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Recently, the Timoshenko beam, and generalizations thereof, have been considered as models for the vibration of
single and multiple walled carbon nanotubes. Further, it has been shown that, in some instances, carbon nanotubes
and nanotube sheets possess the common property that their Poisson’s ratio is negative. In these cases, the de-
generate case of the Timoshenko beam problem, where E = k′G, becomes physically realizable. The asymptotic
derivation of the vibration spectrum in this case is qualitatively different from that for the nondegenerate case. We
performed such a derivation, and we compared the asymptotic results with numerical results. Further, we per-
formed parameter studies based on the exact frequency equation for the undamped case for values of E/k′G on
intervals including E/k′G = 1. The results show very interesting and complex behavior throughout a fairly large
interval about E/k′G = 1.

1. INTRODUCTION

The asymptotic estimation of the vibration spectrum of the
dissipative Timoshenko beam problem with constant coeffi-
cients was performed in Coleman and Wang1 and generalized
to the case of x-dependent coefficients in Shubov.2 However,
in each case, the computations were performed under the as-
sumption that E 6= k′G, EI/K 6= Iρ/ρ, where ρ is the linear
mass density; E, Young’s modulus; I , the area moment of in-
ertia for bending; Iρ, the mass moment of inertia; G, the shear
modulus; k′ the shape factor; and K the shear stiffness. In-
deed, the arguments therein fail if we set EI/K = Iρ/ρ from
the start.

Here, then, we treat the degenerate case when the coeffi-
cients are constant. The asymp- totic computations and, in par-
ticular, the reflection coefficients, are seen to be qualitatively
different from those for the case EI/K 6= Iρ/ρ . As for the
results, we again see the typical double-branched Timoshenko
spectrum, with each branch corresponding to its own damping
rate determined by one of the two damping parameters. What
is interesting, although not surprising, is that the eigenfrequen-
cies now appear in pairs with equal imaginary parts, one for
each branch. Thus, for the special case involving conserva-
tive boundary conditions, the two branches merged into one
“double-branch” asymptotically.

Further, we investigated the spectrum’s behavior as
EI/K → Iρ/ρ. Our numerical results suggest that the
nondegenerate spectrum approaches the degenerate spectrum
smoothly, at least in an asymptotic sense–indeed, if we set
EI/K = Iρ/ρ in the asymptotic formulas in Coleman and
Wang1 and Shubov,2 the results match those given here (al-
though, as we show, the convergence for the degenerate case
is slower than for the non-degenerate). However, we also per-
formed parameter studies for the exact frequency equation for

the undamped beam, and these show that the spectrum pos-
sesses a much richer and more interesting behavior than is sug-
gested by the asymptotic and numerical results.

An important consideration is whether the criterion
EI/K = Iρ/ρ is physically realizable. We have that Iρ = σI
and K = k′GA, where σ is the mass per unit volume and, A
the cross-sectional area. Further, E = 2(1 + ν)G, where ν is
the Poisson’s ratio. Thus,

EI

K
=
Iρ
ρ
⇐⇒ k′G, (1)

from which it follows that

2 (1 + ν) = k′, (2)

or

γ2 =
E

k′G
=

2 (1 + ν)

k′
= 1. (3)

For standard materials, this is impossible, as 0 < ν < 0.5 and
0 < k′ < 1.

There are materials, known as auxetics, that possess a neg-
ative Poisson’s ratio. Although many of these materials seem
to be ill suited to the design of beam-like objects, there are
exceptions. In particular, the field of nanotechnology has ex-
ploded onto the scene in recent years, and there is great interest
in the study of carbon nanotubes, given their many desirable
properties. While their mechanical behavior has been studied
via models based on molecular dynamics, these models can be
fairly complex and cumbersome, and the computations time-
consuming. Thus, people have explored alternative models,
and there is surprising evidence that models from continuum
mechanics may give satisfactory results even for structures
only a few atoms thick.3, 4 In particular, the Euler-Bernoulli
and Timoshenko beam equations have been used to model the
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