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The vibration analysis of rotating machinery indicates the condition of potential faults such as unbalance, bent

shaft, shaft crack, bearing clearance, rotor rub, misalignment, looseness, oil whirl and whip, and other malfunc-

tions. More than one fault can occur in a rotor. This paper describes the application of an artificial neural network

(ANN) and wavelet transform (WT) for the prediction of the effect of the combined faults of unbalance and shaft

crack on the frequency components of the vibration signature of the rotating machinery. The experimental data

of the frequency components and the corresponding root mean square (RMS) velocity (amplitude) data are used

as inputs to train the ANN, which consists of a three-layered network. The ANN is trained using an improved

multilayer feed forward back propagation Levenberg-Marquardt algorithm. In particular, the overall success rates

achieved were 99.78% for unbalance, 99.81% for shaft crack, and 99.45% for the combined faults of unbalance

and shaft crack. The wavelet transform approach enables instant to instant observation of different frequency com-

ponents over the full spectrum. A new technique combining the WT with ANN performs three general tasks: data

acquisition, feature extraction, and fault identification. This method is tested successfully for the individual and

combined faults of unbalance and shaft crack at a success rate of 99.9%.

1. INTRODUCTION

In order to avoid the failure of various types of rotating ma-

chinery, including mechanical and electrical ones, using so-

phisticated instrumentation to monitor the conditions of vari-

ous machine signatures has been found to be of considerable

use. Vibration measurement and analysis has been applied

with success1 to machines such as steam and gas turbines,

pumps, compressors, and induction motors. Faults such as

unbalance, misalignment, looseness, rub, and cracks, generate

vibration signals. In the present work, an experimental study

has been carried out for a steady state response (constant speed

of 1500 rpm) of the rotor for different unbalance masses and

cracks on the rotor test rig. The vibration frequency compo-

nents recorded in the horizontal, vertical, and axial directions

for the analysis are applied. The experimental study has also

been carried out to discover the difference in vibration char-

acteristics due to the combined faults of unbalance and crack

growth. The monitoring of the vibration of rotating machines

has been reported as being a useful technique for the analysis

of their condition.2–5 Vibration condition monitoring as an aid

to fault diagnosis is examined by Taylor (1995). Smalley and

colleagues (1996) present a method of assessing the severity of

vibrations in terms of the probability of damage by analyzing

the vibration signals. Though the measured vibration signa-

tures of frequency domain features are adequate to identify the

faults, there is a need for a reliable, fast, and automated pro-

cedure of obtaining diagnostics.6 Unbalance is an important

cause of vibration in rotating machinery, and the reduction of

such vibration by balancing needs attention. In this paper, the

experimental studies are presented in the dynamic balancing

of a flexible shaft using the four run method (FRM) (Mallik

& Basu). The vibration frequency of rotor unbalance is syn-

chronous, i.e., one time the shaft rotation speed (1X rpm). Ro-

tor unbalance has been reported to appear occasionally in the

frequency domain as a series of harmonics of the shaft running

speed, i.e., 1X rpm, 2X rpm, 3X rpm, 4X rpm, etc7 induction

motors, etc.

1.1. Artificial Neural Networks

The neural network techniques are used in conjunction with

signal analysis techniques for the classification and quantifi-

cation of faults in some applications.8 Kaminski has devel-

oped neural networks to identify the approximate location of

damage due to cracks through the analysis of changes in the

neural frequencies.9 McCormick and Nandi use a neural net-

work method for automatically classifying the machine con-

dition from the vibration time series.10 Vyas and Satish Ku-

mar have carried out experimental studies to generate data for

rotating machinery faults such as mass unbalance and bear-

ing cap loose.11 Srinivasan has carried out extensive studies

on faults such as parallel misalignment, angular misalignment,

unbalance, crack, light and heavy rubs, looseness, and bearing
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Figure 1. Three layers network.

clearance.12

Figure 1 shows a simple network consisting of three layers

with one input layer, one hidden layer and one output layer.

There are no connections between nodes in the same layer

and no connections that bridge the layers. Such networks with

only one hidden layer can uniformly approximate any contin-

uous function and therefore provide a theoretical basis for the

use of this type of network. The input-output relationship of

each node is determined by a set of connection weights Wi,
a threshold parameter bi, and a node activation function A( )
such that

Y = A(WiXi + bi), (1)

where Y is the output of the node and Xi are the inputs. The

activation function A( ) defines the output of a neuron in terms

of activity level at its input. The sigmoid function is the most

common activation function used in neural networks. It is de-

fined as a strictly increasing function that exhibits smoothness

and asymptotic properties. The Tan-sigmoid activation func-

tion is used in the hidden layer. The purelin activation function

is used in the output layer.

In the present work, an improved back propagation neural

network has been applied for the diagnosis of the combined

faults of unbalance and shaft bow. It attempts to minimize the

square of the error between the output of the network and the

desired outputs by changing the connection weights that use

some form of gradient descent. The back propagation method

has used gradient descent techniques, which are simply the

techniques, where parameters such as weights and biases are

moved in the opposite direction towards the error gradient.

The Levenberg-Marquardt algorithm has the best convergence

speeds for small and medium size networks.13, 14 This opti-

mization technique is more accurate and faster than the gradi-

ent descent method. The Levenberg-Marquardt update rule is

∆W = (JT J + µI)−1JT e, (2)

where ∆W is the small change in weight. J is the n by m
Jacobian matrix JT J which keeps the function N rows of J
linearly independent, and µ is a small positive constant chosen

to ensure (JT J + µI) is positive for all n values. If µ is very

large, the above expression approximates gradient descent; if

it is small, the above expression becomes the Gauss-Newton

method. The Gauss-Newton method is faster, more accurate,

and near an error minimum. Training continues until the error

goal is met, the minimum error gradient occurs, the maximum

value of µ occurs, or the maximum number of epochs has been

finished. The MATLAB Neural Network Toolbox has been

applied for diagnosing the rotating machinery faults.

1.2. Wavelet Transform

The wavelet transforms acts as a “mathematical micro-

scope” in which one can observe different paths of the sig-

nal by “adjusting the focus”. A frequency component of the

RMS velocity indicates the health of a particular machine. The

wavelet transform approach allows the detection of short-lived

frequency component in the signals. The method is logical

since high-frequency components (such as short bursts) need

high-frequency resolution as compared with low-frequency

components, which require low-frequency resolution. This pa-

per also describes the use of wavelet transform to decompose

the vibration signal into several frequency ranges at different

levels of resolution. The strength (RMS) of the selected de-

composed signals is then calculated under the combined faults

of unbalance mass and shaft crack conditions. The neural net-

work is then trained with the generated database to automate

the fault diagnostic process.

2. DESCRIPTION OF THE TEST RIG

The experimental operator is shown in Fig. 2. The exper-

imental rotor system used in this work consisted of a motor,

which was connected by a flexible coupling and a single disk

rotor. The rotor shaft was supported by two identical brass

bush bearings and had a length of 250 mm. The diameter of

the rotor shaft was 15 mm. It had a disk of 116 mm in diame-

ter, 22 mm in thickness and a disk of mass 1.65 kg, which were

mounted on the rotor shaft mid-way between the bearing sup-

ports. The disk was fixed on the rotor shaft by radial screws.

There were 36 tapped holes symmetrically placed on each side

of the disk flat faces at a radius of 45 mm in order to attach any

desired amount of unbalance mass. The bearing pedestals were

provided in order to fix the sensors and to measure the dynamic

vibration level in the horizontal, vertical and axial directions.

The rotor shaft was driven by a 0.37 kW ac/dc variable speed

motor. A constant operating speed of 1500 rpm was main-

tained, though the motor speeds ranged from 0–8000 rpm. The

natural frequency of the rotor was 4.45 Hz in the lateral mode.

The critical speed was 267 rpm. The piezoelectric accelerom-

eters (Bruel and Kjaer, type 4370 piezoelectric accelerome-

ter, charge sensitivity 9.99 picocolumbs/ms2) were attached in

three directions for measurement of RMS velocity in mm/s.

The frequency analysis was carried out using a FFT analyzer

(pulse lite, basic 2-channel, max 12K points up to 1000 Hz in-

put frequency). An accelerometer enabled the measurement of

the vibration level in the horizontal, vertical and axial direc-

tions. The output of the accelerometer was connected to the

FFT analyzer for frequency analysis. Three special fixtures

attached tightly to the bearing pedestal were used to hold the

accelerometer at the desired locations. The signal was trans-

mitted to a transducer and pre-amplifier. The output of the

pre-amplifier signal was transmitted to the FFT analyzer.
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Figure 2. Rotor Test Rig.

3. FREQUENCY SPECTRUM ANALYSIS
ON THE EFFECTS OF THE COMBINED
FAULTS OF UNBALANCE AND SHAFT
CRACK

In this experiment, combination of mass unbalance and shaft

crack were both introduced simultaneously in the rotor test rig.

The unbalance mass ranging from 6.5 g to 18.5 g and shaft

crack ranging from 1.5 to 6.0 mm, with a combination of un-

balance and shaft crack were used. The combined faults of un-

balance and crack weare introduced and the vibration signals

of the rotor were recorded from bearing 2 in the horizontal,

vertical and axial directions. The amplitude signals are stored

in a dual channel FFT analyzer for further analysis. The fre-

quency analysis has been carried out for the frequency com-

ponent of RMS velocity due to different mass unbalance and

crack depths. Values of the combined faults of unbalance and

shaft crack on the frequency components of the RMS velocity

(mm/s) are listed in Table 1.

Initially, the base line vibration signature for “no crack” was

recorded. The transverse crack with a width of 0.75 mm at

Table 1. Values of frequency components of the RMS vibration velocity

(mm/s) for various unbalance masses ranging from 6.5 g to 18.5 g and a crack

depth of 6.0 mm were obtained at a rotor speed of 1500 rpm.

Frequency Training Set (mm/s) Testing Set

Components Combined Unbalance and

Shaft Crack in (g/mm)

6.5 10.5 14.5 18.5 (g)

6 6 6 6 (mm)

1XH 1.480 1.820 1.920 1.980

2XH 0.068 0.072 0.142 0.162

3XH 0.054 0.064 0.074 0.082

4XH 0.048 0.052 0.084 0.088

1XV 0.980 1.240 1.640 1.720

2XV 0.088 0.092 0.098 0.122

3XV 0.078 0.082 0.084 0.098

4XV 0.060 0.068 0.072 0.080

1XA 0.320 0.380 0.410 0.420

2XA 0.084 0.086 0.094 0.098

3XA 0.058 0.058 0.066 0.072

4XA 0.042 0.044 0.052 0.064

a distance of 8 mm from the bearing and depth ranging from

1.5 to 6.0 mm were created at the mid span of the shaft by

cutting with jewel saw. A special probe was attached to the

dial indicator to measure the depth of crack. The unbalance

mass range was from 6.5 g to 18.5 g with a combination of

unbalance and crack. The machine was run at 1500 rpm.

It is observed that the first harmonic in the horizontal

direction 1X component has increased from 0.53 mm/s to

1.98 mm/s. The second harmonic 2X has also increased from

0.046 mm/s to 0.162 mm/s. There is an increase in the level of

1X frequency component of vibration from 0.38 to 1.72 mm/s

in vertical direction. The 2X frequency component of vibra-

tion has also increased from 0.039 mm/s to 0.122 mm/s in the

vertical direction. It is observed from Figs. 3(a) to 3(d) that

1X frequency component of vibration is to be seen predomi-

nantly in the horizontal direction ranging from 0.53 mm/s to

1.98 mm/s for the crack depth ranging from 1.5 mm to 6.0 mm

and unbalance ranging from 6.5 g to 18.5 g corresponding to

a speed of 1500 rpm, and a phase angle of 48 degrees. The

increase in the vibration level is the highest with 1X frequency

components in the horizontal direction is 1.98 mm/s.

4. APPLICATIONS OF ANN FOR FAULT
DIAGNOSIS

The neural network used for rotor fault diagnosis consisted

of one hidden layer and one output layer. Tan-sigmoid activa-

tion function was used in the hidden layer. The output layer

used a purelin transfer function. The input vectors for training

the network were the RMS velocity (mm/s) frequency com-

ponents of the vibration signatures measured in the horizon-

tal, vertical and an axial direction for faults such as unbalance

and crack. The network performance is called generalization,

which is the ratio of actual output to the desired output ex-

pressed in a percentage. The network was trained and tested

with different neuron combination with different error goals

for the above faults.
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Figure 3a. Frequency components of the RMS velocity for unbalance mass of

6.5 g and a crack depth of 1.5 mm.

Figure 3b. Frequency components of the RMS velocity for unbalance mass of

18.5 g and a crack depth of 1.5 mm.

4.1. Network training and testing of com-
bined faults of unbalance and shaft
crack data

The training and test data of the present study were gen-

erated on a rotor test rig (shown in Fig. 2). Table 1 shows

the training data and test data of the RMS velocity for vari-

ous unbalance masses and crack in the horizontal, vertical, and

axial directions. The values of frequency components in the

horizontal, vertical and axial directions for unbalance ranging

from 6.5 g to 18.5 g are noted. The ANN was trained by us-

ing MATLAB Neural Network Toolbox. The ANN is said to

be trained when the epochs are maximum, learning rate µ is

maximum, and error is minimum. The training was carried out

using of error goals from 0.01 to 0.0001, with different num-

bers of neurons. Since there is no specific method to decide

the exact number of neurons in the hidden layer, an empiri-

cal geometrical pyramid rule will be discussed.3 The number

of hidden neurons equals
√

mn, where m = number of out-

put neurons and n = number of input neurons. In this case

the value of m = 3, and n = 12. According to the empiri-

cal rule, the number of hidden neurons will be 6. The network

was trained using 8 neurons with error goal combinations of

0.0001. The testing was carried out using the test set given in

the last column of Table 1. From Table 1, with an error goal

of 0.0001 and 8 neurons, it is seen that in training number 2,

the epochs and (µ) remain constant and the sum squared er-

Figure 3c. Frequency components of the RMS velocity for unbalance mass of

6.5 g and a crack depth of 6.0 mm.

Figure 3d. Frequency components of the RMS velocity for unbalance mass of

18.5 g and a crack depth of 6.0 mm.

ror becomes minimized, which leads to a good generalization.

After successful training, the network is tested for simulation

with a separate set of untrained data. It is observed that the

neural network is able to detect the corresponding unbalance

of 18.4367 g and shaft crack of 1.4977 mm for epochs of 8 and

an error of 1.81961e-007 for an error goal of 1e-005. The ex-

perimental value of unbalance is 18.5 g and the value of shaft

crack is 1.5 mm. The ANN has identified the value of unbal-

ance to an accuracy of 99.65% and shaft crack of 99.84%. This

is in close correlation with the experimental values. This data

is shown in Table 2.

Table 2. Quantification of unbalance mass and crack shaft, error goal 0.0001

and hidden neurons 6

Serial Experimen- Epochs MSE ANN Per-

no. tal values of Quanti- cen-

combined fication tage

faults of un- values

balance (g)

and shaft

crack (mm)

1
6.5

3 0.00031116
6.3857 98.24

1.5 1.4971 99.80

2
18.5

8 1.81961e-007
18.4367 99.65

1.5 1.4977 99.84

3
6.5

3 0.000484793
6.4419 99.10

6.0 5.9093 98.48

4
18.5

8 3.00341e-006
18.4022 99.47

6.0 5.9957 99.92
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Figure 4. Multi-resolution signal decomposition.

Figure 5a. Wavelet decomposition corresponding to an unbalance mass of 6.5

g and a shaft crack of 6.0 mm.

Figure 5b. Wavelet decomposition corresponding to an unbalance mass of

10.5 g and a shaft crack of 6.0 mm.

5. WAVELET ANALYSIS

Wavelet transform is a mathematical tool with a powerful

structure and enormous freedom to decompose a given sig-

nal into several scales at different levels of resolution. Fig-

ure 4 shows the multi-resolution signal decomposition algo-

rithm used for the implementation of discrete wavelet trans-

form. In this figure, s(n) is the sampled signal of f(t), which

is sampled at the rate of fs Hz. Then the digitized signal s(n)
is first decomposed into a1(n) and d1(n) using a low pass filter

h1(n), and a high pass filter g1(n), respectively, where, d1(n)
is called the detail function, which contains higher-frequency

terms, and a1(n) is called the approximation signal, which

contains low-frequency terms. This is called first scale decom-

position. The second scale decomposition is now based on the

signal a1(n), which gives a2(n) and d2(n). The next higher

Figure 5c. Wavelet decomposition corresponding to an unbalance mass of

14.5 g and a shaft crack of 6.0 mm.

Figure 5d. Wavelet decomposition corresponding to an unbalance mass of

18.5 g and a shaft crack of 6.0 mm.

scale decomposition is now based on a2(n) and so on. At any

level f the approximation signal aj(n) will be composed of

frequencies 0–fc Hz. Similarly, the detail signal dj(n) at any

level f will contain frequencies of range fc–2 Hz. The cutoff

frequency fc of approximation signal aj(n) for a given level f
is found by

fc =
fs

2f+1
. (3)

Additionally, the number of points in the decomposed detail

and approximation signals decreases gradually through succes-

sive decimation. Thus, to compute the discrete wavelet trans-

form (DWT) all that is needed are filters. The signal is con-

volved with these filters. In contrast to the short-time Fourier

transforms (STFT), the time resolution becomes arbitrarily fine

at high frequencies, while the frequency resolution becomes

arbitrarily fine at low frequencies. In the present work, an at-

tempt was made to use wavelet transform for identification of

rotor fault, which does not depend on a single frequency, but

on a band of frequencies.

5.1. Feature Extraction

The aim of the feature extraction is to apply the transfor-

mation that extracts the signal features hidden in the original

frequency domain. Corresponding to different characteristics

of the signal, transformation should be properly selected so
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Table 3. RMS value of vibration signal and its ten detailed coefficient wavelet decompositions

Unbalance Mass (g) Original
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

+ Shaft Crack (mm) RMS

Unbalance Mass 6.5 g
0.4432 0.2541 0.3296 0.3996 0.2747 0.1762 0.1973 0.3495 0.6314 1.0864 1.9250

+ Shaft Crack 6.0 mm

Unbalance Mass 10.5 g
0.6940 0.4064 0.5050 0.6013 0.4282 0.2700 0.3026 0.5359 0.9677 1.6653 2.9507

+ Shaft Crack 6.0 mm

Unbalance Mass 14.5 g
1.5622 0.6322 0.5712 0.6111 0.6027 0.3169 0.3501 0.6220 1.1159 1.9228 3.4061

+ Shaft Crack 6.0 mm

Unbalance Mass 18.5 g
3.3088 0.6834 0.6037 0.6443 0.6473 0.3345 0.3696 0.6560 1.1770 2.0279 3.5923

+ Shaft Crack 6.0 mm

Table 4. Normalized training data set

SI. Unbalance Mass Input

No + Shaft Bow W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

1
Unbalance Mass 6.5 g

0.1389 0.1490 0.1593 0.1407 0.1261 0.1292 0.1518 0.1937 0.2612 0.3860
+ Shaft Crack 6.0 mm

2
Unbalance Mass 10.5 g

0.1603 0.1750 0.1893 0.1640 0.1400 0.1450 0.1796 0.2440 0.3472 0.5380
+ Shaft Crack 6.0 mm

3
Unbalance Mass 14.5 g

0.1940 0.1850 0.1907 0.1894 0.1470 0.1520 0.1924 0.2660 0.3854 0.6056
+ Shaft Crack 6.0 mm

4
Unbalance Mass 18.5 g

0.2015 0.1896 0.1960 0.1962 0.1496 0.1550 0.1980 0.2750 0.4010 0.6334
+ Shaft Crack 6.0 mm

that the specific signal structure can be enhanced in its trans-

formed domain. The fault identification techniques are those

which compare the current data with that of the known cases

to reach a final diagnosis. A multi-resolution property of the

discrete wavelet transform (DWT) is used to analyze the vibra-

tion signal under different fault conditions. The Daubechies

wavelet was selected for the signal analysis because it pro-

vides a much more effective wavelet than that obtained with the

other wavelets (Haar, Coifman, etc). When vibration signals

collected under different conditions are decomposed via the

wavelet, the appreciable differences between the correspond-

ing wavelet coefficients, as shown in Figs. 5(a),(b),(c), and (d),

can be seen. However, conducting a direct assessment from all

wavelet coefficients turns out to be tedious job. Therefore, the

wavelet node power ej at f level decomposition in defined as

ej = 1/Nj.

Here, Nj is the number of coefficients at level f , wj, k is

the kth coefficient calculated for jth level, ej is the RMS (root

mean square) value of the decomposed signal at a level f . It

measures the signal power contained in the specified frequency

band indexed by the parameter f in order to relate the RMS

value of the wavelet decomposition signals with different rotor

faults. For each case four sets of data are recorded.

The vibration in the RMS value of the first ten decomposi-

tions for one segment from each case is shown in Table 3. The

similar values are obtained for other vibration segments. From

Table 1, it is clearly observed that the shaft crack depth is kept

at a constant 6.0 mm, and the unbalance mass is varies from

6.5 g to 18.5 g in order to study the vibration characteristics

due to the combination of unbalance and shaft crack. Due to

an increase of unbalance mass with a constant crack depth, the

1X frequency component of the RMS velocity is predominant

in the horizontal direction.

5.2. Data Normalization

During the training of the neural network, input variables of

higher values may tend to suppress the influence of the smaller

one. To overcome this problem and in order to make neural

network perform well, the data must be well processed and

properly scaled before being input into the ANN. All the com-

ponents of the feature vector are normalized using the equation

xn =

[

x

1.5 × xmax

]

0.8 + 0.1, (4)

where x is actual data, xmax is the maximum value of the data,

and xn is the normalized data. The maximum value is obtained

from the faulty data set. The maximum value is multiplied by

the factor 1.5 so that if the fault severity is more than what is

considered until now, the same neural network can be useful

for fault identification. Table 4 shows the normalized value of

the RMS level given in Table 3 by using Eq. (4). The neural

network toolbox of MATLAB has been used to simulate the

desired network. The “newff” function of MATLAB has been

used to create a three-layered back propagation network. In

the training process, the network is trained according to the

Levenberg-Marquardt optimization technique until the mean

square error is found below 0.0001 or the maximum number

of epoch’s (300) is reached.

Table 4 shows the normalized values of wavelets of com-

bined faults of unbalance and shaft crack. The first three rows

of data [(6.5g+6.0mm) to (14.5g+6.0mm)] have been used for

training the network and the last row of data (18.5g to 6.0mm)

is test data. The network has used 6 neurons with error goal

of 0.0001. The testing set has been shown in the last row of

Table 4. After sum squared error has decreased and µ has in-

creased it yielded good generalization. Using this network the

combined faults of unbalance and shaft crack has been quanti-

fied as 18.4998 g and 6.0 mm or 99.99 % and 100.00 % of the

experimental value. The result as shown in Table 5.

6. CONCLUSIONS

The amplitude of vibration of a rotor bearing system, which

is measured in the horizontal, vertical and axial directions, is

used to study the effects of vibration characteristics of a com-

bination of unbalance and shaft crack. The experiments are

carried out by creating a crack depth ranging from 1.5 mm to

6.0 mm by varying the unbalance mass. It is recorded that

the 1X frequency component of vibration has predominantly

increased in the horizontal direction in all of the cases. To
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Table 5. Quantification of combined faults of unbalance and shaft crack us-

ing combined form of ANN and wavelet transform, error goal of 0.0001 and

hidden neurons 6

Serial Experimen- Epochs MSE Combined Per-

no. tal values of ANN and cen-

combined wavelet tage

faults of un- transform

balance (g) Quanti-

and shaft fication

crack (mm) values

1 6.5 3 1.21179e-007 6.4998 99.99

6.0 5.9996 99.99

2 10.5 8 0.000971871 10.4995 99.99

6.0 6.0000 100.00

3 14.5 5 8.88666e-006 14.4998 99.99

6.0 5.9998 99.99

4 18.5 4 0.000357918 18.4998 99.99

6.0 6.0000 100.00

quantify these faults, one promising approach is to use the arti-

ficial neural network of a multilayer feed forward back propa-

gation algorithm. It has been seen by training of network with

data that was obtained experimentally and by testing the same

data. Further work needs to be done by using other types of

networks and algorithms. Removing the arbitrariness in the

choice of the network parameters is another area where more

work must be done. The ANN is used for diagnosing and quan-

tifying of faults. The success rates, based upon each fault, have

been reported .In particular, overall success rates of 99.78% for

unbalance, 99.81% for shaft crack, and 99.45% for the com-

bined faults of unbalance and shaft crack have been achieved.

This paper has also investigated the feasibility of applying the

discrete wavelet transform to identify the combined faults of

unbalance mass and shaft crack. To alleviate the frequency-

invariant characteristics of the wavelet coefficients and to re-

duce the dimensionality of the input to the neural network, the

RMS value at selected decomposition levels are used as a fea-

ture measure of the signal. The features obtained by the pro-

posed method yields nearly 99.99% quantification when used

as input to a neural network.
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