A Parametric Shock Analysis of Spade-Less, Lightweight, Wheeled, Military Vehicles Subjected To Cannon Firing Impact: A Feasibility Study of Spade Removal

Ashkan Haji Hosseinloo

School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore

Nader Vahdati

Department of Mechanical Engineering, The Petroleum Institute, PO Box 2533, Abu Dhabi, UAE

Fook Fah Yap

School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore

(Received 28 September 2012; accepted 29 November 2012)

Tracked military vehicles are being replaced by their lightweight wheeled counterparts in many armies around the world. However, mounting high calibre artillery guns on lightweight, wheeled vehicles may bring about problems such as crew discomfort, vehicle slide, lift-off, turnover, and etc. To avoid these problems, spades are used to connect the vehicle to the ground which in turn reduces the vehicle mobility. Furthermore, the optimum spade design for different vehicles and soils is a difficult if not impossible task to accomplish. In this paper, a spade-less, four-wheeled vehicle with a mounted mortar is modelled, and the effects of the firing impact amplitude, duration, and elevation angle on vehicle response are investigated. It is found that all of the likely problems can be avoided if appropriate precautions are taken, except for firing inaccuracy at very high bomb charges. Therefore, for many cases, it is feasible to remove the spades.

 c_{hf}

Front horizontal damping coefficient of chas-

NOMENCLATURE

			sis
F_r	Recoil force	L	Vehicle wheelbase
m_r	Recoil mass	a	Distance from mortar-chassis centre of gravity
m_{tr}	Rear unsprung mass		to front of the car
m_{tf}	Front unsprung mass	b	Distance from mortar-chassis centre of gravity
m_c	Mortar-chassis mass		to rear of the car
m_{ch}	Chassis mass	С	Horizontal distance from mortar-chassis cen-
m_{mor}	Mortar mass		tre of gravity to mortar connection point to chassis
I_c	Mortar-chassis mass moment of inertia	f	Distance from mortar centre of gravity to its
I_{ch}	Chassis mass moment of inertia	J	connection point to chassis
I_{mor}	Mortar mass moment of inertia	e	Distance from chassis centre of gravity to rear
k_r	Recoil stiffness	C	of the car
k_{cr}	Rear suspension stiffness	d	Distance from chassis centre of gravity to front
k_{cf}	Front suspension stiffness		of the car
k_{tr}	Rear tire stiffness	h	Horizontal distance from chassis centre of
k_{tf}	Front tire stiffness		gravity to mortar connection point to chassis
k_{hr}	Rear horizontal stiffness of chassis	α	Mortar elevation angle from horizon
k_{hf}	Front horizontal stiffness of chassis	h_c	Vertical distance from mortar-chassis centre of
c_r	Recoil damping coefficient		gravity to mortar connection point to chassis
c_{cr}	Rear suspension damping coefficient	h_r	Vertical distance from mortar-chassis centre of
c_{cf}	Front suspension damping coefficient		gravity to rear suspension
c_{tr}	Rear tire damping coefficient	h_{f}	Vertical distance from mortar-chassis centre of
c_{tf}	Front tire damping coefficient	5	gravity to front suspension
c_{hr}	Rear horizontal damping coefficient of chassis		

International Journal of Acoustics and Vibration, Vol. 18, No. 4, 2013 (pp. 183–191)