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The vibrations of completely free polygonal and rounded polygonal plates are important for large floating or space
platforms. The problem is solved by an improved Ritz method on a class of homotopy shapes. The first five
frequencies are determined, and interesting evolutions of mode shapes are shown.

1. INTRODUCTION

Vibration of elastic plates is essential in structural mechan-
ics. Basic data (frequencies, mode shapes) of plate vibrations
can be found in the works of Leissa1 and Blevins.2 Exact solu-
tions exist for the vibration of circular and annular plates, some
simply supported triangular plates, and rectangular plates with
two simply supported opposite edges.3 For all other shapes or
boundary conditions numerical means are necessary.

The vibrations of regular polygonal plates have also been
studied, notably Conway4 using point match, Shahady et al.5

using conformal mapping, Irie et al.6 using membrane analogy,
Liew and Lam7 using a Ritz method, and Ghazi et al.8 using
finite elements. These sources however, only consider simply
supported or clamped edges.

We are interested in the vibration of completely free plates,
i.e. all edges are free. The study is important in the de-
sign of very large ocean floating structures (e.g.9) and also
large structures in space, such as platforms and solar panels
(e.g.10). These structures have nominal dimensions in kilome-
tres, much larger than their thicknesses, thus can be modelled
as thin plates.

Aside from the data presented by Leissa,1 the vibrations
of completely free rectangular plates includes Leissa11 us-
ing the Ritz method, Gorman12 using a superposition method,
Behnke and Mertins13 using the Ritz method, and Mochida and
Ilanko14 using superposition and finite differences. The free
triangular plate was considered by Leissa and Jaber15 and the
free trapezoidal plate by Qatu et al.,16 both sources using the
Ritz method. However, the natural vibration of the free regular
polygonal plate has not been fully investigated.

The purpose of the present note is to study not only the vi-
brations of completely free regular polygonal plates, but also
the more general class of rounded regular polygonal plates,
which includes the polygonal plates as special cases. Round-
ing the corners of a polygonal plate has definite advantages
in terms of savings in material, weight, and boundary length,
while it changes little in the structural strength or vibration
properties.

2. THE HOMOTOPY SHAPES

The homotopy shapes are first introduced by Wang17 and ap-
plied to the vibration of membranes. The homotopy transform

Figure 1. (a) Rounded triangular plate. From outside, α = 0, 0.01, 0.05, 0.2,
0.5, 1. (b) Rounded square plate. From outside, α = 0, 0.01, 0.05, 0.15, 0.3,
0.6, 1. (c) Rounded pentagonal plate. From outside, α = 0, 0.05, 0.2, 0.5, 1.
(d) Rounded hexagonal plate. From outside, α = 0, 0.05, 0.2, 1.

is briefly described as follows: Let all lengths be normalized by
the radius of the inscribing circle of the polygon; for a rounded
equilateral triangular plate we set

H = α(1− x2 − y2)+

(1− α)(1− x)

[(
1 +

x

2

)2

− 3

4
y2

]
= 0; (1)

where α = 0 is an equilateral triangle of edge length 2
√

3, and
α = 1 is a circle of radius one. The homotopy, as α is in-
creased from 0 to 1, gives a family of rounded triangles shown
in Fig. 1(a). The maximum distance from the centroid is found
to be

l =
2

1 +
√
α
. (2)

The degree of rounding is represented by the distance d to the
original corner

d = 2− l. (3)

For a rounded square plate (Fig. 1(b)) we set

H = α(1− x2 − y2) + (1− α)(1− x2)(1− y2). (4)

The maximum distance and degree of rounding are

l =

√
2

1 +
√
α
, d =

√
2− l. (5)

The rounded regular pentagonal plate is shown in Fig. 1(c).
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The boundary is given by

H = α(1− x2 − y2) + (1− α)(1− x)[(
1 +

y2 − y1

y1x2 − y2
x

)2

−
(

x2 − 1

y1x2 − y2
y

)2
]
×[(

1− x

x3

)2

−
(
x2 − x3

y2x3
y

)2
]
. (6)

Here

y1 = tan(π/5), x2 = − sec(π/5) cos(2π/5),

y2 = sec(π/5) sin(2π/5), x3 = − sec(π/5). (7)

There is no closed form solution for the maximum distance
l. For each α we set y = 0 in H = 0. The smallest root is
x = −l. Then

d = sec(π/5)− l. (8)

Fig. 1(d) shows the rounded regular hexagonal plate given
by

H = α(1− x2 − y2) + (1− α)(1− x2)·[(
1 +

x

2

)2

− 3

4
y2

] [(
1− x

2

)2

− 3

4
y2

]
. (9)

We find

l =
1

3

√
12− 4α− 4

√
α(3 + α)

1− α
, d =

2√
3
− l. (10)

Rounded regular polygons of more than six sides can be de-
scribed similarly, but there are not considered in this paper.

3. THE RITZ METHOD

The total energy functional for a thin, isotropic (Kirchhoff)
vibrating plate is as in (11)17, 18

Here ρ is the density, h is the thickness, ω is the frequency,
w is the deflection, D is the flexural rigidity, v is the Poisson
ratio ( v = 0.3 in all our computations), and Ω is the domain
with boundary S of the plate. The last integral is the work
done on the boundary, where M̂n is the applied moment, V̂n is
the applied edge force per length, n is the unit normal to the
boundary and s is the unit tangent. The minimization of E is
equivalent of setting its variation to zero. From Eq. (11), after
some work, see (12).

In (13) and (14), where k = ωL2
√
ph/D is the normalized

frequency, and nx, ny are the direction normals. Since δw is
arbitrary in the interior, we recover the governing plate equa-
tion

∇4w − k2w = 0. (15)

For completely free boundaries, Mn = M̂n = 0 and Vn =

V̂n = 0. Thus the displacement w and its normal derivative
should be arbitrary on the edges. Solving Eq. (15) is equivalent
to minimizing Eq. (11) with the line integral in Eq. (11) set to
zero.

For the Ritz method, we express the deflection in terms of a
linear sum of Ritz functions taken as integer powers of x and

y. They are independent but need not be orthogonal. For the
completely free plate, there are no constraints for Ritz func-
tions. Since the polynomials are complete, the variational so-
lution converges to the true solution as the number of terms N
is increased. Let

w =

N∑
i=1

ciϕi(x, y); (16)

where ϕi(x, y) are the Ritz functions and ci are the weights to
be determined.

Now Eq. (16) is substituted into Eq. (11) with the last bound-
ary integral set to zero. In order to minimize E, a necessary
condition is

∂E

∂cj
= 0, j = 1toN. (17)

After some work, Eq. (17) reduces to

N∑
i=1

(
Aji − k2Bji

)
ci = 0, j = 1toN ; (18)

Here

Aji = Aji =

∫∫
Ω

[ϕixxϕjxx + ϕiyyϕjyy+

2(1− ν)ϕixyϕjxy + ν(ϕixxϕjyy + ϕjxxϕiyy)] dxdy; (19)

Bji = Bij =

∫∫
Ω

ϕiϕjdxdy. (20)

Equation (18) is a set of linear homogeneous algebraic equa-
tions. For non-trivial ci, the determinant of the coefficient ma-
trix is set to zero ∣∣Aji − k2Bji

∣∣ = 0. (21)

This is a characteristic equation for the eigenvalue k2. A sim-
ple bisection algorithm on Eq. (21) yields the normalized fre-
quencies k; the first root would be the first frequency, the sec-
ond root the second frequency, and so forth. Notice that the
area integrals can be performed once and for all, i.e. increas-
ing N would not affect the previously calculated integrals.

Also, depending on the geometry, we need not take all pos-
sible polynomial powers. For plates with an odd number of
sides, the vibration modes can be either even in y or odd in y.
Set

{ϕi} = q{1, x, x2, y2, x3, xy2, x4, x2y2, y4, x5, x3y2,

xy4, x6, x4y2, x2y4, y4, · · · }.
(22)

For modes even in y, let q = 1; for modes odd in y, let q = y.
For plates with an even number of sides (or the circle), the
modes can be symmetric (even) in both x and y (SS mode),
anti-symmetric in both x and y (AA mode), symmetric in x
and anti-symmetric in y (SA mode), and anti-symmetric in x
and symmetric in y (AS mode). Let

{ϕi} = q{1, x2, y2, x4, x2y2, y4, x6, x4y2, x2y4, y4, x8,

x6y2, x4y4, x2y6, y8, · · · }.
(23)
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E =
1

2

∫∫
Ω

D

{(
∂2w

∂x2
+
∂2w

∂y2

)2

+ 2(1− ν)

[(
∂2w

∂x∂y

)2

− ∂2w

∂x2

∂2w

∂y2

]}
dxdy − ρh

2
ω2

∫∫
Ω

w2dxdy

+

∮
S

[
M̂n

∂w

∂n
− V̂nw

]
ds; (11)

δE = D

∫∫
Ω

(
∇4w − k4w

)
δwdxdy+

∮
S

(
Mn − M̂n

)
δ

(
∂w

∂n

)
ds−

∮
S

(
Vn − V̂n

)
δwds = 0; (12)

Mn = −D
{

(1− ν)

[
∂2w

∂x2
n2
x + 2

∂2w

∂x∂y
nxny +

∂2w

∂y2
n2
y

]
+ ν∇2w

}
; (13)

Vn = D


(1− ν)

∂

∂s

[(
∂2w

∂x2
− ∂2w

∂y2

)
nxny −

∂2w

∂x∂y

(
n2
x − n2

y

)]
−
(
∂3w

∂x3
+

∂3w

∂x∂y2

)
nx −

(
∂3w

∂y3
+

∂3w

∂y∂x2

)
ny

 ; (14)

Here q = 1, xy, y, x for the SS, AA, SA, and AS modes re-
spectively. The number of terms N taken includes the highest
homogeneous powers.

Table 1 shows some typical convergence rates. It is seen that
for the even number of sides, including the circle, N = 28 is
adequate, while for the odd number of sides, N = 35 is ade-
quate for a five-figure accuracy. Table 2 shows a comparison
with known results. The frequency for the free circular plate
has an exact formula:3{

k3/2In
′(
√
k)− (1− ν)n2

[√
kIn

′(
√
k)− In(

√
k)
]}
×{

kJn(
√
k) + (1− ν)

[√
kJn

′(
√
k)− n2Jn(

√
k)
]}
−{

k3/2Jn
′(
√
k) + (1− ν)n2

[√
kJn

′(
√
k)− Jn(

√
k)
]}
×{

kIn(
√
k)− (1− ν)

[√
kIn

′(
√
k)− n2In(

√
k)
]}

= 0;

(24)

where J and I are Bessel functions and modified Bessel func-
tions, respectively. Our Ritz results for the circle are identical
to the exact solution. The results for the square are very close
to those of Mochida and Ilanko14 (using finite differences),
and the equilateral triangle results are very close to Leissa and
Jaber.15

After the frequencies are determined, the mode shapes can
be obtained from Eq. (18), using an arbitrary amplitude, say
c1 = 1, and solving for the other weights.

4. RESULTS

Table 3 shows the first five frequencies for the rounded tri-
angular plate. α = 0 is the equilateral triangle, and α = 1 is
the circle. Tables 4-6 show the first five frequencies for the
rounded square plate, rounded pentagonal plate, and rounded
hexagonal plate. We note that although some modes are dif-
ferent, the frequencies are same (up to some numerical error

Table 1. Typical convergence rates of the frequency. Parentheses indicate the
number of terms used.

Circle Square Triangle Pentagon

3rd mode 2nd mode 2nd mode 1st mode

9.1265 (6) 4.9436 (6) 3.0499 (6) 4.5318 (6)

9.0035 (10) 4.8993 (10) 3.0276 (9) 4.5275 (9)

9.0031 (15) 4.8992 (15) 3.0072 (12) 4.5158 (12)

9.0031 (21) 4.8990 (21) 3.0060 (16) 4.4829 (16)

4.8990 (28) 3.0052 (20) 4.4798 (20)

3.0052 (25) 4.4798 (25)

4.4797 (30)

4.4797 (35)

Table 2. Comparison of the first four frequencies. Asterisks denote the exact
solution from Eq. (17), square brackets from Mochida and Ilanko,14 flower
brackets from Leissa,11 and parentheses from Leissa and Jaber.15

Circle Square Equilateral triangle

5.3583 5.3583* 3.3671 [3.368] {3.372} 2.8565 (2.8566)

9.0031 9.0031* 4.8990 [4.900] {4.947} 3.0051 (3.0052)

12.439 12.439* 6.0676 [6.068] {6.108} 7.0569 (7.0569)

20.475 20.475* 8.7004 [8.700] {8.756} 13.521

in the fifth digit). The means that the modes could be linearly
superposed; for example, the first and second modes of the
pentagonal and hexagonal plates, and also the fourth and fifth
modes of the pentagonal plate could be linearly superposed.
Due to symmetry in both x and y directions, the fourth fre-
quency or the fifth frequency of the square plate represent both
AS or SA modes.

Most interesting is the evolution of the mode shapes as
rounding is increased. Figure 2 shows the mode shapes (nodal
lines) of the rounded triangular plate. The top row shows the
modes corresponding to the first (fundamental) frequency, and
the second row the second frequency, and so forth. It is ob-
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Table 4. The first five frequencies of the free rounded square plate. The mode shape characteristics are indicated by subscripts. ASA means either AS or SA.
The degree of rounding d is in parentheses.

α = 0 α = 0.01 α = 0.05 α = 0.15 α = 0.3 α = 0.6 α = 1

(0) (0.0658) (0.1357) (0.2134) (0.2775) (0.3526) (0.4142)

3.3671AA 3.4699AA 3.6913AA 4.0302AA 4.3775AA 4.8721AA 5.3583AA

4.8990SS 4.9097SS 4.9466SS 5.0202SS 5.1058SS 5.2337SS 5.3583SS

6.0676SS 6.2637SS 6.6632SS 7.2333SS 7.7686SS 8.4426SS 9.0031SS

8.7003ASA 8.9515ASA 9.4507ASA 10.156ASA 10.823ASA 11.687ASA 12.439ASA

15.274ASA 15.562ASA 16.167ASA 17.085ASA 18.009ASA 19.282ASA 20.475ASA

Table 3. The first five frequencies of the free rounded triangular plate. Sub-
script A indicates mode shape anti-symmetric with respect to y, and subscript
S indicates symmetric with respect to y. The degree of rounding d is in
parentheses.

α = 0 α = 0.01 α = 0.05 α = 0.2 α = 0.5 α = 1

(0) (0.1818) (0.3655) (0.6180) (0.8284) (1)

2.8565S 3.1356S 3.3913S 3.9212S 4.5838S 5.3583S

3.0051S 3.1360A 3.3913A 3.9212A 4.5838A 5.3583A

3.0051A 3.1601S 3.7869S 5.2141S 7.1317S 9.0031S

7.0569A 7.7653A 8.1649A 9.2045A 10.663A 12.439A

7.0573S 7.7695S 9.1236S 11.000S 11.378S 12.439S

Table 5. First five frequencies of the free rounded pentagonal plate. Subscript
A indicates mode shape anti-symmetric with respect to y, and subscript S indi-
cates symmetric with respect to y. The degree of rounding d is in parentheses.

α = 0 α = 0.05 α = 0.2 α = 0.5 α = 1

(0) (0.0820) (0.1418) (0.1933) (0.2361)

4.4797A 4.6616A 4.8960A 5.1372A 5.3586A

4.4798S 4.6616S 4.8960S 5.1372S 5.3583S

7.4238S 7.7695S 8.1984S 8.6252S 9.0031S

10.597A 10.943A 11.418A 11.937A 12.439A

10.598S 10.943S 11.418S 11.947S 12.439S

vious that there are mode switches between the first column
(equilateral triangle,α = 0) and the second column (rounded,
α = 0.01). The first mode of α = 0 morphs to the third mode
of α = 0.01, The second mode of α = 0 turned into the first
mode of α = 0.01, and the third mode of α = 0 becomes
the second mode of α = 0.01. As the rounding is further in-
creased, the modes gradually change into the circular modes.
The higher modes also exhibit switching. The fourth modes of
α = 0 and α = 0.01 disappear into the sixth mode (not shown)
of α = 0.05, and the sixth mode of α = 0.01 morphs into
the fourth mode of α = 0.05. Similarly there are also a mode
switches between the fifth modes of α = 0.05 and α = 0.2.

Figure 3 shows the mode shapes as the square is rounded to
a circle. There are no mode switches for the first five frequen-

Table 6. The first five frequencies of the free rounded hexagonal plate. The
mode shape characteristics are indicated by subscripts. The degree of rounding
d is in parentheses.

α = 0 α = 0.05 α = 0.2 α = 0.5 α = 1

(0) (0.0604) (0.1006) (0.1318) (0.1547)

4.7887AA 4.9262AA 5.0892AA 5.2388AA 5.3583AA

4.7887SS 4.9262SS 5.0892SS 5.2388SS 5.3583SS

8.0045SS 8.2554SS 8.5429SS 8.8008SS 9.0031SS

10.228SA 10.780SA 11.409SA 11.981SA 12.439SA

12.069AS 12.127AS 12.232AS 12.345AS 12.349AS

Figure 2. Mode shapes of the free rounded triangular plate. Fundamental
modes are on top row, successive higher modes on lower rows. Columns from
left: α = 0, 0.01, 0.05, 0.2, 0.5, 1.

cies. Due to the orthotropic symmetry of the rounded square,
the fourth and fifth modes all can self- rotate 90 degrees but
are classified as the same mode.

Figures 4 and 5 show the mode shapes for the rounded pen-
tagon and the rounded hexagon. There are no mode switches
for the first five frequencies.

Mode switches can be explained in terms of the total en-
ergy E. For example, for a given geometry the fundamental
vibration mode corresponds to the absolute minimum of E.
Consider free rectangular plates where the aspect ratio changes
from much less than unity to much larger than unity. The fun-
damental mode (with two nodal lines) will always be perpen-
dicular to the long sides for minimum E, i.e. switches to an-
other direction. We find no mode switches for polygons of four
or more sides morphing into a circle. Perhaps the geometry
is similar, but the triangle is very sensitive to the rounding of
sharp corners. Even a small rounding of α = 0.01 (Fig. 1(a))
switches the fundamental mode.
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Figure 3. Mode shapes of the free rounded square plate. Fundamental modes
are on top row, successive higher modes on lower rows. Columns from left:
α = 0, 0.15, 0.6, 1.

Figure 4. Mode shapes of the free rounded pentagonal plate. Fundamental
modes are on top row, successive higher modes on lower rows. Columns from
left: α = 0, 0.2, 1.

Figure 5. Mode shapes of the free rounded hexagonal plate. Fundamental
modes are on top row, successive higher modes on lower rows. Columns from
left: α = 0, 0.2, 1.

5. DISCUSSION AND CONCLUSIONS

The present paper determines, for the first time, the natural
frequencies and mode shapes for the vibration of completely
free rounded polygonal plates. The computed results for the
regular pentagonal and hexagonal plate are also new.

Using the recently introduced homotopy transformation,17

rounded polygonal plates can be described analytically. The
present plate problem however, is higher order and much more
difficult than the previously studied membrane problem.17

The Ritz method (not Rayleigh-Ritz20) is accurate and ef-
ficient. For completely free plates, the tedious conditions of
zero moment and zero edge forces are automatically satisfied.
In comparison, all other methods including finite differences,
finite elements, conformal mapping, superposition, etc. must
deal with the boundary conditions and also the scaling prob-
lems at the small rounded corners. A further simplification is
that, by classifying whether the mode shapes are symmetric or
anti-symmetric with respect to the axes, the Ritz sequence is
simplified, i.e. not all polynomial powers are needed.

Rounding of the polygonal corners increases the natural fre-
quencies based on the radius of the inscribing circle. Our
Tables 3-6 would be useful in the design of completely free
plates, which model large space structures.

As rounding parameter α increases, the plate gradually
changes from a regular polygon to a circle. The vibration
modes also morph to that of a circular plate. We find sev-
eral mode switches for the rounded triangular plate, while the
rounded square, pentagonal, hexagonal plates have no such
mode switches, at least for the first five modes.
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Different modes with the same frequency (and the same
boundary) can be linearly superposed, creating a profusion
of mode shapes, as evidenced by the vibration of a free
square plate.1 Again, by using symmetric or anti-symmetric
mode properties, systematic classifications of the fundamental
mode shapes are possible, such as those depicted in Figs. 3-
5. Waller21 experimentally found many of the mode shapes of
regular polygons, but her classification scheme is more com-
plicated than ours.
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