the
dominant frequency for the cavity flow.

Figure A1 shows a scenario of phase-averaged flow-fields.
The background contours represent the divergence of veloc-
ity, and black contour lines represent the second-order invari-
ant of velocitygradient tensors. Wave IV represents the com-
pression waves radiated from the artificial acoustic source; III
represents the Mach waves; Vf represents the front-wall reflec-
tion waves. Similar to the cavity flow, two vortices S1 and S2

roll up from the leading edge periodically in the phase of each
acoustic excitation caused by the compression waves radiated
from the artificial acoustic source. The scales of vortices are
amplified by Kelvin-Helmholtz instability. Vortex pairing oc-
curs downstream.

The Mach waves radiated from the shear layer are just be-
neath the large-scale vortices. Assuming that a cavity aft wall
is located downstream, when the large-scale vortical structures
impinge on the cavity aft wall, it is surely followed by an action
of the reflection of Mach waves. Since the radiation of Mach
waves is essentially caused by the convection of large-scale
vortices, it is desirable to state that the dominant reason for the
generation of acoustic disturbances in supersonic laminar cav-
ity flows is the successive passage of large-scale vortices over
the trailing edge.

142 International Journal of Acoustics and Vibration, Vol. 20, No. 3, 2015



Meshless Numerical Solution of Boundary Integral
Equations based on Non Uniform Rational
Basis-Splines
Vincenzo Marchese and Umberto Iemma
Department of Engineering, Roma Tre University, via Vito Volterra, 62, Roma, Italy

(Received 15 August 2013; accepted 11 December 2014

The paper deals with the use of Non Uniform Rational Basis-Splines (NURBS) for the global representation of
domain geometry and unknown functions aimed at the numerical solution of Boundary Integral Equations (BIE).
The use of a global NURBS function basis yields a meshless method which does not need the partition of the
boundary into elements. The level of the accuracy in the representation of dependent and independent variables
can be changed in each simulation, according to the problem requirements, thanks to the recursive definition of
NURBS. The solving system of equations is assembled by means of the collocation of the integral equation onto
the Greville abscissae in the NURBS parametric space. The unknowns are the locations of the control points in
the vector space the unknown function belongs to. Preliminary numerical results have been obtained in potential
aerodynamics and acoustic scattering. The numerical solution reveals a remarkable level of accuracy in all the test
cases analyzed with a convergence rate always higher than the order of the NURBS adopted.

1. INTRODUCTION

In many fields of application, the Boundary Integral Equa-
tions (BIE) approach is a well established technique to address
the solution of Boundary Value Problems (BVP). Using the
BIE, it is possible to represent the unknown function at any
location in the domain as a function of its Cauchy data set.
This approach is more recently considered as standard in in-
compressible and compressible potential aerodynamics, struc-
tural elasticity, heat conduction, electromagnetism, acoustics,
and aeroacoustics. The numerical solution typically relies on
the Boundary Element Method (BEM), in all its variants and
declinations. In classic BEM the boundary of the domain is
partitioned into finite elements, where the dependent and in-
dependent variables are approximated using suitable local ba-
sis functions. The greatest advantage of the numerical meth-
ods based on BIE resides in the reduction of the computa-
tional burden required for the numerical solution, due to the re-
duced dimensionality of the problem. Although this approach
is usually convenient with respect to the so-called field meth-
ods, such as Finite Volumes Method (FV), Finite Difference
Method (FDM), or Finite Element Method (FEM), in some
specific application the number of boundary elements required
to capture a specific feature of the phenomenon may become
extremely high. This is the case, for example, for acoustic
propagation and scattering problems, where the wave length
of the perturbation at high frequencies can be orders of mag-
nitude smaller than the characteristic length of the domain of
interest, thus requiring a huge amount of boundary panels to
correctly reproduce the scattering and interference effects. One
of the possible approaches to mitigate this difficulty is improv-
ing the accuracy of the local representation of the variables
using higher-order functions. This allows for the reduction of
the number of elements needed to achieve the desired level of

accuracy. In this respect, the literature available is very exten-
sive, and an in-depth review is beyond the scope of the paper.
Among others, it is worth mentioning the use of third order
polynomials based on Overhauser1, 2 or Hermite3, 4 elements,
recently coupled with Coons patches.5 The typical limitation
of all the approaches based on the local representation of the
variables is the restriction of the resulting numerical formula-
tion to a single order of accuracy, fixed by the order of the poly-
nomial shape functions used. The possibility to overcome this
limitation has already been investigated within the context of
the finite element method6 using an approach based on general-
ized Hermite polynomials. However, a similar attempt for the
solution of BIE is still missing. This goal has been the driving
motivation in the development of the method presented here.
Indeed, using a global representation of the variables based
on NURBS, the order of the basis functions can be improved
when needed by the specific application in discussion. This is
a consequence of the iterative definition of the NURBS, which
makes possible the increase of the NURBS degree simply by
changing an input parameter. The use of the NURBS for the
representation of curves and surfaces is a common technique
in the CAD community for the modeling of complex geome-
tries with strict requirements of smoothness and continuity be-
tween patches.7, 8 Their use in the numerical solution of BIE
is not new, although it is relatively recent. NURBS have been
used to develop boundary element solutions of integral equa-
tions in elastostatics,9 in radiation and diffraction problems,10

and in potential aerodynamics.11 As already mentioned, the
peculiarity of the present method is in the use of the NURBS
for the development of a global isogeometric approach aimed
at the meshless numerical solution of the BVP. The control
points used for the representation of the dependent variables
are obtained through the h-refinement of the optimal NURBS
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Figure 1. Function Ri,p(u) for ui = 0.5 and 0 ≤ p ≤ 5.

Figure 2. NURBS basis for p = 2.

representation of the geometry. The final system of equation is
obtained by means of a collocation method based on the use of
the Greville abscissae in the parametric space.

The paper is organized as follows: The global NURBS de-
composition of a generic BIE formulation is presented in sec-
tion 2, whereas the collocation method and the h-refinement
technique are outlined in section 3. Section 4 reports the re-
sults of preliminary numerical simulations, and includes the
analysis of the convergence of the solution as a function of the
number of control points used. Appendix A is dedicated to
some consideration about the integration strategy adopted to
handle the singularity of the kernels.

2. NURBS REPRESENTATION OF BIE

Consider a physical phenomenon governed by the Laplacian
of the function ϕ(x), for x ∈ Ω. The BIE formulation of such
a problem has the form

E(y)ϕ(y) =

∮
Γ

(
G
∂ϕ

∂n
− ∂G

∂n
ϕ

)
dΓ(x); (1)

where G(x,y) is the fundamental solution of the governing
partial differential equation, Γ is the boundary of the domain
Ω, x ∈ Γ, y ∈ Ω = Ω ∪ Γ, and ∂ϕ/∂n = ∇ϕ · n, being
n the unit normal to Γ pointing into Ω. The value of the do-
main function E(y) is 1, 1/2, 0 for y ∈ Ω, y ∈ Γ or y /∈ Ω,
respectively (see appendix A). When the Cauchy data of the
problem are known, Eq. 1 is an integral representation of ϕ(y)

for y ∈ Ω. On the other hand, when only part of the Cauchy
set is known from the boundary conditions, Eq. (1) can be used
as an integral equation for the unknown corresponding to the
missing part of the boundary data. If, for example, the differ-
ential problem exhibits Neumann boundary conditions, then
Eq. (1) can be written as

E(y)ϕ(y) =

∮
Γ

K(y,x) ϕ(x)dΓ(x) + b(y); (2)

which is a Fredholm integral equation of the second kind in the
unknown ϕ(x), with kernel K(y,x) = −∇G(y,x) · n, and
where

b(y) =

∮
Γ

G(y,x)
∂ϕ

∂n
dΓ(x) (3)

is known.12, 13 The BIE so obtained can be solved numerically
through the BEM, by partitioning the boundary Γ into M ele-
ments and introducing a local representation of the dependent
and independent variables using an appropriate function ba-
sis. In the present work, the numerical solution of Eq. (2) is
obtained using a global, isogeometric NURBS decomposition.
The general form of a NURBS curve is

f(u) =

∑N
i=1Ni,p(u)Wiqi∑N
i=1Ni,p(u)Wi

, u ∈ [0, 1]; (4)

where the rational basis functions of order p, Ni,p(u) are de-
fined in a recursive way as

Ni,p(u) =
u−ui

ui+p−ui
Ni,p−1(u)+

ui+p+1−u
ui+p+1−ui+1

Ni+1,p−1(u);

(5)
with

Ni,0(u) =

{
1 if ui ≤ u < ui+1

0 otherwise
. (6)

The points qi are called control points and the quantities Wi

are the weights of the NURBS. The set of abscissae ui needed
to fully define the basis functions forms the knot vector. If the
knot vector has p + 1 elements repeated at its beginning and
at its end, it is called an open knot vector. In general, for a
NURBS curve the following two properties hold:

1. if a knot ui is repeated k times, the continuity of the curve
at that point is Cp−k.

2. if the curve is C0 at a point, the control point belongs to
the curve.

As a consequence, for a given open knot vector the resulting
NURBS passes through the first and last control points. Equa-
tion (4) can be written as

f(u) =
N∑
i=1

Ri,p(u)qi, u ∈ [0, 1]; (7)
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with

Ri,p(u) =
Ni,p(u)Wi∑n
i=1Ni,p(u)Wi

. (8)

The function Ri,p(u) for ui = 0.5 and 0 ≤ p ≤ 5 is depicted
in Fig. 1, whereas Fig. 2 shows the complete basis in u ∈ [0, 1],
for p = 2.

On the basis of Eqs. (4) to (8) the NURBS representation of
ϕ has the form

ϕ(u) =
N∑
i=1

Ri,p(u)qi; (9)

with coefficients qi and basis functions as reported in Eq. (8).
Applying Eq. (9) to the RHS of Eq. (2), and limiting, for the
sake of simplicity, the notation to the two-dimensional case,
we obtain

E(y)ϕ(y) = b(y)−
N∑
i=1

qi

∮
Γ

∂G(u,y)

∂n
Ri,p(u)J(u)du;

(10)
where J(u) is the Jacobian of the transformation from the
physical space coordinate x to the NURBS parametric space
one u. It is worth noting that the integrals in Eq. (10) span the
whole boundary. Indeed, the use of the global NURBS rep-
resentation makes the concept of surface elements no longer
required for the numerical solution of Eq. (10) and thus the
partition of Γ is not strictly needed. On the other hand, the
integrals in Eq. (10) must be accurately evaluated and, unless
we have an analytical solution for them (and this could hap-
pen for very simple geometries and/or boundary conditions), a
suitable numerical integration strategy must be identified. To
this aim, a possible solution for complex geometries and/or
boundary conditions could be the partition of the boundary into
macro patches on which suitable quadrature formulas can be
easily applied. However, it is important to notice that this par-
titioning, if needed, would have nothing to do with the number
of unknowns of the solving linear system, but only with the
proper evaluation of the integrals in Eq. (10). In appendix A
the effects of the partition of Γ on the convergence of the inte-
grals in Eq. (10) is analyzed for two different geometries.

3. THE NUMERICAL SOLUTION

The numerical solution of Eq. (10) can be obtained using
the collocation method, with collocation points lying on the
boundary Γ. To this aim, it is necessary to identify a set of
collocation points yk ∈ Γ. In the present approach, this re-
quires the identification of a set of abscissae uk in the NURBS
parametric space corresponding to points on Γ in the physical
space through the relationship

y(uk) =
N∑
i=1

Ri,p(uk)ηi; (11)

where n is the number of the control points ηi used to build the
NURBS reproducing the geometry of Γ. To ensure that y(uk)

is located on the boundary, the abscissa uk must be chosen
according to the Greville distribution9, 14

u
′

k =
ui+1 + ui+2 + . . .+ ui+p

p
, i = 1, . . . , n− 1. (12)

Figure 3. NURBS Circle, (�) control points, (×) Greville’s abscissae in the
physical space, (◦) refined Greville’s abscissae in the physical space.

Figure 4. Velocity potential ϕ for a uniform flow U∞ in x-direction. (−)

Analytical solution, (�) BIE-NURBS, p = 3.

The abscissae u
′

k satisfying Eq. (12) correspond to points in the
physical space such that y(u

′
) ∈ Γ (see Fig. 3). A key aspect

in the numerical evaluation of the integrals in Eq. (10) is the
management of the singularities of the kernels arising from the
collocation of the observation point y on the boundary. In this
respect, the meshless approach presents a significant advantage
with respect to the classic BEM, as the integration is now ex-
tended to the whole boundary or, for complex geometries, to
a part of it significantly larger than a single boundary element.
As a consequence, the verification for singularity occurrence,
which is not a straightforward task with NURBS, is less criti-
cal, or even not required at all, thus simplifying the numerical
integration procedure. The asymptotic behavior of the integral
appearing in Eq. (2) is briefly explained in appendix A for the
sake of clarity and completeness of the paper. Once that the
location of the collocation points is fixed using the Greville ab-
scissae we can apply the same decomposition given in Eq. (9)
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to the left hand side of Eq. (10). For y ∈ Γ we obtain

1

2
Rq = b− Cq; (13)

where the elements of b and C have the form

bj =

∮
Γ

G(x,yj)
∂ϕ

∂n
dΓ, Cij =

∮
Γ

∂G(u,yj)

∂n
Ri,p(u)J(u)du;

(14)
where u ∈ [0, 1]. The entries of the N × N matrix R have
the form Rij = Ri,p(u

′

j). The final form of the linear system
is (0.5 R + C) q = b, which can be solved using the most
appropriate solver.

3.1. Knots h-refinement
In the derivation performed so far we assumed, without

loss of generality, unit weights in Eq. (8). This choice is
certainly not optimal for the representation of complex func-
tions, but is the only one possible to easily represent the un-
knowns. Indeed, for a generic function ϕ could be possi-
ble, in principle, to identify an optimal set of weights and
control points capable to achieve a high level of accuracy
with a limited number of degrees of freedom. In real ap-
plications, this can easily be done to represent regular ge-
ometries (for example, simple geometries of the boundary Γ).
On the contrary, in complex phenomena, the optimal repre-
sentation of the unknown ϕ could be not a simple task. As
an example, consider a domain bounded a circle. It can be
represented exactly with the six control points depicted by
squares in Fig. 3, provided that the vectors of the correspond-
ing weights and nodes are WT

c = {1 0.5 0.5 1 0.5 0.5 1} and
uTc = {0 0 0 0.25 0.5 0.5 0.75 1 1 1}, respectively (see, e.g.,
Piegl8). On the other hand, the physical phenomenon de-
scribed by the function ϕ can be extremely complex, even if
the boundary of the domain is so simple. If, for example, we
are dealing with the scattering of an acoustic wave imping-
ing on the circle at medium-high frequencies, Wc and uc are
clearly not suitable to accurately reproduce the scattering pat-
tern. In order to increase the number of collocation points for
the numerical solution of the BIE, the h-refinement technique
is used, starting from the NURBS optimal representation of
Γ. With the h-refinement technique, the non-zero intervals be-
tween the components of the knot vector uc are refined with
equally spaced knots. The number of inserted knots does not
need to be the same for each interval, and thus the NURBS
representation can be enriched only where needed. These new
knots become the control points of the representation of the
unknown ϕ. The refinement obtained using an uneven distri-
bution of knots in the different intervals is depicted in Fig. 3
(◦), along with the original knot vector (×).

4. RESULTS AND DISCUSSION

The method presented in the paper was first applied to sim-
ple problems, for which analytical solutions are available, in
order to validate the accuracy of the numerical results and as-
sess its convergence for an increasing NURBS order, p. The
problems chosen for this assessment were the incompressible,

Figure 5. Convergence of ε for the solution of potential incompressible
aerodynamics.

two-dimensional potential flow around an impermeable circu-
lar cylinder, and the scattering of a planar wave impinging on
a sound-hard cylindrical obstacle.

After this analysis, the method was tested on a boundary ge-
ometry of class C0, to demonstrate the capability of the method
in the modelling of slope discontinuities of the boundary pro-
file. Indeed, such a situation, which is very common in prac-
tical applications, could become critical for a global represen-
tation based on (at least) C1 continuous functions, so a care-
ful treatment of the corner points is needed. Here, the two-
dimensional scattering of a plane wave by a cylinder with a
squared cross section is compared with an accurate numeri-
cal solution obtained with a widely assessed, highly accurate,
commercial FEM code.

4.1. Assessment Against Analytical
Solutions

As already mentioned, this section includes an analysis of
the convergence of the numerical error with the order p of
the NURBS. This particular aspect deserves some preliminary
clarification to put the obtained results in the proper perspec-
tive.

The method presented in this paper exhibits a p−type con-
vergence to the asymptotic solution by increasing the order p
of the spline resulting from Eq. (9). On the other hand, the im-
provement of the solution for a given value of p is obtained by
refining the control points distribution (see section 3.1). On the
other hand, the convergence obtained by increasing the number
N of control points cannot be exactly interpreted as an h-type
convergence, because there is no mesh, and thus talking about
mesh size h would not apply. Nevertheless, the knots refine-
ment improves the representation for a fixed order p. For these
reasons, in the following the convergence diagrams are plotted
as a function of the number of knots (i.e., the number of un-
knowns) N using p as a parameter, similarly to what is done
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Figure 6. Scattering field on the cylinder, f = 50Hz. (−) Analytical, (×)

BIE-NURBS, (�) BIE-NURBS at Greville’s abscissae.

Figure 7. Effect of refinement at f = 50Hz. Scattering field, (−) analytical,
(×) BIE-NURBS, (�) BIE-NURBS at Greville’s abscissae, N = 20, p = 3.

with h-type convergences. It is important to notice that the
structure of the algorithm is such that for each value of p, the
minimum number of unknowns is fixed (see Eq. (9)), and thus
each convergence curve starts from a different N . To clarify,
the convergence diagrams depict only the minimum and max-
imum convergence rates measured for the problem analysed,
whereas the complete report of the rates observed is presented
in Tables 1 and 2, including the minimum error.

For the sake of completeness, in appendix A the conver-
gence of the numerical integration of the boundary integral
in Eq. (10) is discussed for the case of a complex geome-
try. Indeed, the integrals resulting from the present global ap-

Figure 8. Scattering field at f = 200Hz, (−) analytical, (×) BIE-NURBS,
(�) BIE-NURBS at Greville’s abscissae, N = 32, p = 3.

proach are defined over the entire boundary and for complex
geometries the accuracy of their numerical evaluation can be
improved by partitioning the domain into macro-elements. It
must be stressed that this partition has nothing to do with the
asymptotic behavior of the method, and is only intended for
the accurate calculation of the matrix coefficients.

4.1.1. Incompressible Potential Flow Around a Unit
Circle

In the first application, the function ϕ has the physical mean-
ing of the velocity potential associated to the irrotational flow
of an inviscid fluid. In such a flow v = ∇ϕ, and the phe-
nomenon is governed by the Laplace equation for ϕ. Here, we
consider an impermeable circular cylinder immersed within a
main flow at speed v0. The velocity field is given by the su-
perposition of the main stream velocity and the perturbation
v′ induced by the obstacle. The fundamental solution of the
problem and its normal derivative on Γ are

G(x,y) = − 1

2π
ln r,

∂G

∂n
= − 1

2π

r · n
r2

; (15)

where r = ‖x− y‖. The analytical solution ϕa exists and has
the form (in polar coordinates) ϕa = v0r

(
1 +R2/r2

)
cos(θ).

Fig. 4 shows the comparison of the numerical solution of the
present method, ϕ, with the analytical solution ϕa. The con-
vergence of the global error ε, defined as

ε =

√∫
Γ

∥∥∥∥ϕ− ϕaϕa

∥∥∥∥2

dΓ, (16)

is presented in Fig. 5 as a function of 1/N for different val-
ues of the the degree of the NURBS representation. Table 1
reports the values of the convergence rates measured using a
linear regression of the error in the log-log plane, and the min-
imum error observed. What can be observed first, is that the
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Table 1. Convergence rates for the solution of the Laplace equation.

p Convergence rate Error at N max
3 5.2850 1.88240447163443e-06
4 6.3204 1.98627799279891e-07
5 5.6809 5.88921480592586e-07
6 4.9574 3.86320539590748e-07

Table 2. Convergence rates for the scattering of a plane wave by a cylindrical
obstacle.

p Convergence rate Error at N max
f = f =

f = 50 Hz f = 200 Hz
50 Hz 200 Hz

2 4.0698 3.5075 0.000765660508167538 0.0444788053349804
3 5.2460 5.1965 0.000182807195261099 0.0149446263946068
4 7.4613 5.8926 2.02511544866008e-05 0.0051694130089412
5 8.4307 8.5100 1.02520999392619e-05 0.0016074909579270
6 9.2709 10.336 5.56624126228440e-06 0.0008186444737082

convergence curves are non linear in the log/log plane, and,
consistently with the use of a rational function basis, the rate of
convergence cannot be inferred directly from the order p of the
NURBS. The rate of convergence is slightly higher for lower
N , gradually diminishes in finer simulations, and appears to be
marginally dependent on the order p of the NURBS. Indeed,
the average rate is between N−4 and N−5 for 3 ≤ p ≤ 6.
Moreover, the best results are surprisingly obtained for p = 4.
This phenomenon is not present in the acoustic simulations
(see next section), and is currently under investigation. A pos-
sible reason could be related to the adoption of a uniform sam-
pling in the NURBS parameter space which may produce un-
wanted oscillations of the higher-order functions.8

4.1.2. Scattering of a Planar Wave by a Circular
Cylinder

In this case, the function ϕ represents a physical quantity
satisfying the wave equation in Ω. The equation governing the
propagation of an acoustic perturbation of angular frequency ω
at speed c0 is the Helmholtz equation,∇2ϕ+κ2 ϕ = 0, where
κ = ω/c20. Adopting the eiωt time convention, the fundamental
solution and its normal derivative on Γ are

G(x,y, κ) =
i

4
H(2)

0 (κ r),
∂G

∂n
= − iκ

4
H(2)

1 (κr)
r · n
r

;

(17)
where r = ‖x − y‖ and H(2)

m (κ r) is the second-kind Han-
kel function of order m. The case study at hand consists of a
plane wave of unit amplitude impinging on a circular cylinder
of infinite length, for which the analytical solution is known
(for example, see Morse and Ingard15). Indicating κ as the
wave vector, the incident field is given by ϕi = eiκ·r. Fig-
ure 6 shows the solution at f = 50 Hz. The values of |ϕ|
at the solution points are indicated with squares, whereas the
NURBS reconstruction of the solution along the whole bound-
ary is depicted with the times sign. The agreement with the an-
alytical solution is remarkable. The effect of the h-refinement
can be observed in Fig. 7, where four knots have been inserted
in the first and last intervals and two knots in the second and
third ones. The refined solution is substantially indistinguish-
able from the analytical one. This excellent behavior is pre-
served also at higher frequencies, as Figs. 8, 9, and 10 show
for f = 200 Hz, f = 500 Hz, and f = 1000 Hz, respectively.

Figure 9. Scattering field at f = 500Hz, (−) analytical, (×) BIE-NURBS,
(�) BIE-NURBS at Greville’s abscissae, N = 50, p = 5.

Figure 10. Scattering field at f = 1kHz, (−) analytical, (×) BIE-NURBS,
(�) BIE-NURBS at Greville’s abscissae, N = 90, p = 5.

Also in this case, the convergence of the proposed formulation
is evaluated using the global error ε defined in Eq. (16). The
convergence analysis is performed using the h-refinement by
inserting equally spaced knots. The convergence of ε as a func-
tion of 1/N is presented in Figs. 11 and 12 for p = 2, 3, 4, 5, 6

at f = 50 Hz and f = 200 Hz, respectively, whereas the con-
vergence rates measured and the errors are reported in Table 2.
As in the aerodynamic application, the log-log plots show a
non-linear behavior. The major difference in the present appli-
cation is in the progressive enhancement of the accuracy and
rate of convergence as p increases.

It can be observed that the rate of convergence is greater than
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Figure 11. Convergence of ε at f = 50Hz.

Figure 12. Convergence of ε at f = 200Hz.

p for all the degrees tested, reaching values close to O(N−13)

for p = 6 at the higher frequency, confirming the remarkable
level of accuracy achievable with the h-refinement.

4.2. 2D Scattering of a Sound-Hard
Quadrilateral Obstacle

After the assessment of the method by comparison with
analytical results, it is worth testing its performance with a
test case presenting features that can be critical for the global
NURBS iso-geometric representation. It is the case of a ge-
ometry profile with corners, where the curvature becomes in-
finite, and where the NURBS could give meaningless results
if not treated appropriately. The analyzed geometry is that of

Figure 13. NURBS representation of the quadrilateral geometry. Markers
indicate the control points used. The side dimension is l = 2, whereas the
curvature radius rc of the approximated corner is such that rc/l = 0.025.

Figure 14. NURBS representation of the quadrilateral geometry. Close–up of
the top right corner.

a cylinder with a square cross section, with side edge dimen-
sion l = 2. Figures 13 and 14 show the geometry of the cross
section, as well as a close-up of one of the corner. In order to
avoid the curvature singularity, there are two possible strate-
gies. The first one is to divide the boundary profile into four
macro-elements corresponding to the four edges of the square.
This possibility falls in the same case analyzed in appendix A
and is not repeated here. The second one relies on the elimina-
tion of the curvature singularity at the corner points by impos-
ing a small, finite curvature radius rc (see Fig. 13). The global
NURBS representation is directly applied to the approximated
geometry so obtained, setting rc/l = 0.025.

The solution of the present approach has been compared
with the numerical solution obtained with the widely assessed
commercial FEM software COMSOL.16 The maximum ratio
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between the mesh element size and the wavelength has been
set to 0.05, in order to guarantee a converged reference solu-
tion with at least 20 elements per wavelength. The simulations
of the present method are compared to the reference FEM so-
lution in Figs. 15, 16 and 17. The first one depicts the abso-
lute value of the scattered pressure on a circle of virtual mi-
crophones of radius rm = 20l, whereas the second shows the
total pressure along the upwind portion of the x−axis. In both
cases, the frequency is 50 Hz. The solution obtained with the
proposed approach is in remarkable agreement with the FEM
solution, revealing that the approximation of the corner points
with a finite curvature profile does not significantly affect the
numerical solution. It is important to stress that the integral
coefficients were obtained here by numerical integration along
the entire boundary, confirming that the global representation
yields accurate results also for geometries with potentially crit-
ical features.

Figure 17 presents a direct qualitative comparison of the two
fields obtained with the NURBS (left) and FEM (right) simu-
lations. The absolute value of the total pressure obtained with
the two methods is in remarkable agreement on all the domain
portion analyzed.

5. CONCLUDING REMARKS

A methodology for the numerical solution of BIE based on
a global NURBS representation of dependent and independent
variables has been presented. The non-local NURBS decom-
position yields a meshless solution algorithm, which can be
solved using a collocation method on the Greville abscissae in
the NURBS parametric space. The unknowns of the resulting
system of equations are the locations of the control points in
the vector space the unknown function belongs to. The main
advantage of the proposed methodology is the possibility to
choose the order of the approximation at runtime, exploiting
the recursive definition of the NURBS function basis. The
method has been applied to problems of potential aerodynam-
ics and acoustics for which analytical solutions are available.
The preliminary results obtained reveal a remarkable agree-
ment with the exact solutions. A very high convergence rate
is achieved, reaching O(N−13) using sixth-order NURBS in
the acoustic application. The reliability of the meshless iso-
geometric approach has been verified for geometries present-
ing critical features, such as corners and curvature changes. In
all the test cases addressed, the global NURBS representation
has revealed a very high accuracy and a substantial insensi-
tivity to the extent of the numerical integration domain. The
method is currently being extended to the analysis of three-
dimensional problems, focusing on the treatment of the spu-
rious eigenfrequencies affecting the numerical solution of ex-
terior acoustics based on integral equations. Indeed, the pe-
culiarities of the present approach observed and validated in
the two-dimensional case suggest that the implementation of
the classical regularization techniques, such as the CONDOR
(Burton and Miller,17) or the CHIEF (Schenck,18), must be
substantially revised to take advantage of the global NURBS
representation. Specifically, a robust strategy to treat the hy-
persingular kernels arising in the Burton and Miller regular-

Figure 15. Scattered pressure evaluated at a circle of microphones with
rm/l = 20 (left) for f = 50 Hz. The continuous line indicates the FEM
solution obtained with the COMSOL software.

Figure 16. Total pressure evaluated along the upwind portion of the x−axis,
for f = 50 Hz. The continuous line indicates the FEM solution obtained with
the COMSOL software.

ization is currently under analysis and will be the object of a
future paper.
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Table 3. Real part of the double-layer integrals (×103) as a function of number of Gaussian abscissae NG and number of partition of the boundary NΓ.

circle
NG=15 NG=30 NG=60

NΓ=1 5.13868867036 5.13868866829 5.13868867004

NΓ=2 5.13868867036 5.13868866829 5.13868867004

NΓ=4 5.13868867036 5.13868866829 5.13868867004

flower-like
NΓ=1 8.567698577476 8.567693658759 8.567712281749

NΓ=2 8.567698577476 8.567693658759 8.567712281749

NΓ=4 8.567698577476 8.567693658759 8.567712281749

APPENDIX A: KERNEL SINGULARITIES
AND NUMERICAL INTEGRATION

The aim of the present section is to analyze the asymptotic
behavior of the kernel K of Eq. (2) for y → y0 ∈ Γ and its re-
lationship with the strategy used for the numerical integration.
The analysis deals with the two specific applications covered.
Assume that the observation point y approaches Γ from Ω (i.e.,
from the positive side of the boundary) pointing to the bound-
ary point yo (see Fig. 18). The integral on the right hand side
of Eq. (2) can be decomposed into two contributions: the in-
tegral over a straight segment Γε centered in yo of length 2ε,
plus the integral over the remaining part of Γ

I(y) =

∫
Γε

ϕ(x)
∂G(y,x)

∂n
dΓ +

∫
Γ\Γε

ϕ(x)
∂G(y,x)

∂n
dΓ.

(A.1)
Assuming ε sufficiently small, I can be approximated as

I(y) ' ϕ(yo) Iε +

∫
Γ\Γε

ϕ(x)
∂G(y,x)

∂n
dΓ. (A.2)

The kernels associated to the aerodynamic and the acoustic
problems are

Kae(x,y) = − 1

2π

r · n
r2

,

Kac(x,y) = −1

4
iκ H(2)

1 (κR)
r · n
r

. (A.3)

Recalling the asymptotic form of H(2)
1 for small values of its

argument (for example, see Kreyszig19), it can be easily seen
that both Kae and Kac go to infinity as r−1. Introducing the
local coordinate (ξ, η), such that y ≡ (0, η) and x ≡ (ξ, 0)

(see Fig. 13), it follows that

Iεac =

∫ ε

−ε

[
−η

2π (ξ2 + η2)
+ i η

κ2

16

]
dξ = Iεae +

iεκ2

8
η.

(A.4)
It can be easily seen that

Iεae = − 1

π
arctan

ε

η
. (A.5)

Taking the limit for y → y0 yields limη→0 Iεae =

limη→0 Iεac = −0.5. Now, substituting the result into
Eq. (A.2), it is possible to indefinitely shrink Γε to obtain for
both acoustic and aerodynamics

lim
ε→0
I(y0) = −1

2
ϕ(yo) +

∫
Γ

ϕ(x)
∂G(y,x)

∂n
dΓ. (A.6)

Substituting Eq. (A.6) into Eq. (2) follows that the domain
function E(y) equals 0.5 at a regular point y0 ∈ Γ. The
remaining part of the integral (i.e., the integral appearing in
Eq. (A.6)) is a convergent improper integral and can be inte-
grated using standard adaptive quadrature formulae capable of
isolating the singularity of the integrand function.

In the present work, the Gauss-Kronrod adaptive quadra-
ture rules have been used, as implemented in the GNU Sci-
entific Library.20 The results obtained are presented in Table 3,
where the value of the real part of the integral in Eq. (A.6) is
reported for different number of Gaussian integration points
NG. The influence of a partition of the boundary Γ into NΓ

parts has been also included. Two geometries have been ana-
lyzed: a circle and a flower-like geometry represented by the
parametric equations x(θ) = [1 + 0.5 sin(5θ)] cos(θ), y(θ) =

[1+0.5 sin(5θ)] sin(θ). As can be seen, the convergence of the
integration is extremely fast, giving values substantially con-
verged even with the coarsest quadrature rule. In addition, the
partition of Γ has no effects on the integral values, confirm-
ing the validity of the NURBS global representation for the
meshless solution of the BIE. Needless to say, in presence of
complex geometries, presenting slope and curvature disconti-
nuities, the assumption of unit weights in Eq. (8) makes the ac-
curate approximation of the integrand impossible, thus causing
the numerical convergence of the quadrature rule impossible to
be achieved when extended to the whole boundary. Neverthe-
less, in those specific cases the geometry can be partitioned
into macro patches having the desired level of smoothness and
the integrals in Eqs. (2) and (3) can be split into their restric-
tions to each continuous patch.
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Unbalance and misalignment are the commonly occurring faults in rotating mechanical systems. These faults are
caused mainly due to improper installation or premature failure of the machine components. Detection and diag-
nosis of faults in rotating machinery is crucial for its optimal performance. In this study artificial neural networks
(ANN) and support vector machine (SVM) techniques have been used to determine the effectiveness of statistical
features for fault diagnosis in rotating mechanical system using healthy and faulty rotors. The vibration signature
responses are obtained and analyzed for healthy shaft without disk (HSWD), healthy shaft with an unbalanced
disk (HSWUD), centrally bent shaft without disk (CBSWD) and centrally bent shaft with an unbalanced disk (CB-
SWUD) with zero bow phase angle. Their predominant features were fed as input for training and testing ANN
and SVM, whereas the relative efficiency of these techniques have been compared for classifying the faults in the
test system. The study concludes that these machine learning algorithms can be used for fast and reliable diagnosis
of rotor faults.

NOMENCLATURE
T Bias or threshold
λi Lagrange multipliers
U(λ) Lagrange function
φhj Bias for hidden layer
nethmn Net input to hidden layer
netomk net input to output layer
µmn nth input of the mth input vector
κi Distance between the margin and the examples

µi that are lying on the wrong side
of the margin

φoj Bias for output layer
Em Sum of squares error
Oo

mk Output of output layer
Vm Sum of squares error
Mo

m Change in weight w.r.t weight change
Oh

mj Output of hidden layer
uhjk Synaptic weight between hidden

and output layer
M Number of iterative step
Zmk Desired output

1. INTRODUCTION

Rotating machinery diagnostics is an essential function in
industrial processes and power generation applications. Fail-
ures in a rotating machinery system are quite common and their
proper diagnosis depends upon accurate detection of the fault
and its location. Most of the faults are caused either because
of the incorrect manufacturing practices or because of the ex-
treme operating conditions. These may result in excessive heat
generation, looseness and other unwanted wears and tears of
the rotating parts causing financial losses. Therefore, a contin-

uous monitoring system is required to detect and diagnose the
faults to avoid any such situation.

Faults associated with the rotor-bearing system like unbal-
anced rotor,;1, 2 bent rotor,;3 misaligned rotor,4 and rotor rub5, 6

are discussed in the literature. Many techniques and tools are
already in practice for the continuous diagnosis of the various
components of the rotating machinery. Li et al.7 used the hid-
den Markov models (HMM) techniques in order to detect vari-
ous faults namely: rotor unbalance, rotor to stator rub, oil whirl
and pedestal looseness in a rotating machinery under speed-up
and speed-down conditions. Rolling element bearings defects
like outer race, inner race, ball spin and cage faults were dis-
cussed by different researchers8–12 using different techniques.
Also, back-propagation learning algorithm and a multi-layer
network have been used to validate the test data for unknown
faults.13

Fault diagnosis of load machines like gearboxes for com-
mon defects like missing tooth and wear of the gear tooth
were carried out using wavelet techniques.14 Kolmogorov-
Smirnov test was used by Kar and Mohanty for the detection
of faulty gears.15 The performance of gear fault was detected
using ANN and SVM by Samanta.16 Support vector machines
(SVM) were used in the fault diagnosis of machines.17

The present work deals with the extraction of statistical fea-
tures from the vibration signatures of a rotor-bearing system
and classification of shaft faults using artificial neural network
(ANN) and support vector machine (SVM). The flow chart for
the shaft health diagnosis is shown in Fig. 1.

A group of statistical features like range, root mean square
value, crest factor, kurtosis, skewness and standard deviation
have been extracted from time domain. The setup details for
simulating the combined unbalance and bent rotor fault in a
real experimental machine have been discussed in Section 2.
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Figure 1. Flow chart of shaft health diagnosis

Figure 2. Line diagram of the experimental setup

Section 3 presents the background of the ANN and SVM. The
wave forms of the healthy and faulty shaft signals are pre-
sented in Section 4. Salient statistical features from the ac-
quired signals were extracted and compiled to form a feature
vector which is fed to ANN/SVM for training and testing it is
discussed in Section 4. The conclusions are discussed in Sec-
tion 5.

2. EXPERIMENTAL SETUP AND DATA
ACQUISITION

The experimental setup consists of a slotted aluminium disc
mounted on a 19.05 mm diameter shaft (cold rolled steel) and
the shaft was supported on two identical roller bearings. The
schematic of the experimental setup is shown in Fig.2. A three
phase 0.75 kW induction motor coupled with a variable fre-
quency drive (VFD) was used for running this arrangement.
Reverse dial gauge method was used to align the shaft with the
motor end shaft. A pair of proximity probes were mounted ra-
dially (in horizontal and vertical directions) with an attachment
on the rotor system.

Two shafts, one healthy (HS) and one centrally bent (CBS)
with a bend of 200 microns were used to simulate different
shaft unbalance conditions. For simulating unbalance, the alu-
minium disc has threaded holes in which nuts and bolts of pre-
determined weight of 17 g could be screwed. The bending nat-
ural frequency (ωn) of the healthy and centrally bent shafts was
59.9 Hz as obtained from the rap test. Data was acquired using
a NI 9234 data acquisition card at the sampling rate of 1651 Hz
for 1.24 seconds. The numbers of acquired samples were 2048.
The system was run from 1.15 Hz to 40.25 Hz with an incre-
ment of 1.15 Hz and data was acquired for healthy and faulty
shaft conditions. These time-domain data were pre-processed
to extract the features which are used as inputs to the classifiers
- ANN and SVM techniques.

3. FEATURE EXTRACTION AND SELECTION

The optimal performance of fault diagnosis of a rotating ma-
chine depends on appropriate features extraction and features
selection techniques. The selection of essential features from
the test machine is an important step towards increasing the
overall effectiveness of the fault diagnosis process. For analyz-
ing signals and extracting features various techniques are used
such as time domain, frequency domain and time-frequency
domain.18

Six statistical features including range, root mean square
value, crest factor, kurtosis, skewness and standard deviation
were used each for horizontal and vertical response (acquired
with a pair of proximity probes) for the healthy and faulty
shafts. Then, statistical features of the healthy and the faulty
shafts were compiled to form a vector as shown in Table 1
along with speed as an additional feature. A total of 140 in-
stances of experiments were used for the present work. These
features are discussed below in detail:

• Range is the difference between the maximum and mini-
mum value of a signal.

• Standard deviation is the measure of dispersion of data
sets from its mean. The more spread of data produce
higher deviation. Mean and standard deviation can be de-
scribed as following:

xmean =
1

m

m∑
i=1

x(i);

xstd =

√√√√√√
m∑
i=1

(x(i)− xmean)
2

m− 1
; (1)

where x(i) is a signal series for i = 1, 2, . . . ,m and m is
the number of data points.

• RMS is used to measure the overall power content of the
signal. Skewness use the normalized third central mo-
ment. Mathematically RMS and skewness can be defined
as:

xrms =

√√√√√ m∑
i=1

(x(i)2

m
;

xskew =

√√√√√√
m∑
i=1

(x(i)− xmean)
3

(m− 1)x3std
. (2)

• Kurtosis measures the relative peak-edness of the distri-
bution as compared to a normal distribution. Crest factor
computes the ratio of the peak level of data over the RMS
level. There-fore, the results from the crest factor show
the peak of data corresponding to an increase in crest fac-
tor value.
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Figure 3. (a, b, c and d) Displacement waveform of the healthy shaft without
disk, healthy shaft with unbalanced disk, centrally bent shaft without disk and
centrally bent shaft with unbalanced disk with BP of 0◦ at ωn/2 respectively

xkurt =

√√√√√√
m∑
i=1

(x(i)− xmean)
4

(m− 1)x4std
;

xcf =
xmax

xrms
. (3)

The faults which are fully developed or are in incipient stage
may not be detected in time domain signals, or could be
masked/buried in the noise along with the signals. But, it has
already been established by many authors that the fault can be
detected using the time domain statistical features even for the
shortest duration of the data acquired for the fault.10, 11, 19 The
displacement waveforms of the HSWD, HSWUD, CBSWD
and CBSWUD with BP of 0◦ at ωn/2 are shown in Fig. 3.

3.1. Artificial neural network
Artificial neural network (ANN) is an interconnected net-

work of models based on the biological learning processses of
human brain. There are a number of applications of the ANNs
in regression analysis, robotics, data analysis, pattern recogni-
tion and control. Multi-layer perceptron (MLP) has been used
by different researchers in the past for different types of faults
and signals taken with the different sensors.20 Essentially, an
ANN consists of an interconnected group of artificial neurons.
These neurons use a mathematical or computational model for
information processing. ANN is an adaptive system that takes
its decisions based on information that passes through the net-
work.21 The neuronal model as explained in Fig. 4 also in-
cludes bias (threshold) which is an external parameter of neu-
ral network with constant input.22

3.2. Back propagation (BP) algorithm
The structure of neurons in a neural network is known as the

network architecture. Three different classes of network ar-

Figure 4. Model of a single non-linear neuron

Figure 5. Back propagation algorithm in multi-layer neural network

chitecture are: single layer feed-forward network, multi-layer
feed-forward network and recurrent networks. Another impor-
tant type of neural networks is a multi-layer feed forward net-
work, which is also known as multi-layer perceptrons (MLPs).
Back propagation (BP) algorithm is shown in Fig. 5. It consists
of two steps which are known as forward pass and backward
pass.

3.3. Support vector machine

Support Vector Machines (SVMs) are a new generation
learning systems which are based on the statistical learning
theory. They belong to the class of supervised learning al-
gorithms in which the learning machine is given a set of in-
puts with the associated outputs. Cristianini (2000) used SVM
for pattern recognition and classification.23 A simple case of
two classes separated by a linear classifier points are shown by
triangles and squares in Fig. 6. The plane that separates the
two classes is called hyper plane, H . H1 and H2 (shown by
dashed lines) are the planes that are parallel to plane H and
pass through the sample points closest to plane H in these two
classes. The planes parallel to H are designated as H1 and H2

and they pass through the sample points nearest to H amongst
these classes. The distance between the two parallel planes is
known as margin. The closest placed data points that are used
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Table 1. Sample input vector for ANN/SVM techniques

Horizontal Proximity Probe Response Vertical Proximity Probe Response
Features
Range RMS Crest Kurto- Skew- Standard Range RMS Crest Kurto- Skew- Standard Speed Class

Factor sis ness Deviation Factor sis ness Deviation
1 2 3 4 5 6 7 8 9 10 11 12 13

0.164 0.053 1.519 1.661 -0.286 0.052 0.343 0.117 1.421 1.965 -0.599 0.113 1.15 HSWD
0.18 0.06 1.464 1.585 -0.037 0.059 0.388 0.124 1.501 1.697 -0.026 0.123 2.3 HSWD
0.105 0.036 1.621 1.643 -0.401 0.035 0.29 0.097 1.607 1.466 -0.029 0.096 1.15 HSWUD
0.127 0.04 1.713 1.573 0.222 0.04 0.334 0.104 1.698 1.626 0.234 0.103 2.3 HSWUD
0.748 0.26 1.492 1.769 0.464 0.251 1.928 0.651 1.518 1.579 -0.13 0.645 1.15 CBSWD
0.79 0.278 1.475 1.545 0.193 0.277 2.035 0.707 1.458 1.561 0.152 0.705 2.3 CBSWD
0.674 0.23 1.527 1.582 -0.066 0.229 1.282 0.454 1.44 1.762 0.47 0.439 1.15 CBSWUD
0.74 0.266 1.46 1.473 0.131 0.266 1.386 0.476 1.489 1.572 -0.122 0.472 2.3 CBSWUD

Figure 6. Hyper-plane classifying two classes : (a) small margin (b) large
margin

to define the margin are recognized as support vectors or mar-
gin of separation.20 The aim of the SVM is to obtain a linear
hyper-plane between the H1 and H2 hyper-planes so that the
margin is maximized.

This problem is solved by reducing it to a convex optimiza-
tion problem: that is minimizing a quadratic function under
linear inequality constraints.23

4. RESULTS

The displacement waveforms of the HSWD, HSWUD, CB-
SWD and CBSWUD with BP of 0◦ at ωn/2 are shown in
Fig. 3. The vibration amplitude of the HSWD is 0.095 mils
(r.m.s. value), whereas for HSWUD it is 0.2482 mils (r.m.s.
value) at ωn/2 rotational speed as shown in Figs. 3(a) and 3(b).

Similarly, for the CBSWD CBSWD with an unbalance run-
ning at 29.9 Hz with a bow phase angle of 0◦, the vibration
responses at (ωn/2) are 0.4974 and 0.6428 mils (r.m.s. value)
respectively. The term bow phase angle at 0◦ means that the
unbalance and the bow are on the same side. So the ampli-
tude of vibration of such a rotor should be higher than that of
a healthy rotor running under same conditions.24

An increase in the amplitude of vibration is an indication
of a deteriorating shaft condition. Also, the rate of increase
of the amplitude is proportional to the degree of defect. It is
quite possible to predict the trend of increase in the amplitude
of the defective shafts by continuously monitoring the vibra-
tion responses. The operator of the machine should be skilled
to predict about the type of the fault after looking into the vi-
bration responses. Skilled operators are more difficult to hire

because of their demand for higher salaries. Therefore, it be-
comes necessary to have an automatic fault diagnostic system
which can predict the defect and advise the operator of an ap-
propriate remedy to the problem.25

ANN/SVM training and classification of faults are carried
out in WEKA software.26 Training vectors are already com-
piled and are put as an input. The defects considered in the
study are classified using ANN/SVM techniques are as fol-
lows: HSWD, HSWUD, CBSWD and CBSWUD zero bow
phase angle.

The training vector extracted from the data is shown in Ta-
ble 1. In Table 2, the magnitudes of the various statistical pa-
rameters like range, root mean square value, crest factor, kur-
tosis, skewness and standard deviation features for every shaft
condition have been mentioned at the rotor speed ωn/2. It is
pertinent to mention here that at ωn/2 speed an increase in the
magnitude of statistical variables namely- range, r.m.s., stan-
dard deviation and skewness was observed with an increase in
the fault condition in comparison to HSWD condition. How-
ever, the crest factor and kurtosis variable values show an in-
crease for HSWD condition and they become almost constant
for all the remaining shaft conditions at this speed.

The effect of speed on the statistical variables identified for
the present study were also studied. It was observed that ex-
cept for crest factor and kurtosis, all other statistical variables
followed a general trend of an increase in the magnitude with
an increase of speed as shown in Figs. 7-10.

From the acquired responses, it was analyzed that the ampli-
tude of the vibrations increase with an increase in rotor speed
(Fig.3). But it becomes very difficult to differentiate shaft
faults individually on the basis of time and frequency domain.
Therefore, ANN and SVM techniques were applied to closely
related faults for speedy diagnosis on the basis of their statisti-
cal features.

These features were fed to WEKA software26 for selecting
the appropriate features in order to make decisions using ma-
chine learning algorithms. In a multi-class prediction, the re-
sults of a test set are often displayed as a two dimensional con-
fusion matrix (Table 3) with a row and column for each class.
Each matrix element showed the number of test examples for
which the actual class was the row and the predicted class was
the column. Results corresponded to large numbers down the
main diagonal and small ideally zero; off-diagonal elements
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Table 2. Magnitudes of the various statistical features at the rotor speed (ωn/2)

Range RMS Crest factor Kurtosis Skewness Standard deviation
HSWD 0.2207 0.0687 1.5235 1.6886 -0.1488 0.0687

HSWUD 1.0431 0.357 1.4714 1.5034 0.0164 0.3571
CBSWD 0.9731 0.3373 1.498 1.508 0.081 0.3374

CBSWUD 1.893 0.6452 1.6146 1.5684 0.2035 0.6454

Figure 7. RMS parameter of HSWD and CBSWD at different shaft speeds

Figure 8. RMS parameter of HSWUD and CBSWUD at different shaft speeds

gave an accurate prediction. After selecting “fault” as an at-
tribute for class, classification was started and the classifier
output consisted of the confusion matrix, detailed accuracy by
class and evaluation of the success of the numeric prediction.

From Table 3, we inferred that ANN correctly predicted 35,
34, 35 and 35 cases, while SVM classified 35, 34, 35 and 35
cases correctly for HSWD, HSWUD, CBSWD and CBSWUD
at zero bow phase angle.

The detailed accuracy of each class has been reported in Ta-
ble 4. It also gives us the information about TP rate (true pos-
itive rate is the number of correctly classified fault divided by
the total number of instances for that fault), FP rate (false posi-

Figure 9. Standard deviation parameter of HSWD and CBSWD at different
shaft speeds

Figure 10. Standard deviation parameter of HSWUD and CBSWUD at differ-
ent shaft speeds

tive rate is the number of incorrectly classified fault divided by
the total number of instances other than the considered fault),
precision, recall and F-measure values for the 4 classes by us-
ing ANN and SVM.

The values of various measures of correct classification of
faults are tabulated in Table 5. In the present study, the results
presented in Table 5 are based on the numeric prediction based
on 140 instances and accuracy achieved is 99.2857 % which is
better than that of reported by Vyas and Kumar13 (90%) and
Kankar et al.19 (95.54 %). Vyas and Kumar’s13 results are
based on 600 instances for different faults and 100 samples for
each fault, whereas Kankar et al.19 have taken 359 instances
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Table 3. Confusion matrix

HSWD HSWUD CBSWD CBSWUD Classified as
ANN SVM ANN SVM ANN SVM ANN SVM
35 35 0 0 0 0 0 0 HSWD
1 1 34 34 0 0 0 0 HSWUD
0 0 0 0 35 35 0 0 CBSWD
0 0 0 0 0 0 35 35 CBSWUD

Table 4. Detailed accuracy by class

TP rate FP rate Precision Recall Fmeasure Class
ANN SVM ANN SVM ANN SVM ANN SVM ANN SVM
1 1 0.01 0.01 0.972 0.972 1 1 0.986 0.986 HSWUD

0.971 0.971 0 0 1 1 0.971 0.971 0.986 0.986 HSWUD
1 1 0 0 1 1 1 1 1 1 CBSWD
1 1 0 0 1 1 1 1 1 1 CBSWUD

Table 5. Evaluation of the success of the numeric prediction

Parameters Values (ANN) Values (SVM)
Correctly classified instances 139 99.2857 139 99.2857

Incorrectly classified instances 1 0.7143 1 0.7143

Kappa Statistic 0.905 0.9905
Mean absolute error 0.013 0.2506

Root mean squared error 0.0617 0.3128
Relative absolute error 3.456 66.7765

Root relative squared error 14.2276 72.1726
Total number of instances 140 140

for healthy and faulty rotors and bearings. Also, classification
accuracy of SVM and ANN is much better than reported by
Meyer et al.27

5. CONCLUSIONS

This study presents a potential application of machine learn-
ing methods ANNs and SVMs for the fast and reliable detec-
tion of shaft faults. Features were extracted from time-domain
vibration signals using statistical techniques. The roles of dif-
ferent vibration signals obtained with or without a disc at vari-
ous speeds have been investigated. The time responses showed
that the amplitudes of vibration increase with the addition of
different faults. The combined rotor fault that consists of a
centrally bent shaft carrying an unbalanced disk at the cen-
tre has the high response of the vibrations at almost all the
speeds. In total six features have been considered including
range, root mean square value, crest factor, kurtosis, skewness
and standard deviation features for every shaft condition have
been mentioned at the rotor speed ωn/2. The time taken to run
the model by SVM was remarkably less as compared to ANN
technique. In our study a healthy and a centrally bent shaft
(with zero bow phase angle) have been diagnosed using ANN
and SVM at rotor speed ωn/2 with the success rate as high as
99.2857%. No better results have been reported till date using
same conditions at least in the open literature. Present study
focuses on the supervised machine learning whereas unsuper-
vised machine learning studies may also be used for detection
of rotor faults. Furthermore, this technique can be also used
for the diagnosis of multiple fault cases (combination of mis-
alignment, bent rotor and bearing faults). This study presents a
potential application of machine learning methods ANNs and
SVMs for the fast and reliable detection of shaft faults. Fea-
tures were extracted from time-domain vibration signals using

statistical techniques. The roles of different vibration signals
obtained with or without a disc at various speeds have been
investigated. The time responses showed that the amplitudes
of vibration increase with the addition of different faults. The
combined rotor fault that consists of a centrally bent shaft car-
rying an unbalanced disk at the centre has the high response of
the vibrations at almost all the speeds. In total six features have
been considered including range, root mean square value, crest
factor, kurtosis, skewness and standard deviation features for
every shaft condition have been mentioned at the rotor speed
n/2. The time taken to run the model by SVM was remarkably
less as compared to ANN technique. In our study a healthy
and a centrally bent shaft (with zero bow phase angle) have
been diagnosed using ANN and SVM at rotor speed n/2 with
the success rate as high as 99.2857%. No better results have
been reported till date using same conditions at least in the
open literature. Present study focuses on the supervised ma-
chine learning whereas unsupervised machine learning studies
may also be used for detection of rotor faults. Furthermore,
this technique can be also used for the diagnosis of multiple
fault cases (combination of misalignment, bent rotor and bear-
ing faults).
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The nonlinear vibration of a flexible hoisting rope with time-varying length and axial velocity is investigated. The
flexible hoisting rope is modeled as a taut translating string with a rigid body attached at its low end. A systematic
procedure for deriving the system model of a flexible hoisting rope with time-varying length and axial velocity is
presented. The governing equations were developed by employing the extended Hamilton’s principle considering
coupling of axial movement and flexural deformation of the rope. The derived governing equations are nonlinear
partial differential equations(PDEs) with time-varying coefficients. The Galerkin’s method and the 4th Runge-
Kutta method were employed to numerically analyze the resulting equations. Further, the dynamic stability of
the flexible hoisting rope was investigated according to the Lyapunov stability theory. The motions of an elevator
hoisting system were presented to illustrate the proposed mathematical models. The results of simulation show
that the dynamic motions of the flexible hoisting string are stable during downward movement but are unstable
during upward movement. The proposed systematic procedures in analyzing the dynamic stability can facilitate
further development in dynamic control of the flexible hoisting system in practice.

NOMENCLATURE

a Axial acceleration of the string (m/s2)
A, B Matrix differential operators
C Damp matrixes
d Diameter of the string (m)
E Young’s Modulus of the string (Pa)
Ek Kinetic energy of flexible hoisting system (J)
Ee Elastic strain energy of the string (J)
Eg Gravitational potential energy of flexible hoisting

system (J)
g Gravitational constant (m/s2)
i Unit vector along the x-axes
i Integer
I Inertia (m4)
I n× n identity matrix
j Unit vector along the y-axes
j Integer
k Integer
K Stiffness matrixes
l Length of the string (m)
m Mass of rigid body (kg)
M Mass matrixes
n Number of included modes
P Longitudinal tension (N)
qi Generalized coordinates
Q Vectors of generalized coordinates
R Position vector of the string
Rc Position vector of the rigid body
t Time (s)
T Lyapunov candidate function

U State vector
v Axial velocity of the string (m/s)
V Velocity vector of the string
Vc Velocity vector of the rigid body
x Spatial variable (m)
y Transverse displacement of the string (m)
ζ Transformed spatial variable
ε Strain measure
ρ Linear density of the string (kg/m)
λk Eigenvalue (k = 1, 2, 3, 4)
ξk Real parts of eigenvalue (k = 1, 2, 3, 4)
ϕi Trial function used in Eq. (19)
δij Kronecker delta
ωk Imaginary parts of eigenvalue (k = 1, 2, 3, 4)
Λ Eigenvector

1. INTRODUCTION

Ropes with time-varying length are widely used in the hoist-
ing industry such as mine hoists, elevators, cranes, etc; They
are subject to vibration due to their high flexibility and rel-
atively low internal damping characteristics.1, 2 Most often
these systems are modeled as either an axially moving ten-
sioned beam or as a string with time-varying length and a rigid
body at its lower end.3, 4 It was reported that the vibration
energy of the rope changed in general during elongation and
shortening.5–7 Zhang8–11 and Bao12, 13 published a series of
studies on vibration of a flexible hoisting system with arbitrar-
ily varying length. Terumichi et al. assumed the velocity of
the string was constant and studied the transverse vibrations
of a string with time-varying length and a mass-spring system
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at the lower end with theoretical and experimental methods.14

Zhu15 and Chen16 investigated the control of an elevator cable
with theoretical and experimental methods. A novel experi-
mental method was developed to validate the uncontrolled and
controlled lateral responses of a moving cable in a high-rise
elevator and showed good agreement with the theoretical pre-
dictions. Nguyen and Hong studied the transverse vibration
control of axially moving membranes by regulation of axial
velocity.17 A novel control algorithm that suppresses the trans-
verse vibrations of an axially moving membrane system was
developed. Ngo et al. investigated the control of an axially
moving system. The Lyapunov function taking the form of the
total mechanical energy of the system was adopted to ensure
the uniform stability of the closed-loop system.18 The results
of experiments showed that the proposed control law was ef-
fective. Fung and Lin analyzed the transverse vibration of an
elevator rope with time-varying length and the time-varying
mass and inertia of rotors were considered.19 A variable struc-
ture control scheme was proposed to suppress the transient am-
plitudes of vibrations. Chi and Shu calculated the natural fre-
quencies associated with the vertical vibration of a stationary
cable coupled with an elevator car.20 Zhang presented a sys-
tematic procedure for deriving the model of a cable transporter
system with arbitrarily varying cable length and proposed a
Lyapunov controller to dissipate the vibratory energy.21 Kacz-
marczyk and Ostachowicz studied coupled vibration of a deep
mine hoisting cable and built a distributed-parameter model.
They found that the response of the catenary-vertical rope sys-
tem may feature a number of resonance phenomena.22 Zhang
and Agrawal derived the governing equation of coupled vibra-
tion of a flexible cable transporter system with arbitrarily vary-
ing length.23

While an extensive number of studies focus individually on
vibration characteristics of the rope with time-varying length,
the dynamic stability of the rope has also been studied by sev-
eral researchers. Lee introduced a new technique to analyze
free vibration of a string with time-varying length by dealing
with traveling waves.24 As the string length is shortened, free
vibration energy increases exponentially, causing dynamic in-
stability. Kumaniecka and Niziol investigated the longitudinal-
transverse vibration of a hoisting cable with slow variability of
the parameters.25 The cable material non-linearity was taken
into account and unstable regions were identified by applying
the harmonic balance method. General stability characteris-
tics of horizontally and vertically translating beams and strings
with arbitrarily varying length and various boundary condi-
tions were studied by Zhu and Ni.26 While the amplitude of
the displacement can behave in a different manner depending
on the boundary conditions, the amplitude of the vibratory en-
ergy of a translating medium decreases and increases during
extension and retraction, respectively.

Extensive research on the flexible hoisting rope with time-
varying length has been conducted in the last few decades
as aforementioned; however, the focus of most studies was
restricted to cases with constant transport speed samples.
Clearly, with the advancement of high-performance mechani-
cal systems such as high-rise elevators, cranes and mine hoists,
etc., the stability analysis of dynamical systems is very impor-
tant. The linear dynamic characteristics and stability of the

flexible hoisting rope with time-varying length and axial veloc-
ity are the subject of this investigation. The governing equa-
tions were developed employing the extended Hamilton’s prin-
ciple. The derived governing equations are shown to be linear
partial differential equations (PDEs) with variable coefficients.
On choosing proper mode functions that satisfy the boundary
conditions, the solution of the governing equations was ob-
tained using the Galerkin’s method. The natural frequencies
were computed from the eigenvalues based on the eigenvalue
equations. The motions of an elevator hoisting system were
illustrated to evaluate the proposed mathematical models. Ac-
cording to the numerical simulations, the dynamic motions of
the flexible hoisting string are stable during downward move-
ment but are unstable during upward movement. Based on
the proposed fundamental dynamic analyses, further vibration
control can be adopted for flexible hoisting systems in the near
future.

2. MODEL OF FLEXIBLE HOISTING SYSTEM

A flexible hoisting system is simplify an axially moving
string with time-varying length and a rigid body m at its lower
end, as shown in Fig. 1. The rail and the suspension of the rail
are assumed to be rigid. The string has Young’s modulus E,
diameter d and mass per unit length ρ. The origin of the coor-
dinate is set at the top end of the string, and the instantaneous
length of the string is l(t) at time t. The instantaneous axial
velocity, acceleration and jerk of the string are v(t) = l̇(t),
a(t) = v̇(t), and j(t) = ȧ(t), respectively, where the overdot
denotes time differentiation. At any instant t, the transverse
displacement of the string is described by y(x, t), at a spatial
position x, where 0 ≤ x ≤ l(t). The model is based on the
following assumptions:

1. The parameters E, d and ρ of the string are always con-
stants;

2. Only transverse vibration is considered here. The elastic
distortion of the string arousing from the transverse vibra-
tion is much less than the length of the string;

3. All the damp and friction, and the influence of air currents
are ignored.

2.1. Energy of Flexible Hoisting System

After the string is deformed, the position vector R of a point
at x can be written as:27

R = x(t) i + y(x, t) j; (1)

where i and j are the unit vectors along the x-axes and y-axes,
respectively. The material derivative of R yields the velocity
vector

V = v(t) i + [yt + vyx] j; (2)

where the subscript t denotes partial differentiation with re-
spect to time, and subscript x denotes partial differentiation
with respect to space. Similarly, the position vector Rc and
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Figure 1. Schematic of a flexible hoisting string with time-varying length.

velocity vector Vc of the rigid body can be respectively writ-
ten as:

Rc = l(t) i + y(l(t), t) j; (3)

Vc = v(t) i + yt(l(t), t) j. (4)

Then, the kinetic energy of the flexible hoisting system is com-
puted by

Ek(t) =
1

2
mVc ·Vc

∣∣∣
x=l(t)

+
1

2
ρ

l(t)∫
0

V ·V dx. (5)

The first term on the right of Eq. (5) represents the kinetic en-
ergy of the rigid body; The second term represents the kinetic
energy of the string. The elastic strain energy of the string is28

Ee(t) =

l(t)∫
0

(
Pε+

1

2
EAε2

)
dx. (6)

The first term on the right of Eq. (6) represents the axial strain
energy of the string, the second term represents the bending
strain energy of the string. P (x, t) is the longitudinal tension
at spatial position x of the string at time t; The tension in a
flexible hoisting string, arising from its weigh, is given by

P = [m+ ρ (l(t)− x)] g; (7)

and ε represents the strain measure at the spatial position x of
the string and can be expressed as

ε = (ds− dx)/dx. (8)

Figure 2. A small element of the string in a deformed position.

As shown in Fig. 2, ds can be expressed as

ds ≈
√
1 + (dy/dx)

2
dx ≈[

1 +
1

2

(
∂y

∂x

)2

− 1

8

(
∂y

∂x

)4

+ . . .

]
dx ≈[

1 +
1

2

(
∂y

∂x

)2
]
dx. (9)

Substituting Eq. (9) into Eq. (8) yields

ε =
1

2
y2x. (10)

When the reference elevation of the string with zero potential
energy is defined at x = 0, then the gravitational potential
energy of the flexible hoisting system is

Eg(t) = −
l(t)∫
0

ρgx(t) dx−mgl(t); (11)

where g is the gravitational constant, the first term on the right
of Eq. (11) represents the gravitational potential energy of the
string, and the second term represents the gravitational poten-
tial energy of the rigid body.

2.2. Governing Equations of Motion
According to the characteristics of top restriction of the

string, the boundary conditions at x(t) = 0 are

y(0, t) = 0, yt(0, t) = 0. (12)

Substitute Eqs. (5), (6), and (11) in the extended Hamilton’s
Principle,

t2∫
t1

(
δEk(t)− δEe(t)− δEg(t)

)
dt = 0; (13)
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and apply the variational operation. Because the length of the
string l(t) changes with time, the standard procedure for inte-
gration by parts with respect to the temporal variable cannot
apply. Applying Leibnitz’s rule and part integration results in
the following expressions

l(t)∫
0

ρ (yt + vyx) δyt dx = ρ
∂

∂t

l(t)∫
0

(yt + vyx) δy dx−

ρ
[
v (yt + vyx) δy

]∣∣∣
l(t)
− ρ

l(t)∫
0

∂

∂t
(yt + vyx) δy dx. (14)

Following the standard procedure for integration by parts with
respect to the spatial variable and invoking Eq. (14), one ob-
tains from Eq. (13),

t2∫
t1

[
m
∂

∂t
yt(l, t) +

(
P +

1

2
EAy2x

)
yx

] ∣∣∣∣
l(t)

δy(l, t) dt+

t2∫
t1

l(t)∫
0

[
ρ
∂

∂t
(yt + vyx) + ρv

∂

∂x
(yt + vyx)−

∂

∂x

((
P +

1

2
EAy2x

)
yx

)]
δy dx dt = 0. (15)

Setting the coefficients of δy in Eq. (15) to zero yields the gov-
erning equation for the string,

ρ
(
ytt + 2v̇yx + v2yxx

)
− Pxyx − Pyxx −

3

2
EAy2xyxx = 0,

0 < x < l(t). (16)

The first four terms in Eq. (16) correspond to the local, Corio-
lis, tangential, and centripetal acceleration, respectively. Equa-
tion (16) is a partial differential equation that describes the
dynamics of the flexible hoisting string. The equation is de-
fined over time-dependent spatial domain rendering the prob-
lem non-stationary. Hence, the exact solution to this problem
is not available, and recourse must be made to an approximate
analysis. In what follows, numerical techniques are employed
to obtain an approximate solution for the governing equation.

3. DISCRETIZATION OF THE GOVERNING
EQUATIONS

Equation (16) is a partial differential equation with infinite
dimensions and many parameters are time-variant. It is im-
possible to obtain an exact analytical solution from Eq. (16).
In this section, Galerkin’s method was applied to truncate
the infinite-dimensional partial differential equation into a lin-
ear finite-dimensional ordinary differential equation with time-
variant coefficients. Then, they were solved with numerical
methods. In order to map Eq. (16) onto the fixed domain, a
new independent variable ζ = x/[l(t)] was introduced and
the time-variant domain [0, l(t)] for x was converted to a fixed
domain [0, 1] for ζ. According to the characteristic of a taut
translating string, the solution of y(x, t) was assumed in the
forms15, 23

y(x, t) =
n∑

i=1

ϕi(ζ)qi(t) =
n∑

i=1

ϕi

(x
l

)
qi(t); (17)

where qi(t) (i = 1, 2, 3, . . . , n) is the generalized coordinate
respect to y(x, t), n is the number of included mode, and ϕi(ζ)
is trial function,15, 23

ϕi(ζ) =
√
2 sin iπζ. (18)

Consequently, expanding Eq. (17) results in the expressions for
partial derivatives of transverse displacement functions:

yx(x, t) =
1

l

n∑
i=1

ϕ′i(ζ)qi(t),

yxx(x, t) =
1

l2

n∑
i=1

ϕ′′i (ζ)qi(t),

yxt(x, t) =
n∑

i=1

1

l
ϕ′i(ζ)q̇i(t)−

n∑
i=1

(
ζv

l2
ϕ′′i (ζ) +

v

l2
ϕ′i(ζ)

)
qi(t),

ytt(x, t) =
n∑

i=1

ϕi(ζ)q̈i(t)−
2ζv

l

n∑
i=1

ϕ′i(ζ)q̇i(t) +

n∑
i=1

(
2ζv2

l2
ϕ′i(ζ)−

ζa

l
ϕ′i(ζ) +

ζ2v2

l2
ϕ′′i (ζ)

)
qi(t). (19)

Substituting Eqs. (17)–(19) into Eq. (16), multiplying the gov-
erning equation by ϕj(ζ) (j = 1, 2, 3, . . . , n), integrating it
from ζ = 0 to 1, and using the boundary conditions and the
orthonormality relation for ϕi(ζ), yield the discretized equa-
tion of transverse vibration for the flexible hoisting string with
time-variant coefficients

MQ̈ + CQ̇ + KQ + S(Q) = 0; (20)

where Q = [q1(t), q2(t), . . . , qn(t)]
T is a vector of the gener-

alized coordinate, M, C and K are matrices of mass, damp-
ness and stiffness with respect to Q, respectively. S(Q) is a
higher-order item of the generalized coordinate. The matrices
are expressed as follows:

Mij = ρδij , Cij(t) =
2ρv

l

1∫
0

(1−ζ)ϕ′i(ζ)ϕj(ζ) dζ,

Kij(t) =
ρa

l

1∫
0

(1−ζ)ϕ′i(ζ)ϕj(ζ) dζ −

ρv2

l2

1∫
0

(1−ζ)2 ϕ′i(ζ)ϕ′j(ζ) dζ +

ρg

l

1∫
0

(1−ζ)ϕ′i(ζ)ϕ′j(ζ) dζ −
mg

l2

1∫
0

ϕ′′i (ζ)ϕj(ζ) dζ,

Sj(Q) = −3EA

2l4

1∫
0

( n∑
i=1

ϕ′i(ζ)qi(t)
)2 n∑

i=1

ϕ′′i (ζ)qi(t)ϕj(ζ) dζ;

(21)

where the superscript “ ′ ” denotes partial differentiation for the
normalized variable ζ, and δij is the Kronecker delta defined

International Journal of Acoustics and Vibration, Vol. 20, No. 3, 2015 163



J. Bao, et al.: NONLINEAR VIBRATION ANALYSIS OF FLEXIBLE HOISTING ROPE WITH TIME-VARYING LENGTH

by δij = 1 if i = j and δij = 0 if i 6= j (i = 1, 2, 3, . . . , n,
j = 1, 2, 3, . . . , n). If the initial displacement and velocity
of the string are given by y(x, 0) and yt(x, 0), respectively,
where 0 < x < l(0), the initial conditions for the generalized
coordinate can be obtained from Eqs. (17) and (19);

qi(0) =

1∫
0

y (ζl(0), 0)ϕi(ζ) dζ; (22)

q̇i(0) =

1∫
0

yt (ζl(0), 0)ϕi(ζ) dζ +

v(0)

l(t)

n∑
i=1

qi(0)

1∫
0

ζϕ′i(ζ)ϕj(ζ) dζ. (23)

Solving the ordinary differential Eq. (20) with numerical
methods may yield the instantaneous values of Q. Substituting
these values into Eq. (17) may yield the instantaneous values
of transverse vibration of the string y(x, t). The mathematical
model defined by Eq. (20) illustrates the true dynamic nature
of the flexible hoisting string, and can be used to predict and
analyze the dynamic stability and vibration characteristics of a
flexible hoisting string with time-varying length and axial ve-
locity.

4. ANALYSIS OF DYNAMIC STABILITY

In order to gain a deeper insight into the mechanics of the
flexible hoisting string with time-varying length and axial ve-
locity, it is beneficial to investigate the stability characteristics
of the problem. In what follows, we performed a stability anal-
ysis of the flexible hoisting string with time-varying dynamic
parameters. According Lyapunov’s first method, the stability
of the system could be determined by analyzing the eigenval-
ues of the natural vibration. To obtain the eigenvalues of the
flexible hoisting string, the methods suggested by Stylianou
were used to reduce the system of governing Eq. (20) to a set
of first order differential equations.29 The set of reduced equa-
tions takes the form

AU̇ + BU = 0; (24)

where A and B are matrix differential operators, and

A =

{
M 0
0 K

}
, B =

{
C K
−K 0

}
; (25)

U is the state vector, and

U =

{
Q̇
Q

}
. (26)

Equation (24) is the canonical form of the equation of motion
and its solution satisfies the appropriate boundary conditions
and initial conditions. Rearranging Eq. (24), we write

U̇ + DU = 0; (27)

where

D = A−1B =

{
M−1C M−1K
−I 0

}
. (28)

Here, I is an n × n identity matrix. To obtain the natural
frequencies and mode shapes for the flexible hoisting string
with time-varying length, consider the eigenvalue problem of
Eq. (27). We now assume that U is periodic,

U = Λeλt; (29)

where

λ = ξ + iω (30)

is the eigenvalue which is a complex number, ξ =
[ξ1(t), ξ2(t), . . . , ξk(t)]

T , ω = [ω1(t), ω2(t), . . . , ωk(t)]
T are

the real and imaginary parts of λ = [λ1(t), λ2(t), . . . , λk(t)]
T ,

and ω is also the natural frequency of the flexible hoisting
string. It should be noted that the real and imaginary parts
of the eigenvalue are related to the modal damping coefficients
and the natrual frequencies of the flexible hoisting string. Sub-
stituting Eq. (29) into Eq. (27) leads to an eigenvalue equation

(λI + D)Λ = 0; (31)

where Λ is the corresponding eigenvector. The eigenvalues
can be obtained from

det (λI + D) = 0. (32)

When ξ ≤ 0, the flexible hoisting string is stable, and when
ξ > 0, the flexible hoisting string is unstable, a positive ξ
indicates the instability of the system. The system may lose
stability by either divergence (a static form of instability) or
flutter (a dynamic form of instability).

The same conclusions can be reached from Lyapunov’s sec-
ond method, which is a mathematical interpretation of the
physical property that if a system’s total energy is dissipating,
then the states of the system will ultimately travel to an equi-
librium point. This property can be explored by constructing
a scalar, energy-related time-dependent function T (t) for the
system, where usually this function T (t) is always positive.
If its time derivative dT (t)/dt < 0, then the total energy of
the system reduces, therefore leading to a stabilized dynamic
response. By contrast, if its time derivative dT (t)/dt > 0,
the total energy of the system increases, thus resulting in an
unstabilized dynamic response. So the choice of the appropri-
ate Lyapunov candidate function T (t) is very important. From
Eqs. (5) and (6), we observed that the total energy associated
with the transverse vibration of the flexible hoisting system is
always positive. Hence, the Lyapunov candidate function is
given as

T (t) =
1

2
my2t (l(t), t) +

1

2
ρ

l(t)∫
0

(yt + vyx)
2
dx+

1

2

l(t)∫
0

(
Py2x +

1

4
EAy4x

)2

dx; (33)

where P (x, t) and y(x, t) have been previously defined in
Eqs. (7) and (17), respectively. Obviously, T (t) is always pos-
itive. Differentiating T (t) in Eq. (34) using Leibnitz’s rule
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Figure 3. Movement profile of the elevator: (a) l(t); (b) v(t); (c) v̇(t); and (d) v̈(t).

yields

dT (t)

dt
= myt(l(t), t)ytt(l(t), t) +

1

2
v

[
ρ(yt + vyx)

2 +

(
Py2x +

1

4
EAy4x

)]
l(t)

+

l(t)∫
0

[
ρ(yt + vyx)(ytt + v̇yx + vyxt) +

1

2
Pty

2
x + Pyxyxt + EAy3xyxt

]
dx. (34)

Substituting Eq. (16) into Eq. (34), followed by integration by
parts, yields

dT (t)

dt
= − ρv3

2

(
y2x
)l(t)
0
− v

2

(
Py2x

)
0
+

1

2

l(t)∫
0

(Pt + vPx) y
2
x dx+

vEA

2

(
w4

x

)
l(t)
−

3vEA

8

(
w4

x

)
0
. (35)

5. NUMERICAL SIMULATION AND
DISCUSSIONS

A typical application of a flexible hoisting string with time-
varying length is a traction elevator. The site observation re-
vealed that traction ropes will fiercely vibrate during move-
ment of the elevator. In what follows, the motions of elevator
hoisting system were illustrated to evaluate the proposed math-
ematical models. An elevator hoisting system is modeled as an
axially translating string with a rigid body attached at its lower

Table 1. Simulation parameters.

Items Data values
Density per unit length ρ (kg/m) 0.707
Young’s modulus E (Pa) 2.01× 1011

String diameter d (m) 14× 10−3

Hoisting mass m (kg) 300
Minimum length of the string lmin (m) 5
Maximum length of the string lmax (m) 140
Maximum velocity vmax (m/s) 5
Maximum acceleration amax (m/s2) 1
Maximum jerk jmax (m/s3) 1
Total travel time t (s) 33
Number of transverse modes n 4

end. In this paper, the flexible hoisting system of a typical
high-speed elevator is considered as an example and analyzed.

The simulation parameters for the elevator are given in Ta-
ble 1. The flight time for a travel distance of 135 m (45 sto-
ries) is 33 seconds. Figure 3 gives the prescribed displacement,
velocity, acceleration and jerk curves of an elevator hoisting
system. Utilizing the curves as the input of Eqs. (20), (32),
and (35) with the aid of MATLAB R© may obtain dynamic re-
sponses of an elevator hoisting system. In this work, all numer-
ical analyses were implemented with the aid of MATLAB R©.

Consider the free vibration caused by a distributed initial
displacement and released from rest. The initial displacement
and velocity are respectively

y(x, 0) = y0 sin
xπ

l0
, yt(x, 0) = 0; (36)

where y0 = 0.005 m is the initial amplitude. Transverse vibra-
tion responses of the flexible hoisting string at 3 m above the
car during movement of the elevator are illustrated in Fig. 4.

Figures 4(a) and 4(b) display reducing vibration amplitudes
with an increasing length of the string during downward move-
ment. This is due to the energy of the flexible hoisting sys-
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Figure 4. Transverse vibration responses of the flexible hoisting string at 3 m above the car: (a) Transverse vibration displacement during downward movement
of the elevator; (b) Transverse vibration velocity during downward movement of the elevator; (c) Transverse vibration displacement during upward movement of
the elevator; and (d) Transverse vibration velocity during upward movement of the elevator.

Figure 5. The lowest four order natural frequencies of the flexible hoisting string during downward movement of the elevator: (a) First order natural frequency;
(b) Second order natural frequency; (c) Third order natural frequency; and (d) Fourth order natural frequency.
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Figure 6. Eigenvalues of the flexible hoisting string during downward movement of the elevator: (a) λ1; (b) λ2; (c) λ3; and (d) λ4.

Figure 7. The lowest four order natural frequencies of the flexible hoisting string during upward movement of the elevator: (a) First order natural frequency; (b)
Second order natural frequency; (c) Third order natural frequency; and (d) Fourth order natural frequency.
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Figure 8. Eigenvalues of the flexible hoisting string during upward movement of the elevator: (a) λ1; (b) λ2; (c) λ3; and (d) λ4.

Figure 9. The transverse vibration energy and the rate of change of the energy: (a) The transverse vibration energy during downward movement; (b) The rate
of change of the energy during downward movement; (c) The transverse vibration energy during upward movement; and (d) The rate of change of the energy
during upward movement.
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tem transfers from the transverse vibration to the axial motion
by bringing some mass into the domain of effective length,
which means that the axially moving string is dissipative dur-
ing downward movement. A possible physical interpretation
of the results is as follows: during downward movement nega-
tive external work is required to maintain the prescribed axial
motion which, in turn, brings about a convection of mass in
the domain of effective length. By contrast, in Fig. 4(c) and
Fig. 4(d), we observe that vibration amplitudes of the string in-
crease with the decreasing length of the string during upward
movement. This is due to the energy of flexible hoisting sys-
tem transfers from the axial motion to the transverse vibration
by leaving some mass out of the domain of effective length,
which means that the axially moving string gains energy dur-
ing upward movement. A possible physical interpretation of
the results is as follows: during upward movement positive ex-
ternal work is required to maintain the prescribed axial motion
which, in turn, brings about a convection of mass out of the
domain of effective length.

For the stabilization analysis of the flexible hoisting string,
the eigenvalues of the system obtained from Eq. (32) should
be studied for further consideration. During downward move-
ment of the flexible hoisting system, the mass of the string is
increasing and the stiffness of the string is reducing, or the
string becomes somewhat stiffer, and the natural frequencies
will decrease over time, which has been displayed in Fig. 5.
In the mean time, the dynamic motion of the string is stable
as the eigenvalues of this system have negative real parts ξ;
(see Fig. 6). On the other hand, during upward movement of
the flexible hoisting system, the mass of the string is decreas-
ing and the stiffness of the string is increasing, or the string
becomes somewhat stiffer, and the natural frequencies will in-
crease with time, (see Fig. 7). At the same time, the dynamic
motion of the string is unstable since the real parts ξ of eigen-
values of this system are all positive, which has been shown in
Fig. 8. That is, the coupling effect of the translation and trans-
verse motions generates a stabilizing response during down-
ward movement of the flexible hoisting system and a desta-
bilization response during upward movement of the flexible
hoisting string. The same conclusions can be reached from the
investigation based on an energy standpoint.

The resulting total transverse vibration energy and the rate
of change of the energy of the flexible hoisting system are dis-
played in Fig. 9. During downward movement of the flexible
hoisting system, the energy associated with the transverse vi-
bration of the flexible hoisting system decreases, which has
been displayed in Fig. 9(a). The reduction of transverse vi-
bration energy translates into the increase in kinetic energy
of the flexible hoisting system. In the mean time, the rate of
change of the energy dT (t)/dt is negative (see Fig. 9(b)), thus
leading to a stabilized transverse dynamic response. By con-
trast, during upward movement of the flexible hoisting system,
the transverse vibration energy of the flexible hoisting system
increases, which has been shown in Fig. 9(c). The increase
of transverse vibration energy comes from the reduction in
kinetic energy of the flexible hoisting system. At the same
time, the rate of change of the energy dT (t)/dt is positive (see
Fig. 9(d)), therefore resulting in an unstabilized transverse dy-
namic response. The results explain an inherent unstable short-

ening cable behavior encountered in the elevator industry.

6. CONCLUSIONS

The linear vibration characteristics and stability for a flexi-
ble hoisting string with time-varying length and axial velocity
considering coupling of axial movement and flexural deforma-
tion were analyzed in this paper. The flexible hoisting system
was modeled as an axially moving string with time-varying
length and a rigid body at its lower end. The governing equa-
tions were derived by using Leibnitz’s rule and the extended
Hamilton’s principle. The Galerkin’s method was used to trun-
cate the infinite-dimensional partial differential equations into
a set of nonlinear finite-dimensional ordinary differential equa-
tions with time-variant coefficients. Based on the numerical
simulations, the following conclusions can be obtained:

1. Two different methods, Lyapunov’s first method and Lya-
punov’s second method were used to analyze the stabil-
ity of the flexible hoisting string with time-varying length
and axial velocity. The same results were obtained by the
two mehtods.

2. The flexible hoisting string with time-varying length
and axial velocity experiences instability during upward
movement; the natural frequencies increase because of
the reducing mass and the increasing stiffness of the
string; and the energy transforms from the axial move-
ment into the flexible deformation. By contrast, it is sta-
ble during downward movement; the natural frequencies
decrease because of the increasing mass and the reduc-
ing stiffness of the string; and the energy coverts from the
flexible deformation into the axial movement.

3. The proposed theoretical model and analyses about the
stability of the flexible hoisting system in this paper will
be helpful for the researchers to comprehend its dynamic
behavior and develop the proper method to suppress the
vibration in practice.
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Sway reduction is very vital in a nonlinear oscillatory system such as a gantry crane. In this paper, a new design
is proposed for active sway control of a gantry crane using an electrical ducted fan. The thrust force developed by
the motor is used to cancel out payload oscillation. A dynamic model of the crane with a ducted fan is derived
and simulated using Matlab. Performance of the proposed technique is investigated for a crane subjected to initial
sway and an external force input. In addition, cases with different payloads and cable lengths are also studied.
Simulation results show satisfactory performance of the fan-controlled system in eliminating the payload sway.
The proposed design can also handle changes in payload and cable length. A main advantage of this approach is
that it does not require modeling of the crane in real time experiments.

1. INTRODUCTION

Vibration control is crucial in flexible structures where their
movement produces undesired vibration. Although flexible
systems are lighter and faster than rigid ones, their motion-
induced vibration is a drawback that limits their applications.
In order to reduce the system vibration, several control ap-
proaches have been proposed by researchers. These include,
active control of a grinding machine,1 adaptive control of a
drill string,2 active vibration control of a ring-stiffened cylin-
drical shell3 and active vibration control of smart plates.4

Gantry cranes are flexible structures that are commonly used
in material handling systems in factories, warehouse, shipping
yards, and nuclear facilities where heavy loads must be trans-
ferred from a specific place to a desired location. However, the
crane movement induces undesirable payload sway.5 This un-
desired load swing negatively influences the productivity and
causes a drop in efficiency, load damages, and even accidents.
Speed is a focal point in industries as it translates into the pro-
ductivity and efficiency of the system. However, fast maneu-
vers tend to excite sway angles of the hoisting line, and this
can result in a higher residual sway that degrades the overall
performance. At very low speeds, the payload sway is not im-
portant and can be ignored. Nevertheless, at a higher speed,
these sway angles become larger and significant and cause the
payload difficulty in settling down when unloading. The over-
all system performance will be affected when significant sway
angle of the payload occurs during and after the movement of
a gantry crane. This is a very severe problem, especially for
applications in the industries that require high positioning ac-
curacy, small swing angle, short transportation time, and high
safety.6

A number of techniques have been proposed for control of
gantry cranes. The control objective is to move the trolley to
a required position as fast as possible with low payload oscil-
lation. The control algorithms can be categorized into feed-
forward and feedback control strategies. The feed-forward
control strategy mainly involves command shaping techniques
and optimal control. An approach in command shaping tech-
niques known as input shaping has been proposed and has re-
ceived considerable attention in vibration control.7 An input
shaping technique for reduction of the residual vibration of a

gantry crane has also been proposed.8, 9 The closed-loop con-
trol algorithms include linear quadratic regulator (LQR) tech-
nique, state feedback, and nonlinear control. The LQR tech-
nique is utilized to track the reference trajectories,10 the state
feedback control strategy is used to hoist, stabilize, and de-
livery the payload11 and a nonlinear control scheme incorpo-
rating parameter adaptive mechanism is utilized to ensure the
overall close-loop system stability6 have been proposed by re-
searchers. On the other hand, an acceptable system perfor-
mance without payload sway that accounts for system changes
by developing a hybrid controller consisting of both feed-
forward and feedback control techniques has been successfully
implemented on a gantry crane.12

Although many control strategies have been applied on dif-
ferent type of cranes to reduce the payload sway, no work has
been conducted on the direct control of the payload sway. Sev-
eral researchers have used ducted fans to control the swinging
payloads, such as spy cameras13 and indoor service robots.14

In this paper, a new sway control strategy is proposed that uti-
lizes an electrical ducted fan to directly control the payload
sway of a gantry crane. The thrust force of an electrical ducted
fan, installed on top of the hook, can be used to significantly
reduce residual sway. The proposed technique can handle ini-
tial sway, external disturbances and changes in payloads and
cable lengths.

2. DYNAMIC MODEL OF A GANTRY CRANE

The gantry crane can be considered as a simple cart and
pendulum system.12 Figure 1 shows a schematic diagram of
a trolley and payload system considered in this study. M , m,
l, b, d, Fe, x, and θ represent trolley mass, payload mass, ca-
ble length, coefficient of payload friction, coefficient of trolley
friction, external force, trolley displacement, and angular dis-
placement of payload, respectively. Table 1 shows the system
parameters used in these investigations.

There are several methods to derive the mathematical equa-
tions that represent the trolley and payload system. In this
work, Lagrange’s equation is used to derive the mathemati-
cal expression for the model. The system has two numbers of
independent generalized coordinate, namely trolley displace-
ment x and angular displacement of payload oscillation. The

International Journal of Acoustics and Vibration, Vol. 20, No. 3, 2015 (pp. 171–176) 171



M. J. Maghsoudi, et al.: ACTIVE SWAY CONTROL OF A GANTRY CRANE BY AN ELECTRICAL DUCTED FAN

Figure 1. Schematic diagram of a gantry crane.

Table 1. System Parameters.

Variables Values
mass of troley, M 1 kg

mass of payload, m 1.1 kg
gravitational constant, g (m) 9.8 m/s2

trolley friction constant, d 20 Ns/m
constant of payload friction, b 0.001 Ns/m

length of cable, l 0.45 m

standard form for Lagrange’s equation is given as

d

dt

[
∂L

∂q̇i

]
− ∂L

∂qi
= Qi; (1)

where L, Qi and qi represent Lagrangian function, non-
conservative generalized forces, and independent generalized
coordinate. The Lagrangian function can be written as:

L = T − V ; (2)

where T and V are kinetic and potential energies, respectively.
Therefore, the Lagrangian function can be obtained as:

L =
1

2

(
mẋ2 +Mẋ2 +ml2θ̇2

)
+mẋθ̇l cos θ +mgl cos θ.

(3)
Analyzing Eq. (3) yields:

∂L

∂ẋ
= mẋ+Mẋ+mlθ̇ cos θ; (4)

d

dt

[
∂L

∂ẋ

]
= mẍ+Mẍ−mlθ̇2 sin θ +mlθ̈ cos θ; (5)

∂L

∂θ̇
= ml2θ̇ +mẋl cos θ; (6)

d

dt

[
∂L

∂θ̇

]
= ml2θ̈ +mẋlθ̇ sin θ +mẍl cos θ. (7)

Utilizing Eqs. (4) to (7) and Eq. (1) yields nonlinear differ-
ential equations of the system as:

(m+M)ẍ+mlθ̈ cos θ −mlθ̇2 sin θ − dẋ = Fe; (8)

ml2θ̈ +mlẍ cos θ +mgl sin θ + bθ̇ = 0. (9)

In Matlab Simulink, the nonlinear equations are modeled as
a single input multi output (SIMO) system and the model will
be used for controller design and verification.

Figure 2. An electrical ducted fan installed on top of the hook.

Figure 3. Schematic diagram of the gantry crane with fan.

Figure 4. Fan control scheme.

3. FAN CONTROLLED SYSTEM

The gantry crane system is modeled using nonlinear equa-
tions as in Eqs. (8) and (9). Although this model is simply uti-
lized for numerical simulation, finding an accurate model that
gives similar behavior as the real system is usually very dif-
ficult. Model uncertainty can cause serious problems in terms
of system performance and stability in real systems. Moreover,
applying an external force to a nonlinear gantry crane system
produces a considerable amount of sway in the transient and
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Figure 5. Simulation of the fan control scheme.

steady states of the system. As this payload sway is the most
important specification in control objective, having an intelli-
gent payload that can eliminate the sway actively is beneficial.

In this work, a payload equipped with an electrical ducted
fan as an active controller is proposed. As shown in Fig. 2, the
fan is installed on top of the hook. Most of the industrial gantry
cranes are equipped with four strong cables to hoist the load.
The fan can be installed in such a way that these cables support
the fan and keep the fan parallel to the hook in order to prevent
it from undesirable rotation. Moreover, hoisting is considered
where the cable length can be reduced or increased to move in
vertical directions. For this reason, these cables are designed to
pass through four holes in the frame of the fan. The schematic
diagram of the system including the fan is shown in Fig. 3.
The thrust force (Ft) of the fan is able to move the payload to
the left and right intelligently. The payload oscillation can be
cancelled by applying the thrust force as in Eq. (10).

mlθ̈ +mẍ cos θ +mg sin θ + (b/l) ˙theta = −Ft. (10)

It is assumed that Ft acts similar to the air friction force of
the payload. The hook and fan are considered as a lumped
mass. As shown in Fig. 3, when the payload moves to right
side, Ft will react in the opposite direction to cancel the sway.
Similarly, when the payload moves to left side, Ft will also
react in the opposite direction. This can be done by changing
the rotation direction of the fan using its motor driver.

Figure 4 shows the control system of a fan that consists of
an encoder to measure the sway angle θ, a proportional con-
troller to command the driver of the fan, a saturator to limit
the input of the driver, and a driver to change the direction and
voltage level of fan. An AC or DC fan motor compatible with
the specific design can be used. The closed-loop controller of
the fan tries to keep θ near zero continuously. In other words,
any oscillation regardless of its source, whether it is caused
by the crane’s movement or by the wind—can be cancelled in
the right or left direction. The proposed approach may be fea-
sible using a new carbon made electrical turbo fan weighing
0.12 kg with a diameter of only 0.12 m that can produce thrust
of 40 N.15 It should be mentioned that as the fan controller is
independent of the crane controller, other methods, such as in-
put shaping or closed loop controllers, can be used in parallel
for the cases where the load is too heavy compared to the fan
thrust.

4. SIMULATION RESULTS
AND DISCUSSION

In this section, the control scheme is implemented and tested
within the simulation environments, and the corresponding re-

Figure 6. Sway of payload (initial θ = 0.3 rad).

Figure 7. Position response of the trolley (initial θ = 0.3 rad).

sults are presented. A personal computer with Intel Core2 Duo
CPU, 2.1 GHz clock frequency and Simulink was utilized for
simulation of the controller. Based on the system illustrated in
Fig. 5), two functions correspond to position and sway of the
model:

ẍ =
mlθ̇2 sin θ +mg sin θ cos θ − dẋ

M +m sin2 θ

+
b/l θ̇ cos θ + Ft cos θ − Fe

M +m sin2 θ
(11)

θ̈ =
−mlθ̇2 sin θ cos θ − (m+M)g sin θ + dẋ cos θ

l(M +m sin2 θ)

+
−(1 +M/m)(b/l θ̇ + Ft) + Fe cos θ

l(M +m sin2 θ)
(12)

In this experiment, the proportional controller with a gain of
20 is used. The fan is considered as a linear voltage to force
convertor with a coefficient of 4. Moreover, maximum and
minimum saturation limits are set to +10 volt and -10 volts,
respectively.

In the first experiment, the performance of the active sway
controller to an initial existing sway was investigated. Thus,
a condition with no external input (Fe = 0) and initial exist-
ing sway (θ = 0.3 rad) was considered. Figures 6 and 7 show
simulation results of the payload sway and trolley position re-
sponse respectively, both without and with a fan-controlled
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Figure 8. Force Input to the system.

Figure 9. Position response of the trolley (pulse input).

system. It was noted that, for payload sway, the thrust force
of a fan can eliminate the residual oscillation in a much shorter
time (less than two seconds), while without the ducted fan, the
system needs more time to eliminate the payload oscillation
(about eight seconds). Considering zero sway as the desired
response, Integrated Absolute Error (IAE) for a fan-controlled
system and a system without a fan were obtained as 6.5463 and
34.3925, respectively. Moreover, because the sway of the pay-
load and the position of the trolley have a direct relationship,
the initial payload sway caused the trolley to oscillate. Thus, a
reduction of the payload sway is important as it leads to a fast
and accurate positioning. It was observed that although a fan-
controlled system has a higher initial oscillation compared to
the system without a fan, it reaches a steady state faster. In this
case, settling times of 0.245 seconds and 0.535 seconds were
achieved for the fan-controlled system and the system without
a fan, respectively. Moreover, it should be noted that a fan-
controlled system needed less than two seconds to reach the
steady state, whereas eight seconds is needed for the system
without fan.

In the second experiment, the system with an external force
and without initial sway was considered. In this case, a pulse
input with 5 N force for a duration of 0.5 seconds was used,
as shown in Fig. 8. As a result, the crane moves to 0.125 m.
As depicted in Fig. 9, the position response of the trolley in
fan-controlled system was faster (shorter settling time) with
less overshoot. The settling times were obtained as 0.73 sec-
onds and 4.08 seconds with and without a fan, respectively.

Figure 10. Sway of payload (pulse input).

Figure 11. Position response of the trolley (initial θ = 0.3 rad, m = 1.7 kg).

Figure 10 shows that the proposed control scheme was able to
reduce the payload sway significantly. The IAE values were
obtained as 1.1088 and 23.7320 for the system with and with-
out a fan, respectively. Moreover, the proposed control system
was able to eliminate the sway within two seconds, whereas
the system without a fan needed more than eight seconds to
eliminate the sway.

Based on the previous case withm = 1.1 kg and l = 0.45 m,
two cases were studied with m = 1.7 kg and l = 0.45 m (in-
creased payload) and m = 1.1 kg and l = 0.7 m (increased
cable length). Similarly, a condition with an initial sway of
0.3 rad without external input was considered first. Figures 11
and 12 show the trolley position responses with m = 1.7 kg
and l = 0.7 m, respectively, with and without a fan control.
In both cases, faster settling times were achieved with the fan-
controlled system. However, a slight steady state error was
noted with the system. Table 2 summarizes settling times ob-
tained in all cases. It is noted, that an improvement of al-
most two-folds was achieved using the fan-controlled system
as compared to the system without a fan control.

Figures 13 and 14 show payload sway with m = 1.7 kg and
l = 0.7 m, respectively, for both systems. In both cases, the
fan-controlled system was able to reduce the payload sway sig-
nificantly, within less than two seconds. IAE values for all the
cases are summarized in Table 2. It was noted that the sway
was reduced almost five times with the fan-controlled system.
Similar results obtained with different lengths and payloads
demonstrate that the proposed fan-controlled system is able to
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Table 2. Settling times and IAE values of system responses (initial θ = 0.3 rad).

System Settling time (s) IAE
m (kg) l (m) Normal Fan-Controlled Normal Fan-Controlled

1.1 0.45 0.535 0.245 34.3925 6.5463
1.7 0.45 0.59 0.285 22.4666 5.6147
1.1 0.70 0.725 0.305 51.2193 8.4006

Table 3. Settling times and IAE values of system responses (pulse input).

System Settling time (s) IAE
m (kg) l (m) Normal Fan-Controlled Normal Fan-Controlled

1.1 0.45 4.08 0.73 23.7320 1.1088
1.7 0.45 2.845 0.775 15.2906 1.1664
1.1 0.70 5.84 0.915 25.1863 1.1071

Figure 12. Position response of the trolley (initial θ = 0.3 rad, l = 0.7 m).

Figure 13. Sway of payload (initial θ = 0.3 rad, m = 1.7 kg).

handle changes in the system parameters.
Experiments with a pulse force input, as shown in Fig. 8,

were then considered. Figures 15 and 16 show trolley posi-
tion responses with m = 1.7 kg and l = 0.7 m, respectively,
for both systems. In addition, Figs. 17 and 18 show payload
sway for both cases. In both cases, the fan-controlled system
showed a similar performance to the first case (m = 1.1 kg
and l = 0.45 m) with faster settling time, lass overshoot and
less payload sway. Table 3 summarizes settling times and IAE
values for the three cases with and without fans. Again, these
results demonstrate that the proposed fan-controlled system is
able to handle different cable lengths and payloads where sim-
ilar system performance is achieved.

The results demonstrate that installing an electrical ducted
fan on the crane can improve the performance of the system

Figure 14. Sway of payload (initial θ = 0.3 rad, l = 0.7 m).

Figure 15. Position response of the trolley (pulse input, m = 1.7 kg).

significantly. One of the most useful advantages of the pro-
posed approach is that it does not need to be modelled after the
crane. Therefore, difficulties of modeling for industrial cranes,
effects of uncertainties (including changes of load and length
during hoisting), and effects of disturbances, such as wind, can
be reduced.

5. CONCLUSION

A unique design has been proposed to enable active sway
control of a gantry crane by using an electrical ducted fan. The
fan is installed in such a way that the thrust force cancels out
the oscillation. The proposed design does not need modeling
and can overcome parameter uncertainties, such as changes in
payload and cable length during hoisting. In addition, the con-
troller is completely independent of the existing gantry crane
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Figure 16. Position response of the trolley (pulse input, l = 0.7 m).

Figure 17. Sway of payload (pulse input, m = 1.7 kg).

Figure 18. Sway of payload (pulse input, l = 0.7 m).

controller. The controller uses a simple proportional controller
in a closed loop system. Experiments with several conditions
have been simulated in Simulink that have verified acceptable
performance of the proposed design in eliminating the existing
sway of the gantry crane. The controller has also shown to be
able to handle uncertainties in payload and cable length.
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In the present work, an expression for the modal constant of the fundamental frequency of the perforated plate was
determined experimentally. Rayleigh’s formulation was used to calculate the modal constant. The displacement
solution was considered to be a linear combination of cosines. In Rayleigh’s formulation, fundamental frequency
values were taken from experimental analysis. This problem was solved in reverse order by considering known
experimental values of the fundamental frequency. Thus, the modal constant expression for fundamental frequency
was discovered.

NOMENCLATURE
A Correction factor
AR Aspect ratio = Ly/Lx, = b/a
Lh Centre to centre distance between holes along

width in mm
Lv Centre to centre distance between holes along

length in mm
(d+ hr) Center to center distance in mm

Density of material in kg/m3

D Diameter of perforation hole in mm
a Dimension of plate along X axis
b Dimension of plate along Y axis
Lx Effective plate width in mm
E Young’s modulus in N/m2,
LY Effective plate length in mm
h Effective plate thickness in mm
T, u Kinetic and strain energy of the plate

respectively
hr Ligament width in mm
ηl Ligament efficiency
MRR Mass remnant ratio
ω1 Fundamental frequency of perforated plate

in Hz
υ Poisson’s ratio
r Radius of perforation hole in mm
λ Modal constant
D Flexural rigidity of the plate

= Eh3/12(1− υ2)

1. INTRODUCTION
Cutouts are found in mechanical, civil, marine and

aerospace structures, commonly as access ports for mechan-
ical and electrical systems or simply to reduce weight. Cutouts
are also made to provide ventilation and to modify the reso-
nant frequency of the structures. Perforated plates are often
utilized as head plates, end covers, or supports for tube bun-
dles, typically including tube sheets and support plates. Perfo-
rated plates are widely used in nuclear power equipment, heat
exchangers, and pressure vessels. The holes in the plate are

arranged in various regular penetration patterns. Industrial ap-
plications include both square and triangular array perforation
patterns.

Many researchers have carried out studies of perforated
plate structures. Monahan et al. studied the finite element
analysis of a clamped plate with different cutout sizes along
with experiments using holographic interferometry.1 Paramsi-
vam used a finite difference approach in analyzing the effects
of openings on the fundamental frequencies of plates with sim-
ply supported and clamped boundary conditions.2 O’Donnell
determined the effective elastic constants for thin perforated
plates by equating the strains in an equivalent solid material
to the average strains in the perforated material.3 Hegarty and
Ariman investigated free vibrations of rectangular elastic plate
either clamped or simply supported with a central circular hole
using the least-squares point-matching method.4 Aksu and Ali
obtained dynamic characteristics of rectangular plates with one
or two cutouts using a finite difference formulation along with
experimental verifications.5 Ali and Atwal studied the natural
frequencies of simply supported rectangular plates and rect-
angular cutouts using the Raleigh Ritz method.6 Reddy stud-
ied linear and large amplitude flexural vibration of isotropic
and composite plates with cutout by using the finite element
method.7 Chang and Chiang studied the vibration of a rect-
angular plate with an interior cutout by using the finite ele-
ment method.8 Lam et al. presented an efficient and accurate
numerical method in the study of the vibration of rectangu-
lar plates with cutouts and non- homogeneity.9 They found
the deflection function for the originally complex domain by
dividing the problem domain into appropriate rectangular seg-
ments. Lam and Hung investigatedflexural vibrations of plates
with discontinuities in the form of cracks and cutouts using a
scheme that combines the flexibility of dividing the problem
domain into appropriate segments and the high accuracy re-
sulting from the use of orthogonal polynomial functions, gen-
erated using the Gram-Schmidt process.10 Lee et al. predicted
the natural frequencies of rectangular plates with an arbitrarily
located rectangular cutout.11 Mundkur et al. studied the vi-
bration of square plates with square cutouts by using boundary
characteristics orthogonal polynomials satisfying the bound-

International Journal of Acoustics and Vibration, Vol. 20, No. 3, 2015 (pp. 177–184) 177



K. D. Mali, et al.: DETERMINATION OF MODAL CONSTANT FOR FUNDAMENTAL FREQUENCY OF PERFORATED PLATE. . .

ary conditions.12 Burgemeister and Hansen showed that effec-
tive material constants could not be used in classical equations
to accurately predict the resonance frequencies of simply sup-
ported perforated panels.13 Instead, it is much more accurate
to fit the results from ANSYS to a simple cubic function. This
function can be used to determine the effective resonance fre-
quency ratio for a large range of panel geometries with an error
of less than 3%. Young et al. studied the free vibration of thick
rectangular plates with depression, grooves, or cutouts using
three-dimensional elasticity and Ritz method.14 Sivasubramo-
nian et al. investigated the free vibration characteristics of un-
stiffened and longitudinally stiffened square panels with sym-
metrical square cutouts by using the finite element method.15, 16

The optimized Rayleigh-Ritz method was applied by Grossi
et al. to generate values of the fundamental frequency coeffi-
cient and the one corresponding to the first fully antisymmetric
mode for rectangular plates elastically restrained against rota-
tion and with located circular holes.17 Suhn et al. performed
a finite element modal analysis of the perforated plates having
square and triangular hole patterns.18 They carried out a modal
analysis of the plates by using existing equivalent elastic prop-
erties. They also verified feasibility of the finite element mod-
els by conducting a modal test on one typical perforated plate.
Parameters, such as natural frequencies and mode shapes, were
extracted and compared with the analysis results. Huang and
Sakiyama analyzed the free vibration of rectangular plates with
variously shaped holes.19 Sahu and Datta studied the paramet-
ric instability behavior of curved panels with cutouts subjected
to in-plane static and periodic compressive edge loadings using
the finite element analysis.20 The first order shear deformation
theory was used to model the curved panels, considering the
effects of transverse shear deformation and rotary inertia. Ava-
los and Laura performed a series of numerical experiments on
vibrating simply supported rectangular plates with two rectan-
gular holes with free edges.21 Liew et al. presented an analy-
sis of free vibration of plates with internal discontinuities due
to central cut-outs.22 A numerical formulation for the basic
L-shaped element, which was divided in to appropriate sub-
domains that were dependent upon the location of the cut out
was used as the basic building element. Wang and Lai adopted
the hybrid method, which combined experimental and numeri-
cal methods, to investigate the dynamic behavior of perforated
plates.23 The equivalent material properties of the perforated
plates were also obtained by the hybrid method. In addition,
the curve-fitting technique was utilized to find the relationship
of the mass remnant ratio with the parameter ratio. They ob-
tained functions from the curve fitting and used them to accu-
rately predict the equivalent material properties and resonant
frequencies of perforated plates of the diagonal array. Sinha
et al. suggested a formula for added mass of the vibrating
perforated plate-type structures submerged in fluid based on
experimental and analytical studies on a number of test speci-
mens.24 Wu et al. developed a mathematical model of axisym-
metric elastic/plastic perforated circular plates for bending and
stretching.25 Bhattacharya and Raj analyzed a quarter symmet-
ric part of a perforated plate containing a 3 × 3 square array
of circular holes by the finite element method (FEM) to ob-
tain the peak stress multipliers under membrane and bending
loads for different biaxiality ratios.26 Britan et al. experimen-
tally and theoretically/numerically studied the flow and wave
pattern that resulted from the interaction of an incident shock
wave with a few different types of barriers, all having the same
porosity but different geometries.27 Bhattacharya, and Raj also
developed second- and fourth- order polynomials describing

the yield criterion for perforated plates with square penetration
patterns.28 They did not consider the effect of out-of-plane
stresses in the investigation, as these are found to be negligi-
ble in the case of thin perforated plates, for which plane stress
condition was assumed in the finite element. Pedersen studied
the optimization of the hole of a given area, which is placed
in the interior of a plate with an arbitrary external boundary.29

The objectives of the optimization were the eigenfrequencies
of the plate with the hole. The optimization was performed in
relation to maximizing the first eigenfrequency or maximizing
the gap between the first and second eigenfrequency. Lee and
Kim studied the validity of the Eshelby-type model for pre-
dicting the effective Young’s modulus and in-plane Poisson’s
ratio of two dimensional perforated plates in terms of porosity
size and arrangement.30 Azhari et al. established the nonlinear
mathematical theory for initial- and post-local buckling analy-
sis of plates of abruptly varying stiffness based on the principle
of virtual work.31 They programmed the method, and several
numerical examples were presented to demonstrate the scope
and efficacy of the procedure. Local buckling coefficients of
perforated and stepped plates were obtained, and the results
were compared with known solutions. They studied the post-
buckling behaviour of perforated and stepped plates for differ-
ent geometries. Rezaeepazhand and Jafari used analytical in-
vestigation to study the stress analysis of plates with different
central cutouts.32 Particular emphasis was placed on flat square
plates subjected to a uni-axial tension load. They compared re-
sults based on analytical solution with the results obtained us-
ing finite element methods. Hung and Jo studied free vibration
characteristics of a circular perforated plate submerged in fluid
with rectangular and square penetration patterns.33 The natu-
ral frequencies were obtained by theoretical calculations and
three-dimensional finite element analyses. The effect of holes
on the modal characteristics was investigated; they also pro-
posed new equivalent elastic constants for the modal analysis
of a perforated plate. Watanabe and Koike investigated fatigue
strength and creep-fatigue strength of perforated plates having
stress concentration.34 The specimens were made of type 304
SUS stainless steel, and the temperature was kept to 550◦C.
The entirety of each cycle of the experiment record was an-
alyzed, and the characteristics of the structures having stress
concentration were discussed. They also studied the stress re-
distribution locus in evaluation plastic behavior in a cyclic fa-
tigue process as well as a stress relaxation in creep process,
and the feasibility was discussed in conjunction with the com-
parison to experimental results. Jeong and Amabili presented
a theoretical study on the natural frequencies and the mode
shapes of perforated beams in contact with an ideal liquid.35

The work of Kathagea et al. deals with the design of per-
forated trapezoidal sheeting.36 They calculated the effective
stiffness values for perforated sheeting with different arrays of
holes based on numerical analyses and graphs. Also given was
the calculation of a buckling coefficient for a perforated plate
under uniform in-plane compression loading and the calcula-
tion for an infinitely long perforated plate under shear loading.
Paik studied the ultimate strength characteristics of perforated
steel plates under edge shear loading37 and under combined
biaxial compression and edge shear loads.38 Liu et al. studied
the effect of the cracks on natural frequencies and the modal
strain energy of a perforated plate with ligament fractured
cracks by finite element analysis.39 Cheng and Zhao studied
buckling behaviors of uni-axially compressed perforated steel
plates strengthened by four types of stiffeners: ringed stiffener,
flat stiffener, longitudinal stiffener, and transverse stiffener.40
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Romero et al. used digital speckle interferometry technique for
tuning resonant frequencies of vibrating plates in order to in-
vestigate the dynamical behavior of perforated plates.41 Exper-
imental natural frequencies and modal shapes were compared
to those obtained by an analytical approximate solution based
on the Rayleigh–Ritz method with the use of orthogonal poly-
nomials as coordinate functions. Mali and Singru introduced
the concept of concentrated negative masses for perforation
holes and determined the fundamental frequency of a rectan-
gular plate carrying four circular perforations in a rectangular
pattern.42, 43 Mali and Singru formulated analytical models by
using the greatest integer functions and unit step functions to
express non-homogeneity in Young’s modulus and the density
and determined fundamental frequency of free vibration of a
perforated plate.44–46

Many studies have been done on perforated plates having
rectangular/square and triangular arrays of holes, especially
in regards static behavior and stress distribution in the plate.
Present literature on the dynamic performance of perforated
plates deals with equivalent properties of material. These
equivalent material properties can be used to consider perfo-
rated plates as full solid plates in vibration analysis. The ef-
fect of the hole geometry, hole size, ligament efficiency, and
plate support conditions on the dynamic behavior of rectan-
gular plates has not been experimentally studied thus far in
combination and or by using FEM. There is no evidence of the
formulation of modal constants, functions from curve fitting,
or empirical equations to accurately predict the effective reso-
nance frequencies of a wide range of perforation geometries,
for rectangular plates with rectangular penetration pattern, or
for all edges with clamped support condition.

In the present study, Rayleigh’s formulation for perforated
plates is carried out by considering a perforated rectangular
plate as a full solid plate. Rayleigh’s formulation gives an
expression for fundamental frequency in terms of equivalent
outer dimensions of solid plates and material properties.

Further, Rayleigh’s formulation for fundamental frequency
is modified with the known value of a fundamental frequency
obtained from experimental analysis and by considering actual
geometrical parameters of the perforated plate. This modified
expression is rearranged to produce an expression for a modal
constant.

The proposed approach provides an alternative method to
the existing equivalent material properties approach. This
modal constant can be directly used to calculate fundamental
frequency by using actual material properties instead of equiv-
alent material properties.

In this work, the perforation pattern considered is rectangu-
lar with circular perforations. The boundary condition consid-
ered is clamped-clamped. Thus, the proposed approach per-
mits the ready determination of reasonably accurate natural
frequencies for a plate involving any combination of ligament
efficiency and perforation diameter. Presented are the finite
element method (FEM) analysis and experimental analysis re-
sults for two plates within a given test envelope and outside a
test envelope in order to illustrate the applicability and accu-
racy of the approach.

2. ANALYTICAL FORMULATION

The fundamental frequency expression of a plate is formu-
lated by Rayleigh’s principle.47 This formulation is carried out
by considering the perforated plate as a solid plate with the
same outer dimensions as that of a perforated plate. Rayleigh’s

principle is based on the statement, ’If the vibrating system is
conservative (no energy is added or lost), then the maximum
kinetic energy, Tmax, must be equal to the maximum poten-
tial (strain) energy, umax’. In order to apply this principle, the
elastic plate undergoing free vibrations in fundamental mode
is considered as a system with one degree of freedom. Kinetic
Energy of plate T is given as,

T =
1

2

∫∫
R

hρ
.

w2(x, y, t)dxdy . (1)

Assuming that the plate is undergoing harmonic vibrations,
then the vibrating middle surface of the plate can be approxi-
mated by the equation

w (x, y, t) =W1 (x, y) cosω1t; (2)

where W1(x, y) is a continuous function that approximately
represents the shape of the plate’s deflected middle surface
and satisfies at least the kinematic boundary conditions, and
ω1 represents the natural frequency of the plate pertinent to the
assumed shape function. Assume ω = ω1 would be its funda-
mental frequency.

The maximum value of Kinetic Energy is obtained at

sin2ω1t = 1; (3)

Tmax =
ω2

1

2
sin2ω1t

∫∫
R

hρ
.

W 2
1(x, y, )dxdy

=
1

2
ω1

2

∫∫
R

hρ
.

W 2
1(x, y, )dxdy . (4)

Maximum Strain Energy is given as,

umax =
1

2

∫∫
R

D[(∇2W1)
2 + 2(1− υ){(∂

2W1

∂x∂y
)2

−∂
2W1

∂x

∂2W1

∂y
}]dxdy. (5)

For conservative system by Rayleigh’s principal,

Tmax = umax. (6)

From equation (4) and (5), we obtain (7)

W1,xy =
∂2W1

∂x∂y
W1,xx =

∂2W1

∂x2
W1,yy =

∂2W1

∂y2
; (8)

Equation (7) is called Rayleigh’s Quotient and gives the fun-
damental natural frequency of the plate.

For constant thickness and homogeneous plates, D, ρ, and
h are constant. Hence, Rayleigh’s Quotient becomes, (9) From
Eq. (2) and for the orientation of the plate shown in Fig. 1,
assuming the solution of the form,

W1(x, y) =
[
1 + cos

πx

a

] [
1 + cos

πy

b

]
where

{
0 6 x 6 a

0 6 y 6 b
. (10)
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ω2
1 =

∫∫
R

D[(∇2W1)
2 + 2(1− υ){W 2

1,xy −W1,xxW1,yy}]dxdy

hρ
∫∫
R

W1
2dxdy

; (7)

ω2
1 =

D
a∫
0

b∫
0

[(∇2W1)
2
+ 2(1− υ){W 2

1,xy −W1,xxW1,yy}]dxdy

hρ
a∫
0

b∫
0

W1
2dxdy

; (9)

Figure 1. Co-ordinates of the plate.

3. ANALYTICAL SOLUTION
Fundamental frequency ω1, is obtained by substituting

Eq. (10) in Eq. (9) as follows:

ω1
2 =

9Dπ4

hρa4b4
[
3
(
a2b2

)
b2 +

(
a2b2

)
a2 + 2a2b2

+2a2b2(1− υ2)
]
. (11)

This fundamental frequency equation is further modified by
including perforation parameters given by Eq. (18) to get the
fundamental frequency Eq. (21) for the perforated plate.

The expression given by Eq. (11) is used to calculate values
of the correction factor (A), from known natural frequencies,
obtained by experimental analysis.

4. GEOMETRY OF PERFORATED PLATE
WITH RECTANGULAR PERFORATION
PATTERN

From Fig. 2 consider the triangle ABC with area J as

J =
LhLv
2
−
[
πr2

4
+
πr2

4

]
=
LhLv
2
−
[
2πr2

4

]
; (12)

and the number of triangular elements N as

N = 2

[
Lx
Lh

Ly
Lv

]
. (13)

The total area of the perforated plate is K = J ×N , where

K = LxLy −
LxLyπr

2

LhLv
. (14)

The mass remnant ratio (MRR) is defined as the ratio of the
perforated plate area to the area of the full solid plate of the
same outer dimensions. It can be expressed as

MRR =
K

LxLy
; (15)

where (LxLy) is the area of the full solid plate

MRR = 1− πr2

LhLv
; (16)

Figure 2. Geometry of the perforated plate.

Table 1. Details of the specimens analyzed experimentally.

ηl Pitch (d+ hr), (mm) hr, (mm) MRR
For d = 6 mm hole

0.2 7.5 1.5 0.4973
0.6 15 9 0.874

For d = 9 mm hole
0.4 15 6 0.7172

For d = 12 mm hole
0.6 30 18 0.8743

MRR =
ab

ab
− abπr2

abLhLv
= 1− abπr2

abLhLv
. (17)

Thus, the relation between perforation parameters MRR, Lh,
Lv , r and plate dimensions a, b is

ab =
(1−MRR)LhLvab

πr2
. (18)

The relation between the ligament efficiency, pitch, and liga-
ment width is

ηl =
(hr)

(d+ hr)
; (19)

for case the under study

Lh = Lv = (d+ hr). (20)

5. MATERIALS AND METHOD

Fundamental frequency is obtained experimentally, for four
specimens with configurations shown in Table 1. All the spec-
imens are analyzed for the boundary condition clamped on all
four edges. The correction factor is determined from Eq. (22)
for each specimen from the average values of the fundamental
frequencies obtained experimentally.48
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Figure 4. The fixture and specimen.

5.1. Experimental Analysis
This section covers the information about the test specimen,

clamping details, and experimental set-up used in the exper-
imental vibration analysis.48, 49 Specimens were prepared for
ligament efficiency 0.2, 0.4 and 0.6 and perforation diameters
6 mm, 9 mm, and 12 mm. Each specimen was tested ten
times, and the average value of fundamental frequency was
obtained. The outer dimensions of all the specimens were
259 mm by 207 mm by 2 mm, but effective dimensions of
the perforated area were 216 mm by 138 mm. All specimens
were made of mild steel material with an aspect ratio b/a =
1.565. The following is the material properties considered for
all specimens: E = 2.1× 1011N/m2, υ = 0.3, ρ = 7850 kg/m3

5.2. Test Specimen and Test Fixture
Figure 3 shows the schematic of the specimens used for

testing and fixture plate. The margin with holes (outside the
effective area) were kept to clamp the specimens between
two fixture plates to get the clamed-clamped boundary con-
dition on all four edges of the specimen. The test fixture
mainly consisted of two rectangular plates of outer dimen-
sions 259 mm by 207 mm by 9.2 mm. Both these fixture
plates had central rectangular cut-outs with dimensions of
216 mm by 138 mm, which were aligned concentrically one
over the other. The test specimen with all four outside edges
fixed was held centrally between these fixture plates.

Figure 3 shows one of two similar fixture plates with cen-
tral rectangular cut-outs and holes along the circumference for
bolting the plates firmly. These fixture plates, with the test
specimen sandwiched, were clamped together by using nut-
bolt assembly in the holes provided along the circumference of
fixture plates as shown in Figure 4. Thus, the required bound-
ary condition of all four outside edges fixed was achieved.

5.3. Experimental Set up and Procedure
Experimentation was conduced by means of two channel

FFT (Model: Virte 300+, Larson and Davis inc, U.S.A.) an-
alyzers, an impact hammer (Model: 086C03, PCB Piezotron-
ics Inc., U.S.A.), and an accelerometer (Model: 352C68, PCB
Piezotronics Inc., U.S.A.).47, 48 Figure 5 shows the experimen-
tal set up used for testing, and Figure 6 shows schematic of the
experimental set up. Care was taken in applying uniform pres-
sure at all bolts with the help of a torque wrench. Four sam-

Figure 5. Experimental set up.

Figure 6. Schematic of experimental set-up.

pling points were chosen for mounting the accelerometer from
the driving point survey such that the node would not occur
at these points. A fixed response method was used for taking
readings. The transfer function of each sampling point was cal-
culated by the spectrum analyzer and was recorded at sixteen
impacts to get the final spectrum for each specimen plate. Such
experiments were repeated ten times. The final results of the
natural frequencies for each specimen plate were mean values
of the ten readings. The final values of natural frequency were
tabulated in the last column of the Table 2. The dynamic mass
of the accelerometer was much less than that of the plate, so
the influence of the mass of the accelerometer on the dynamic
behavior of the specimen could be neglected.

6. RESULTS AND DISCUSSION

The average value of the fundamental frequency of each
specimen from Table 2 was used to calculate the value of the
correction factor for respective specimens.

6.1. Determination of the Modal Constant
The expression for the natural frequency of the solid plate

given by Eq. (11) could be modified by considering actual ge-
ometrical parameters of the perforated plate. Geometrical pa-
rameters of the perforated plate were related to the full solid
plate dimensions by the relation given in Eq. (18). The expres-
sion in Eq. (21) can not be used directly to calculate the funda-
mental frequency of the perforated plate unless the correction
factor is considered.

After simplification and after considering the correction fac-
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Figure 3. Schematic of the fixture plate and specimens used for experimentation.

Table 2. Experimentally obtained values of fundamental frequency.

ηl Pitch d, (mm) Fundamental frequency,(No. of Runs) Hz
1 2 3 4 5 6 7 8 9 10 Avg.

0.2 6 602 596 596 599 599 580 583 583 586 583 590.7
0.6 6 615 615 618 615 618 615 615 621 615 615 616.2
0.4 9 571 571 571 571 571 571 571 571 571 571 571
0.6 12 586 586 586 586 586 586 590 590 590 590 587.6

ω1
2 =

9Dπ4

hρ
[
(1−MRR)LhLvab

πr2

]4

3

[
(1−MRR)LhLvab

πr2

]2
b2 +

[
(1−MRR)LhLvab

πr2

]2
a2+

2

[
(1−MRR)LhLvab

πr2

]2
+ 2

[
(1−MRR)LhLvab

πr2

]2
(1− υ2)

 ; (21)

tor, Eq. (21) becomes

ω1
2 =

9Dπ6r4

hρ[(1−MRR)LhLvab]
2 ·

·
[
3b2 + a2 + 2 + 2(1− υ2)

]
(A); (22)

where A is introduced as the correction factor. Values of the
correction factor are calculated from Eq. (22) by using funda-
mental frequencies determined experimentally, tabulated in the
last column of Table 2. Correction factor values are tabulated
in Table 3 for different specimens. Equation 22 can be used for
calculating the fundamental frequency of the perforated plate
by substituting the average value of correction factor ’A’, from
Table 3. A simple approximate formula for the fundamental
natural frequency of the flexural vibration of the rectangular
isotropic perforated plate is given as,50

ω1 ≈

√
λD

hρ
; (23)

where λ is the modal constant.
Thus, the modal constant λ for fundamental frequency is

obtained from Eqs. (22) & (23).

λ =

[
9π6r4

[(1−MRR)LhLvab]
2 ·

·
[
3b2 + a2 + 2 + 2(1− υ2)

]
(A)
]
; (24)

λ =

[
9π6r4

[(1−MRR)LhLvab]
2 ·

·
[
3b2 + a2 + 2 + 2(1− υ2)

]
(0.009129)

]
. (25)

The expression given by Eq. (24) can be used to calculate the
modal constant λ for the fundamental natural frequency of the
perforated plates with rectangular perforation patterns of cir-
cular perforations having different configurations.

6.2. Application and Accuracy
of the Approach

The proposed approach is validated by additional experi-
mental analysis and by running FEM simulations with AN-
SYS. Configurations of the specimens are given in Tables 4 &
Table 5. The criteria followed to select the plate dimensions in
the analysis were

1. Validating the results of the proposed approach within the
test envelope, or the effective outer dimensions (a, b) that
were the same as the specimens given in Section 5.

2. Validating the results of the proposed approach outside
the test envelope, or the effective outer dimensions (a, b)
that were different from the specimens given in Section 5.

FEM analysis was carried out by using the shell63 element.
It is assumed that the structure is formed from isotropic homo-
geneous elastic material, or mild steel. Effective outside di-
mensions, thickness, and material properties of the first spec-
imen analyzed are the same as that used in the test envelope
and within the fixture limit, but configuration is different from
the test envelope. However, the second specimen thickness and
material properties were the same as that used in the test en-
velope, but the effective outside dimensions (a, b) and config-
urations were different from the test envelope. Due to the size
limitations of the test fixture experimental validation was not
carried out for second case as given in Table 5. It was found
that the results obtained from the proposed method are in close
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Table 3. Values of the correction factor for different specimens

Sr. no. ηl d, mm MRR Lh, mm Lv , mm ω1avg Value of A
1 0.2 6 0.4973 7.5 7.5 590.7 0.009099
2 0.6 6 0.8743 15 15 616.2 0.009906
3 0.4 9 0.7172 15 15 571 0.008504
4 0.6 12 0.8743 30 30 587.6 0.009007

Average Value of ’A’ = 0.009129

Table 4. Validation of the modal constant within the test envelope.

a, mm b, mm d, mm ηl Lh = Lv , MRR ω1 ω1, ω1

mm With modal Constant, Hz ANSYS, Hz With Experimental Analysis, Hz
138 216 9 0.4 15 0.7172 591.60 612.62 571

Table 5. Validation of the modal constant outside the test envelope.

a, mm b, mm d, mm ηl Lh = Lv , MRR ω1 ω1,
mm With modal Constant, Hz ANSYS, Hz

550 860 50 0.6 125 0.87433 47.07 42

agreement with the experimental and FEM results within test
envelope and are in close agreement with the FEM results out-
side the test envelope.

7. CONCLUSION

In the present work, the expression for the modal constant
for fundamental frequency of the perforated plate was deter-
mined. To establish this modal constant, experimental vibra-
tion data was used. A simple approximate formula for the
fundamental natural frequency of flexural vibration of a rect-
angular isotropic perforated plate was developed. Rayleigh’s
method was used in combination with experimental values
of the natural frequency to establish the expression for the
modal constant. The fundamental frequency calculated by us-
ing this modal constant is in good agreement with ANSYS re-
sult. Thus, this approach provides an alternative method to the
equivalent elastic properties method of the perforated plate for
finding natural frequency.
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