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A hybrid method for the computation of noise radiation by a confined flow is used in this study. The proposed
approach is appropriate and quite powerful for high Helmholtz numbers (i.e. when the turbulence/body interaction
region is acoustically non-compact). The validation of this method is checked by comparing it with the analytical
results of the tailored Green’s function to the spinning of two vortex filaments in an infinite 2-D duct. The method
is applied to the prediction of sound in a duct obstructed by a diaphragm. The sound sources generated by the
fluctuations in the flow field are computed by means of an incompressible Large Eddy Simulation (LES). These
sources are fed into a 2-D acoustic propagation Boundary Element Model (BEM). The predicted total acoustic
power is 1.8 dB higher than the result obtained in the literature by Direct Numerical Calculation (DNC) and
extrapolated experimental data for the same pipe configuration.

NOMENCLATURE
c0 Sound speed
φ Field variable
( )0 Reference quantities
ui Velocity components
( )L Flow quantity
( )′ Fluctuation
( )a Acoustic quantity
ni Normal vector
δij Kronecker delta
Tij Lighthill tensor
H1

0 Hankel function of the first kind
C(x) Solid angle
x Source position (vector ~x)
y Listener position (vector ~y)
p Pressure
Vε Exclusion volume
f Frequency
δe Momentum thickness
I Acoustic intensity
P Acoustic power
ω Angular frequency (ω = 2πf )
G Green function

1. INTRODUCTION

In many practical applications, sound is generated by the
interaction of turbulent flow with solid walls. In this situa-
tion, the sound wave experiences multiple reflections before
propagation to a far field. Therefore, the sound spectrum ex-
hibits rich frequencies content consisting of broadband and
tonal components. To predict the acoustics field in these situa-
tions, a general aero-acoustic framework is required. More im-
portantly, the employed method must often avoid many simpli-
fying assumptions about geometry, compactness, or frequency
content of sound sources.

The prediction of flow-induced noise requires accounting

for the physics of both unsteady flow and the sound wave,
simultaneously, since both are a solution of the compressible
Navier-Stokes equation. The basic difficulties for such compu-
tations are numerous disparities between energies and length-
scale in the turbulent flow and the sound field. Sound waves
carry only a minuscule fraction of the flow energy, and a high-
order numerical scheme is required to keep the sound wave
intact. These fundamental differences are exacerbated in a
low Mach number flow,1 where the radiated acoustic power is
smaller than the hydrodynamic flow power by roughlyO(M4).
In addition, the acoustic CFL number imposes extremely small
time steps on the numerical solution in order to resolve both
acoustics and hydrodynamics. That is why it is commonly
accepted that hybrid methods are more appropriated for low
Mach number flows. An example of a two-step or hybrid
method for nearly incompressible flows is Lighthill,2 who for-
mally separated acoustics from hydrodynamics by introducing
his acoustic analogy. It was shown that the flow mechanism
that produced noise could be expressed in the form of equiva-
lent sources in a uniform medium at rest, chosen as a represen-
tation of the propagation region surrounding the listener. The
idea of equivalent sources has proven to be quite powerful at
low Mach numbers. Curle3 extended the Lighthill analogy to
predict the sound of turbulent-body interaction by introducing
a dipole source. Ffowcs Williams and Hawkings4 generalized
previous analogies to account for moving sources and the re-
sulting Doppler effects.

Most of the works in literature are exterior problems. In the
present work, we are concerned with the noise generated by
confined flows and its propagation within the ducting. The in-
teraction of pipe flow with singularities like diaphragm, valve
contractions, or pipe junctions are sources of internal noise
in industrial duct networks.5, 6 The problem of aerodynamics
sound generation in pipes, allowing the aeroacoustics analogy
by Davies and Ffowcs Williams,7 showed that the acoustic ef-
ficiency of turbulence within a straight infinite duct varies with
frequency from a dipole-like behaviour below the cut-off fre-
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quency to free-field quadrupolar efficiency as soon as a few
transverse modes are cut-on. Nelson,8 Peters,9 and Piellard10

have focused on the prediction of noise generated by duct ge-
ometrical discontinuities.

Low frequencies are often considered,11 which has two ad-
vantages: firstly, the source is acoustically compact; secondly,
for frequencies below the duct cut-off, the one-dimensional
Green’s function can be employed. However, in many engi-
neering products that contain ducts, the spectrum of interest
often extends beyond the transverse cut-off frequency, up to
several KHz. Mak12 and Han and Mak13 formulated the sound
powers produced by the interaction of multiple in-duct ele-
ments at frequencies below and above the first transverse duct
mode cut-on frequency.

The configuration of the present study corresponds to exper-
iments of Van Herp et al.,14 and the DNC result of Gloerfelt
and Lafon.15 The general scope of this work is to develop
and validate a numerical tool for aeroacoustics noise predic-
tion above the first cut-off frequency. This method is suit-
able for the determination of acoustic scattering by using an
incompressible flow model in order to extend the applicability
of Curle’s analogy for non-compact and high Helmholtz num-
bers He = 2πfD/c0. Schram16 has shown that the derivation
of a BEM variant of Curle is able to predict the aeroacous-
tics above the first cut-off frequency and could be employed
for non-compact cases. A hybrid method was introduced for
acoustic computation in the entire frequency range resolved by
the flow solver for compact/non-compact sources. The flow-
generated sound sources are computed using an LES solver.
These sources are then used as the input data for the aeroa-
coustic solver, which is a boundary integral equation of Curle’s
analogy in the frequency domain, assuming a Hankel function
as the 2-D Green’s function that was solved using a boundary
element method introduced by Khalighi and Bodony.17

The paper is organized as follows: first a derivation of the
BEM variant of Curle’s analogy is given, and then validation
studies of this method for the spinning of two vortex filaments
in an infinite straight duct for non-compact high Helmholtz
numbers are put forth. Finally, we demonstrate the applica-
bility of the method to engineering problems by computing the
sound of internal confined flow through a diaphragm in a duct.

2. METHODOLOGY

An acoustic analogy for the prediction of the acoustics field
radiation by an unsteady flow consists of a forced wave equa-
tion: (

∇2 − 1

c20

∂2

∂t2

)
φ(x, t) = q(x, t); (1)

where c0 is the sound speed, and φ is a field variable, which
can be the pressure or the density perturbation. Subscript ( )0
denotes the reference quantities. The source q can be estimated
independently by an exact recombination of the continuity and
momentum equations which yield to:

q = − 1

c20

∂2Tij
∂xi∂xj

; (2)

in which Tij = ρuiuj+(p′−c20ρ′)δij−σij defines the Lighthill
tensor in terms of velocity components ui, Reynolds stresses,

non-isentropic processes, and viscous stresses σij . If we con-
sider duct configurations with a high enough Reynolds num-
ber for the acoustic contribution of the wall-normal dipoles to
dominate over the viscous stresses and for low Mach numbers,
the convection and refraction of the sound wave is negligible
compared to the scattering by duct geometry.

By implementing these assumptions, the wave propagation
equation is integrated in time and space and after convolution
by Green’s function G(t, x|τ, y), the following is defined:

ρ′(x, t) =

t∫
−∞

∫∫∫
V

∂2Tij
∂yi∂yj

Gd3y dτ −

c20

t∫
−∞

∫∫∫
V

(
ρ′
∂2G

∂y2i
−G∂

2ρ′

∂y2i

)
d3y dτ +

t∫
−∞

∫∫∫
V

(
ρ′
∂2G

∂τ2
−G∂

2ρ′

∂τ2

)
d3y dτ ; (3)

which would consist of treating the turbulent field as a
monopole. A more appropriate formulation is obtained by per-
forming integration by part of the volume integral of Eq. (3)
to highlight the quarupolar character of free turbulence. The
third integral of Eq. (3) vanishes by virtue of causality after
integration by part. This yields:

ρ′(x, t) =

t∫
−∞

∫∫∫
V

Tij
∂2G

∂yi∂yj
d3y dτ −

t∫
−∞

∫∫
∂V

(
c20
∂ρ′

∂yi
G+

(
p′ − c20ρ′

) ∂G
∂yi

)
ni d

2y dτ −

c20

t∫
−∞

∫∫
∂V

(
ρ′
∂G

∂yi
−G∂ρ

′

∂yi

)
ni d

2y dτ. (4)

The free-field Green’s function:

G(x, t|y, τ) =
δ(t− τ − |x− y|/c0)

4πc20|x− y|
(5)

is used in Eq. (4).
A crucial step in the derivation of Curle’s analogy is the can-

cellation of the scattering integral with the density perturbation
term of the second integral in Eq. (4). This yields the classical
result:

ρ′(x, t) =

t∫
−∞

∫∫∫
V

Tij
∂2G

∂yi∂yj
d3y dτ −

t∫
−∞

∫∫
∂V

p′
∂G

∂yi
ni d

2y dτ. (6)

The pressure of the solid boundary appears through the
dipole source. The derivation of Curle’s analogy assumes that
the flow model used to quantify the equivalent sources ac-
counts for compressibility effects, including acoustic scatter-
ing. This, however, is usually not the case for a low Mach num-
ber, for which incompressible flow modelling is much more
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efficient and, therefore, preferred. The analogy is valid for a
low Helmholtz number or for a compact case for which acous-
tical effects can be approximately described by an incompress-
ible model. For high Helmholtz numbers, the incompressible
flow model must be complemented by an acoustic correction
to obtain a realistic sound. For an idealized case, the analyti-
cal tailored Green’s function with zero normal gradients at the
boundary surface can correct the acoustic sound prediction, but
in most industrial applications and ranges of frequencies, the
problem is not amenable to an analytical solution. For internal
problems, combining Curle’s analogy with the boundary ele-
ment method brings the acoustical correction when using an
incompressible flow model.

To do this, we start from the inhomogeneous wave propaga-
tion equation in the Fourier domain, which takes the form of
the Helmholtz equation:

∇2p̂a + k2p̂a = q̂; (7)

where k = ω/c0 is the wave number, and q̂ =
∂2T̂ij
∂xi∂xj

is the
Lighthill tensor. In what follows, the hat notation indicating
the Fourier component will be dropped for the sake of read-
ability.

Convoluting Eq. (7) with a free-field Green’s function
yields: ∫∫∫

V \Vε

(
∇2paG− pa∇2G

)
d3y =

∫∫∫
V \Vε

qLGd
3y +

∫∫∫
V \Vε

paδ(x− y) d3y. (8)

In Eq. (8), the appropriate Fourier domain free-field Green’s
function is G = exp(−ikr)/(4πr) for the three-dimensional,
and the Hankel function of the first kind G = i

4H
1
0 (kr) for the

two-dimensional simulation. At this, r = |x−y| is the distance
between the source point to listener position.18 Subscript ( )L
has been added to quantities that are provided through the flow
and subscript ( )a to signify acoustic quantity.

In the derivation of Curle’s analogy, the listener is defined
well apart from the source field at a uniform and quiescent
region. On the contrary, the resolution of the boundary in-
tegral equation is performed by collocation (i.e. by placing
the listener on the source region). The singularity is excluded
by removing an exclusion volume Vε at Eq. (8). Its contribu-
tion will be evaluated by letting the exclusion volume shrink
to zero. The point x is excluded from the integration volume
V \Vε, therefore the third integral of Eq. (8) is zero.

Applying the Green theorem and integration by parts yields:

C(x)Pa(x) =

∫∫∫
V

Tij
∂2G

∂yi∂yj
d3y +

∫∫
∂V

(
−c20

∂ρL
∂n

G−
(
pL − c20ρL

) ∂G
∂n

)
d2y −

C(x)
(
pL − c20ρL

)
+

∫∫
∂V

(
∂pa
∂n

G− pa
∂G

∂n

)
d2y. (9)

Factor C(x) is the solid angle equal to 1 when x is within the
volume and equal to 1

2 when x lies over a smooth surface and
is equal to zero elsewhere. From the compressibility effects,
we have c20ρL = pa and Eq. (9) becomes:

C(x)PL(x) =

∫∫∫
V

Tij
∂2G

∂yi∂yj
d3y−

∫∫
∂V

pL
∂G

∂n
d2y. (10)

Equation (10) is fairly similar to the classical analogy of
Curle,6 with some differences related to the change from the
time domain to the frequency domain, including the factor c20
due to a different Green’s function in the time and frequency
domains. At Eq. (6), which is the analogy of Curle, the lis-
tener is often assumed to be in a uniform and quiescent prop-
agation region well apart from the sound production region.
That is usually employed to obtain the acoustic component
only while Eq. (10) yields the full-pressure fluctuation, hydro-
dynamic, and acoustic pressure. This results from allowing the
listener to enter the source domain, unlike the Curle’s analogy.

For high Helmholtz numbers, the case would be non-
compact, and with low Mach numbers, the incompressible flow
is preferred, and Eq. (10) yields erroneous results, as shown by
Schram.19 In a general case, the pressure is expressed as a sum
of hydraulic and acoustic components:

pL = ph + pa. (11)

Also, the integration domain is decomposed in two parts, cor-
responding respectively to volume V1 and V2 and their bound-
aries ∂V1 and ∂V2. The domain V1 is localized around the
collection point x with dimensions acoustically compact. The
solution of Eq. (10) can resolve the hydrodynamic part of pres-
sure pL. The domain V2 is defined as v\V1. The substitution of
Eq. (11) into Eq. (10) and subtracting the hydrodynamic pres-
sure of domain V1 yields:

C(x)Pa(x) =−
∫∫
∂V1

pa
∂G

∂n
d2y +

∫∫∫
V2

Tij
∂2G

∂yi∂yj
d3y −

∫∫
∂V2

(ph + pa)
∂G

∂n
d2y

=−
∫∫
∂V

pa
∂G

∂n
d2y +

∫∫∫
V2

Tij
∂2G

∂yi∂yj
d3y −

∫∫
∂V2

ph
∂G

∂n
d2y; (12)

where the boundary integrals involving the acoustic pressure
pa have been grouped together. The wall pressure is the sum
of the hydrodynamic component from an incompressible flow
model and an acoustical component, which is the solution of
Eq. (12).

From the boundary element solution20 of Eq. (12), the first
resolved acoustic component of wall pressure then must be
summed up with hydrodynamic pressure to give the total
dipole source of Eq. (6). The classic formulation of Eq. (6)
is used to obtain the acoustic field at the listener’s position in
the propagation region.

International Journal of Acoustics and Vibration, Vol. 20, No. 1, 2015 49



M. Bayati, et al.: HIGH HELMHOLTZ SOUND PREDICTION GENERATED BY CONFINED FLOWS AND PROPAGATION WITHIN DUCTS

3. VALIDATION

The acoustic pressure calculated by the hybrid approach is
validated against the analytical solution of the tailored Green’s
function.19, 21 The benchmark is a two-dimensional case of two
filament vortices spinning within an infinite duct with height
h. Through the simplicity of this test cast, both the flow and
acoustic field along the duct can be derived from an analyti-
cal calculation. The sound prediction is obtained in two ways.
The first approach consists of using the tailored Green’s func-
tion built from the duct mode.7 This approach provides the
reference solution. The second method is our hybrid formula-
tion, using a free-field Green’s function, which it is the Hankel
function of the first kind. The quadrupole source terms and un-
steady hydrodynamic pressure are obtained from an analytical
derivation from the vortex model. An incompressible flow de-
scription is derived from the Biot-Savart induction of the two
spinning vortices by a distance of h/2. The relevant Mach
number is 0.5 with a speed of sound of c0 = 340 ms−1. The
velocity formula of the computational domain and the trajec-
tories of the two vortices and unsteady pressure distribution at
the wall are formulated in Appendix A.

The simplicity of this configuration allows for the analytical
solving of the 2-D Helmholtz equation:

∇2G1 + k2G1 = δ(x− x0)δ(y − y0). (13)

With boundary condition ∂G/∂n = 0, the 2-D tailored
Green’s function G1 can be expressed as an infinite sum over
the duct modes:

G1(x, y|x′, y′) =
i

h

∞∑
n=0

1

kn
cos
(nπy
h

)
e∓ikn(x−x

′)cos
(nπy′
h

)
.

(14)
With kn =

(
k2 − µ2

n

) 1
2 , µn = nπy/h and the − and + sign

correspond to waves propagating, respectively to the right and
left from the source. Substituting the tailored Green’s function
Eq. (14) into Eq. (13) yields the acoustic pressure:

Pa(x, y, ω) =

∫∫∫
V

Tij
∂2G

∂x′∂y′
dx′dy′

=
1

h

∫∫
∂V

∞∑
n−0

e∓ikn(x−x
′) cos

(nπy
h

)
{
− ikn cos

(nπy′
h

)
T11(x′, y′, ω)−

iπ2n2

h2kn
cos
(nπy′

h

)
T22(x′, y′, ω)±

2πn

h
sin
(nπy′

h

)
T12(x′, y′, ω)

}
dx′dy′. (15)

The series is truncated beyond a sufficient number of evanes-
cent modes. Equation (15) is an exact solution of the ducted
vortex spinning problem.

The duct extends in the axial direction between x/h = −5
and 5, and has a unit height h = 1. The first cut-on fre-
quency in the x-direction corresponds to the Helmholtz num-
ber He = π, and the second cut-on is 2π. An acoustical
impedance boundary condition Z = ρ0c0 at both ends of the

Figure 1. The real part of acoustical pressure at the upper wall of the duct,
He = 2; N exact solution; — hybrid method.

Figure 2. Acoustical pressure evaluated at a listener position (x/h, y/h) =
(2.025, 0.175). — exact solution; - - - hybrid method.

duct is applied to have non-reflection boundary conditions at
the hybrid numerical method in order to permit comparison
with the infinite duct reference solution. Figure 1 shows the
real acoustic pressure at the upper wall from the hybrid and
exact numerical solutions at the Helmholtz number equal to
He = 2. The hybrid method covers the results of the exact
solution.

The acoustic pressure from the hybrid method and the ana-
lytical method are compared for frequencies covering the range
of the Helmholtz number from 1 to 10. Figure 2 shows the
acoustical pressure calculated from hybrid and exact meth-
ods at the coordinate of (2.025, 0.175). At frequencies below
the first transverse duct mode, as shown in Fig. 1, the hybrid
method results are very close to the results of the analytical
solution. By increasing the frequency to above the frequency
of the first and second transverse duct modes, the accuracy of
the hybrid sound prediction method will begin to deteriorate
as shown in Fig. 2. The acoustic pressure contours below and
above the cut-on frequencies, and Helmholtz numbers of 2,
2.4, and 4.8 are presented respectively in Fig. 3, where the re-
sults from the hybrid method and the exact solution are com-
pared.

Figure 1 and Fig. 3(a) are at He = 2, where the hybrid
method is in excellent agreement with the results of the exact
solution. However at He = 2.4, some difference can be ob-
served, and at He = 4.8 the differences increase, but the com-
parison is still acceptable. Hence, by comparing the results
of the hybrid method to that of the exact solution of this test
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Figure 3. Imaginary part of acoustic pressure at Helmholtz number: (a) He = 2, (b), He = 2.4, (c) He = 4.8. Left column: hybrid method, right column:
exact method; levels between -16 and 16.

case, the reliability of this hybrid method can be concluded.
For industrial applications, the geometries and problems are
sufficiently complicated so that the analytical formulation can-
not be performed to derive an exact solution of the problems.
Therefore, using the hybrid approach is forced. In this work,
we utilize our hybrid solution of the sound wave equation for
the prediction of sound generated by a diaphragm through a
duct. Since the flow field is also quite complicated, a compu-
tational fluid dynamic is needed to simulate the flow through
the diaphragm. In this way, we can compute the sound source
terms needed in the acoustic calculations. In order to accu-
rately predict the flow quantities, such as the velocities and
pressure fluctuations, Large Eddy Simulation (LES) is the most
feasible choice.

4. SOUND GENERATION

This section presents the applicability of the hybrid method
to the computation of noise by a turbulent flow through a di-
aphragm in a duct at low Mach numbers. Direct noise compu-
tation for flow over this configuration was carried by Gloerfelt
and Lafon.15 The source fluctuations in the flow are first com-
puted by a Large Eddy Simulation (LES) of an incompressible
fluid with the Dynamic Smagorinsky Model,22–24 and then they
are fed to the following hybrid acoustical computation as input
data.

4.1. Governing Equation
The flow field is computed with a three-dimensional incom-

pressible Large Eddy Simulation (LES) using a finite-volume
code to simulate the aerodynamic field. The underlying nu-
merical scheme consists of a fully conservative second-order
FV space discretization with a collocated arrangement of vari-
ables on a non-orthogonal grid. For the time discretization,
an implicit second-order scheme is employed, while a non-
linear multi-grid scheme, in which the pressure correction
method acts smoother on the different grid levels, is used for
convergence acceleration. In LES, the flow field is decom-

posed into a large-scale or grid scale (GS) component and
a sub-grid scale (SGS) component, given for a field variable
φ = (φ)GS + (φ′)SGS.

The GS component is obtained by filtering the entire domain
using a grid filter function. The filtering operation removes the
SGS turbulence from the Navier-Stokes equation. The result-
ing governing equations are then solved directly for the GS
turbulence motions, while the effect of the SGSs is computed
using an SGS model, such as the classical Smagorinsky model
used in this work.22

The governing equations of the LES are spatially filtered as:

∂ui
∂xi

= 0; (16)

∂ui
∂t

+
∂

∂xj

(
uiuj+τij

)
= −1

ρ

∂p

∂xi
+

∂

∂xj

{
ν

(
∂ui
∂xj

+
∂uj
∂xi

)}
;

(17)

where u and p are the grid-scale components, and ν is the kine-
matics’ viscosity. The viscous stress tensor τij is modelled as
a Newtonian fluid τij = 2µSij , where µ is the dynamic molec-
ular viscosity, and Sij is the deviatoric part of the deformation
stress tensor. The sub-grid scale (SGS) stress tensor τij is de-
fined by:

τij = uiuj − uiuj . (18)

The Smagorinsky closure is applied to the SGS stress τij :

τij −
1

3
δijτkk = −2νSGSSij ; (19)

where νSGS = (Cs∆)2|S|, |S| =
√

2SijSij , Sij =

1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

The quantity ∆ is the size of the grid filter and Cs is the
Smagorinsky coefficient that is computed with the Dynamic
Smagorinsky Model (DSM) where modification by Lilly is
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Figure 4. Computation domain.

used:

Cs =
1

2

〈MijLij〉
〈MijLij〉

; (20)

Mij = ∆̃2|S̃|S̃ij −
←−−−−→
∆2|S|Sij ; (21)

Lij =
←−→
uiuj − ũiũj . (22)

The symbol ‘∼’ represents a test filtering operation where
∆̃/∆ ≈ 2 and ‘〈 〉’ represent an averaging operation. The filter
is the Laplacian operation.25 The chosen configuration was
shown in Fig. 4.

The cross-sectional area hc× lc = 80× 100 mm2. The slip-
shaped aperture of the diaphragm has a height, h = 35 mm,
and spans the transverse width of the duct. The mesh used is a
non-uniform Cartesian grid with 813,500 cells. The diaphragm
is located at the 42nd grid point in the x-direction and extends
over 15 points horizontally and 19 points vertically. The duct
length downstream the diaphragm is then at 1.8 m. The grid
is refined near the rectangular aperture and then stretched with
the rate of 6%. The grid in the y-direction is uniform over
the diaphragm aperture with ∆y = 2 mm. The mesh size in
the span-wise z-direction is ∆z = 2 mm. A CFL number
of 0.9 and ∆xmin = 0.375 mm near the rectangular aperture
leads to a time step ∆t = CFL×∆xmin/c0 = 9.75× 10−7 s.
Approximately 200,000 time steps (i.e. 0.2 s of physical time)
are performed. The inlet velocity is 6 ms−1 and the Reynolds
number based on the height of the diaphragm isReh = 14000.
The Reynolds number based on the height of the duct isReh =
33000. The cut-off frequency according to a maximum mesh
size of ∆xmax = 18 mm at the outlet is about 2500 Hz.

The flow parameters used in the experimental setup14 are
p∞ = 105 Pa, ρ∞ = 1.168 kg/m3, c∞ = 346.15 m/s,
which are the freestream pressure, density, and sound speed,
respectively. The kinematic viscosity of the air is ν∞ =
1.46× 10−5 m2/s.

The component of the average velocities in Fig. 5 illustrates
that the flow through the diaphragm can be separated into three
regions: first, the uniform flow in the upstream duct, second,
the jet-type flow emanating from the diaphragm where most
acoustic energy is produced, and third, the uniform flow in the
downstream duct segment after x = 0.4 m.

An asymmetric flow, in spite of the symmetric test section
and symmetric inlet and outlet, called the Coanda effect26 oc-
curred in this case. An increase of velocity near one wall is
accompanied with a decrease in the pressure, and then a pres-
sure difference is established across the duct, this will maintain
the asymmetry of the flow. This break in the symmetry can be
associated to a pitchfork bifurcation. At lower Reynolds num-
bers, experiments and stability analyses show that a constricted
channel has a unique symmetric solution below a prescribed

Figure 5. Average velocities u (levels between -10 and 20 m/s), v (levels
between –7 and 7 m/s), urms (levels between 0 and 7 m/s), and vrms (levels
between 0 and 5 m/s).

Reynolds number, dependent on the contraction ratio and on
the shape of the contraction. Above this critical Reynolds num-
ber, a pitchfork bifurcation results in a stable asymmetric flow.
In the present simulation, the reattached point from the jet was
about x = 170 mm at the upper wall. For comparison, an
attachment point was near x = 175 mm in the work of Glo-
erfelt,15 and an attachment point near x = 150 mm has been
measured by particle image velocimetry (PIV) for the same ge-
ometry but with an incoming velocity of 14 m/s.27 The choice
of one side or the other is dependent on the subtle details of
the initialization and transient history of the flow, which can
place the flow in the domain of attraction of one or the other
solutions in the multidimensional state space.

Power Spectral Densities (PSD) of vertical velocity at sev-
eral locations in the upper shear layer are shown in Fig. 6. Data
are evaluated for 2400 samples with a resolution of ∆f =
10.6 Hz and a sampling rate of 25 kHz. The similarity param-
eter η = (y−y0.5)/δθ shows that the mean stream-wise veloc-
ity profiles collapse for δθ = 1 mm instead of 0.7 mm15 (See
Fig. 7). This momentum thickness corresponds to the Strouhal
number Stδθ = fδθ/Um equal to 0.019, close to the value of
0.017 for the most unstable frequency of a hyperbolic tangent
velocity profile in the linear stability analysis.28 In the simi-
larity parameter, y0.5 corresponds to u = 0.5Um and Um is
19 m/s at different longitudinal locations.

A peak centred around the Strouhal number 0.019 corre-
sponding to the frequency 368 Hz is presented at (x, y, z) =
(0.04, 0.01, 0.0). This peak therefore indicates the presence
of Kelvin-Helmholtz instability in the jet shear layer. Other
points exhibit a more broadband content correlating to the pe-
riodic shedding and collapse of large-scale jet column instabil-
ities.

4.2. Acoustic Simulation
At a 2-D slice of the duct, in the central plane of the di-

aphragm, the acoustic pressure was computed with the hybrid
method. An acoustic computation is performed based on the
acoustic source terms computed by LES simulation. Since
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Figure 6. PSD of instantaneous vertical velocity fluctuations v′ in m2/s2/Hz
vs. Strouhal number. From top to bottom, measured points located at y =
0.01, z = 0, x = 0.04, 0.12, and 0.16.

the flow field is simulated as three-dimensional, the acoustic
source terms are calculated at the central surface of the duct in
the xy plane. Then they are fed to the aeroacoustic solver code
for the prediction of the noise generated by the turbulence flow
inside a duct.

Spatial filtering29 according to Eq. (23) is applied to the
smooth source outgoing from the source region.

w(x) =

{
1 x ≤ x1

1− x−x1

L1
x > x1

; (23)

where x1 is defined as the position from which the weighting
is applied, and L1 is the length of the subdomain where the
weighting is applied.

The acoustic power is obtained from acoustic intensity I in
the outlet section of the duct:

PdB = 10 log

(
I

Iref
× S

)
(24)

I =
1

ρ0C0

∫ [
PSD(p′)

]
(f) df ; (25)

Figure 7. Mean streamwise velocity profiles. — hyperbolic tangent profile
(1−tanh)/2, �: x = 1.5 mm, ♦: x = 3 mm, 4: x = 6 mm, ◦: x = 9.5 mm.

Figure 8. Power spectral at the outlet section. - - - DNC result,15 — hybrid
method.

where Iref = 10−12 Wm2. At the inlet and outlet of the duct,
the acoustic power is equal to 71.5 dB and 80.3 dB, respec-
tively, which are close to the 69 dB and 78.8 dB from the DNC
result of Gloerfelt and Lafon.15 The total acoustic power is ob-
tained by summing the acoustic intensities in the inlet and out-
let sections. From our hybrid method of prediction of sound,
the total radiated power 80.8 dB are calculated, that the value
of 79 dB was referred in the work of Gloerfelt15 and 79.3 dB
in the empirical U4 law based on the experimental work of
Van Herpe.14 The power acoustic result predicted by the hy-
brid method at the outlet boundary is compared with the DNC
results in Fig. 8. The measured power spectrum is an average
of ten samples. The DNC result only exists up to a frequency
equal to 2000 Hz, which is lower than 2163 Hz, which is the
cutting frequency associated to the duct height, D.

The acoustic pressure maps in the computational domain of
the diaphragm are shown in Fig. 9. This shows the imaginary
part of the acoustic pressure in the Fourier domain at above
and below the first frequency of the cut-off mode in the ducted
diaphragm. Figure 9(a) is at f = 2000 Hz, which is below
the cut-off frequency, and Fig. 9(b) shows the imaginary part
of the acoustic pressure at f = 3500 Hz, which is above the
cut-off frequency. The change in the formation of the acous-
tic pressure map below and above the first transverse mode of
the duct is clearly obvious at Fig. 9. The acoustic pressure
contours corresponding to the imaginary part of the acoustic
pressure contours for the straight duct were shown in Fig. 3.
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Figure 9. Imaginary part of acoustic pressure at: (a) f = 2000 Hz, (b)
f = 3500 Hz. Levels between −0.002 and +0.002.

5. CONCLUSIONS

This work proposes a hybrid method that consists of an
incompressible flow solver and boundary element method
(BEM) for accurate prediction of sound generated by complex
flows at low Mach numbers.

This approach was carefully validated for two spinning vor-
tex filaments in an infinite two-dimensional duct. The results
show excellent agreement between the hybrid method and the
analytical acoustic field.

The proposed approach can predict the acoustic field in ge-
ometries of arbitrary extent and complexity, compact or non-
compact, and high Helmholtz numbers.

As a demonstration of an engineering application, the sound
generation over a diaphragm, which is applicable in heating,
ventilating, and air-conditioning (HVAC) systems of automo-
tive industries, was studied. The result of the hybrid approach
was in good comparison with the DNC results in the frequency
range adequately resolved by the numerical method.
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APPENDIX A

An incompressible flow description is obtained by integrat-
ing the reciprocal Biot-Savat induction of the two spinning vor-
tices. The 2-D velocity field (u, v) induced by the two spinning
vortex filaments is derived from the complex velocity poten-
tial: u − iv = dw/dz, where z = x + iy is the complex
coordinate. The complex velocity potential is w(z) = Φ + iΨ,
where, Φ is the real velocity potential, and Ψ is the stream
function. The resulting velocity potential due to the vortex n
at the coordinate zn is therefore:

w(z) = − iΓ
2π

{
log(z−zn)− log

[
z−(zn+ih−2iy1)

]
+

log
[
z−(zn−2ih)

]
− . . .− log

[
z−(zn−ih−2iy1)

]
+

log
[
z−(zn+2ih)

]
+ . . .

}
; (A.1)

where Γ = 85 m2s−1 is the circulation of each vortex. The
duct height h = 1 m and the density ρ = 1.225 kg/m3 are

used to normalize the other quantities. The vortex filaments
are initially placed over the duct axis, separated by a dis-
tance d = h/2. The relevant velocity and Mach number are
U = Γ/d and M = Γ/(dc0) = 0.5 with a speed of sound
c0 = 340 m/s. The velocity field and the wall pressure inside
the duct, induced by the two spinning vortex filaments, is per-
formed in two steps. In the first step, the trajectories of the two
vortices are integrated in time, by evaluating the velocity field
induced at each vortex position by the other filament. The ve-
locity field over the whole duct domain can then be obtained
from the complex potential induced by the two vortices at each
time step. The ODE function of Matlab was used to solve the
trajectory of the two vortices by time-marching the equations
for the position of each vortex filament m, induced by its po-
tential and the potential due to the other vortex n, accounting
for their images:

um = − Γ

4h

{
sin
[
π(ym−yn)

h

]
cosh

[
π(xm−xn)

h

]
− cos

[
π(ym−yn)

h

] +

sin
[
π(ym+yn)

h

]
cosh

[
π(xm−xn)

h

]
+ cos

[
π(ym+yn)

h

] +

sin
[
2πym
h

]
1 + cos

[
2πym
h

]}; (A.2)

vm = − Γ

4h

{ − sinh
[
π(xm−xn)

h

]
cosh

[
π(xm−xn)

h

]
− cos

[
π(ym−yn)

h

] +

sinh
[
π(xm−xn)

h

]
cosh

[
π(xm−xn)

h

]
+ cos

[
π(ym+yn)

h

]}; (A.3)

for m,n = 1, 2 (m 6= n). Integrating the unsteady Bernoulli
equation:

∂Φ

∂t
+
|V |2

2
+

∫
dp

ρ
= 0. (A.4)

Along each wall, yields the unsteady pressure distribution
at the wall, which is related to the local value of the velocity
potential and slip velocity:

pw = −ρ
(
∂Φw
∂t

+
u2m
2

)
. (A.5)

Once the kinematics of the vortices have been integrated,
the velocity field at any point within the duct, except at the
filament position, can be obtained from the summed velocity
potentials of the vortices (A.1) with n = 1, 2. At every time
step, velocity fields corresponding to the azimuthal velocity
within a core size δ from the vortex filament considered as:

u = − Γ

2π

y

x2 + y2 + δ2
; v =

Γ

2π

x

x2 + y2 + δ2
. (A.6)

The core sizes are kept small compared to the distance between
the vortices to be consistent with filament-based mutual induc-
tion model, therefore it is considered to be equal to δ = h/50.
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