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The problem of vibration control of overhead line conductors subjected to laminar transverse wind, which induces

stationary vibrations by Kármán effect, is important due to the consequences on these structures lifetime and ser-

vice. We consider the conductor (cable) model as the Euler-Bernoulli beam, fulfilling the authors’ condition that

detaches the conductor model of the beam model with viscous, hysteretic, or dry friction internal-damping hypoth-

esis. The aeolian vibration control of the conductor is based on the energy-balance principle that takes accounts

for the wind-energy input, the energy dissipated by the conductor due to hysteretic self-damping properties (or

equivalent viscous damping) and, eventually, the energy dissipated by the Stockbridge dampers. The aim of this

approach is to mitigate the vibration level of overhead line conductors. The original analytical expression of the

free-vibration modes and the resonance-frequencies equation for the cable with clamped extremities have been

produced. The analytical expression of the kinetic energy of the cable is compared with the amount of dissipated

energy, obtained by experimental means, for the control of vibration of transmission lines. Some applications are

presented here.

1. INTRODUCTION

We consider the cable model derived from the Euler-

Bernoulli beam with viscous, hysteretic, or Coulomb internal

damping.1–11 The analytical expression of the free-vibration

modes and the resonance-frequencies equation for the cable

with clamped extremities are produced using our hypothesis of

the cable imposed to the Euler-Bernoulli beam, essentially for

accurate identification of the cable-model parameters. High-

lighted in this paper is the property of any Euler-Bernoulli

beam model to be substituted with our cable model for suf-

ficient high frequencies because our hypothesis of the cable is

respected by the Euler-Bernoulli beam in these conditions. The

classic analytical solutions of the Euler-Bernoulli beam equa-

tion are applicable for low frequencies, but for high frequen-

cies (see the case of fuel bundle beams of the nuclear power

plant), our cable model gives analytical solutions. We were

able to find some recent studies in our domain of interest.12–21

Our experimental research was performed on a specialized

stand endowed with an overhead conductor with clamped ex-

tremities, alone or with a choice of Stockbridge dampers, and

mounted on the extreme zones of the span. The resonance fre-

quencies and vibration modes of the conductor in the stand

are also identified theoretically and experimentally. The possi-

bility of analyzing the influence of the concentrated harmonic

force, applied on the cable middle span, and the influence of

the aeolian forces through their energy diagrams were discov-

ered. This gives the possibility of using the energy-balance

principle to determine the vibration level of the cable at the

resonance and the dynamic bending strain of the cable, versus

frequencies, in the domain of interest. The analytical aspects

of the internal-damping terms influence versus frequencies in

the cable models are discussed.

2. MATHEMATICAL MODEL OF CABLE

WITH GENERAL DAMPING

The following equation of free vibrations is considered:1–7

mL
∂2wi

∂t2
=− cH∗

i wi −

(

cV
i +

cH
i

ωV H
i

)

∂wi

∂t
+

+ T
∂2wi

∂x2
− EI

∂4wi

∂x4
+ q. (1)

Equation (1) describes the behavior of the cable, excited by

the force q = q(x, t), applied transversal on the cable, acting

in the point of abscissa x at time t, on the viscous damping

hypothesis by the constant coefficient cV
i , on the hysteretic

damping hypothesis by the constant coefficient of the form

cH
i /ωV H

i , and on the dry friction (Coulomb) damping hypoth-

esis, expressed by the coefficient cH∗
i . The coefficient cH∗

i

is, piecewise, constant, as a function of time t, and the sign

is such that the sign of the damping force cH∗
i wi(x, t) is op-

posite to that of the velocity ẇi(x, t) = ∂wi(x, t)/∂t at any

time t. Other explicit expression of the dry-friction force is

cH1
i |wi(x, t)|sign(ẇi(x, t)), where cH1

i is constant.7 The first

expression of the dry-friction force is deduced, in our case, tak-

ing into account that the functions wi(x, t) and ∂wi(x, t)/∂t
continue with separable variables. We denote by ωV H

i the

circular frequency of order i for damped free vibration, by

fV H
i = ωV H

i /π/2 the resonance frequency of order i for

damped free vibration, by mL the mass unit length of the ca-

ble, by EI the bending rigidity of the cable, by T the tension in

the cable, by yi(x, t) the corresponding vertical displacement

of the cable for vibration mode of order i, and by L the span

length of the cable.

Firstly, we searched the stabilized free transverse vibrations

of the cable without damping and with clamped extremities,

which are of standing waves form:

wr(x, t) = wr(x)sin(ωrt + ϕ). (2)

In Eq. (2), the notations signify that ωr = 2πfr is the circu-

lar frequency, with fr the resonance frequency of the cable in

free vibrations without damping, and that ϕ is the phase angle

between the initial impulse and displacement. The following
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dimensionless notations appear below:3

α2 =
TL2

EI
, δr =

[

α2

2
+

(

α4

4
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)

1

2

]

1

2

,

β4
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mLω2
rL4

EI
, εr =

[

−
α2

2
+

(

α4

4
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1
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]

1

2

.

The expressions α, βr, δr, εr verify the relationships:

δ2
r − ε2

r = α2, δrεr = β2
r ,

δ4
r − α2δ2

r − β4
r = 0, ε4

r + α2ε2
r − β4

r = 0. (3)

We searched for the solution of Eq. (1) using the condition

performed by the cable wire in the cases studied in the liter-

ature, which represents our hypothesis that detaches the cable

model of the beam model:8–11

e−δr ≈ 0. (4)

For the clamped cable, the equation of resonance frequen-

cies is8–11

α2sinεr − 2β2
r cosεr = 0. (5)

The analytical expression of the free vibration modes for

undamped free vibrations of the cable in the case of clamped

boundary conditions is shown in (6):

wr(x) = Cr

{

e−δrξ +
δr

εr
sinεrξ − cosεrξ+

−
δr

εr
eδr(ξ−1)sinεr + eδr(ξ−1)cosεr

}

, ξ =
x

L
. (6)

The factor Cr for each r = 1, 2, . . . is a constant. Anyone

can verify that any Euler-Bernoulli beam model can be sub-

stituted with our cable model for sufficient high frequencies

because δr −→
r
∞ and, thus, e−δr −→

r
0.

We specify the following particular solutions wr(x) of the

cable model that defines Eq. (2) in the case q(x, t) = 0, cV
r =

0, cH
r = 0, cH∗

r = 0, that also define the particular solutions of

the beam model:

w1r(x) = e−δrξ, w2r(x) = eδrξ,

w3r(x) = sinεrξ, w4r(x) = cosεrξ, ξ =
x

L
. (7)

The relations from Eq. (3) can be used to justify the particu-

lar solutions in Eq. (7).

The vibration mode of undamped vibration, expressed by

relations Eqs. (2) and (6), is a solution of Eq. (1), where

q(x, t) = 0, cV
i = 0, cH

i = 0, cH∗
i = 0 because wr(x)

from Eq. (6) is a linear expression of the particular solutions

from Eq. (7). The vibration mode of Eq. (2) also verifies the

imposed boundary conditions.

In the case of the damped free vibrations described by

Eq. (1), one searches for the solution of the form wi(x, t) =
Xi(x)Ti(t), where Xi(x) defines a vibrating mode of order i
from Eq. (6). The equation deduced from Eq. (1) for the un-

known function Tt(t) is as follows:

d2Ti(t)

dt2
+ 2cV H

i

dTi(t)

dt
+ cΩH∗

i Ti(t) = 0,

cV H
i = cV

i /mL/2 + cH
i /mL/ωV H

i /2,

cΩH∗
i = ω2

i + cH∗
i /mL, (8)

Equation (8) is deduced using the relationship

EI
d4Xi(x)

dx4
− T

d2Xi(x)

dx2
= ω2

i mLXi(x). (9)

In Eq. (8), ωi is the circular frequency of the free undamped

vibration of the cable, and ωV H
i is the circular frequency of the

free damped vibration of the cable.

The characteristic equation attached to Eq. (8) is as follows:

Z2
i + 2cV H

i Zi + cΩH∗
i = 0, (10)

The solutions of Eq. (10) are

Zi1 = −cV H
i +

{

(

cV H
i

)2
− cΩH∗

i

}1/2

,

Zi2 = −cV H
i −

{

(

cV H
i

)2
− cΩH∗

i

}1/2

. (11)

If cΩH∗
i <

(

cV H
i

)2
such that ω2

i <
(

cV H
i

)2
−cH∗

i /mL, then

the general solution of Eq. (8) is

Ti(t) = C1e
Zi1

t + C2e
Zi2

t. (12)

The solution (12) does not describe our physical model. It is

necessary to take into account the inequality ω2
i ≥

(

cV H
i

)2
−

cH∗
i /mL or ω2

i + cH∗
i /mL ≥

(

cV H
i

)2
.

In the above case, there exists the solution described below:

Ti(t) = ecV H
i t

{

C1isinωV H
i t + C2icosω

V H
i t

}

,

ωV H
i =

{

ω2
i + cH∗

i /mL −
(

cV H
i

)2
}

1

2

, i = 1, 2, . . . . (13)

If the initial conditions for the searched solution of the form

wi(x, t) = Xi(x)Ti(t) (with fixed index i) for Eq. (1) (where

q(x, t) = 0) are chosen as wi(xo, to) = Doi,
∂wi

∂t (xo, to) =
Voi, where Xi(x) is a vibrating mode defined by the formula in

Eq. (6), then we consider the expression of the vibration mode

as follows:

wi(x, t) =
Xi(x)

Xi(xo)
e−cV H

i (t−to)

{(

cV H
i

Doi

ωV H
i

+

+
Voi

ωV H
i

)

sinωV H
i (t− to) + Doicosω

V H
i (t− to)

}

, (14)

ωV H
i =

{

ω2
i + cH∗

i /mL −
(

cV H
i

)2
}

1

2

, i = 1, 2, . . . .

From Eq. (14), for to = 0 and vo = 0, we can write

wi(x, t) = Xi(x)
Doi

Xi(xo)
e−cV H

i t

{

cV H
i

ωV H
i

sinωV H
i t+

+cosωV H
i t

}

, i = 1, 2, . . . . (15)

The following notation and formulas are used in Eq. (15):

cV H
i /ωV H

i = ctg(αi), αi = arcctg(cV H
i /ωV H

i ),

αi ∈ (0,
π

2
), sin2(αi) = (ωV H

i )2/(ω2
i + cH∗

i /mL),

cos2(αi) = (cV H
i )2/(ω2

i + cH∗
i /mL). (16)

Hence, the form deduced for the function Ti(t) is

Ti(t) = DH∗
i e−cV H

i tsin(ωV H
i t + αi), i = 1, 2, . . . ,

DH∗
i =

Doi(ω
2
i + cH∗

i /mL)1/2

Xi(xo)ωV H
i

. (17)
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The function
dTi(t)

dt , deduced from Eq. (15), has the form:

dTi(t)

dt
= −DH∗

i e−cV H
i tsin(ωV H

i t), i = 1, 2, . . . . (18)

Between the parameters of the mathematical model of the

cable, the following condition of compatibility arises for i =
1, 2, . . . :

(ωV H
i )2 =

{

ω2
i +

cH∗
i

mL
−

(

cV
i

2mL
+

cH
i

2mLωV H
i

)2
}

, (19)

The condition of compatibility also has the following form:

4m2
L(ωV H

i )4 −
(

4m2
L + 4mLcH∗

i +

−(cV
i )2

)

(ωV H
i )2 + 2cV

i cH
i ωV H

i + (cH
i )2 = 0. (20)

The infinite set of coefficients cV
i , cH

i , cH∗
i , i = 1, 2, . . .

(with the possibility of repetition) is supposed to be bounded.

The formulas Eqs. (14) and (17) specify that the influence

of the hysteretic and dry-friction damping are negligible for

the vibration mode if this mode is high enough, since cV H
i ≈

cV
i /mL/2, and ωV H

i ≈ ωi for sufficiently high frequencies.

However, the influence of viscous damping is maintained. This

property of the cable is confirmed experimentally as well.

Equation (14) can also be used for performing the objec-

tive function referred to unknown parameters EI , cH
i , cH∗

i , cV
i

expressed theoretically and experimentally. We use cable dis-

placements and the weighted least-square method to identify

the specified parameters. The expression of the objective func-

tion is

f(EI, cV
i , cH

i , cH∗
i ) =

∑

i,x,t

wcof
i {wc

i (x, t)− wexp
i (x, t)}

2
.

(21)

We use theoretical displacements wc
i (x, t) and experimen-

tal displacements wexp
i (x, t), theoretically calculated or exper-

imentally measured in some points of abscises x, also for some

moments of time and for some frequencies both in the domain

of interest and where wcof
i = 1/(wexp

i (x, t))2 assure the ob-

jective function is dimensionless.

To determine the parameters, we used the model of the cable

defined by Eq. (1) on the hypothesis of viscous-free damping

(cH
i = 0, cH∗

i = 0) only. The parameters are the bending

rigidity, EI , of the cable and the coefficient, cV , of the vis-

cous damping referred to in some frequencies in the domain

of interest. The experimental values are measured by using an

experimental stand with a single overhead cable. The span is

L = 32 m, the ends of the cable are well fixed, T = 1333 N ,

and mL = 0.757 kg/m.

The analyzed frequencies, according to experimental values,

are f9 = 11.89 Hz, f15 = 19.5 Hz, and f19 = 24.98 Hz.

The points considered are x1 = 0.089 m, x2 = 2.0 m, and

x3 = 16.2 m. The moments of time correspond to the main

values of the displacements. The values of the bending rigid-

ity, EI (40 Nm2), and of viscous damping, cV (2.675 Ns/m),
are determined by the minimization of Eq. (21), which was

adapted to this case.

The diagram of the damped displacement of the cable for

the resonance frequency of 19.5 Hz, in the point of abscissa

x = 16.2 m on the span of the overhead cable, is plotted in

Fig. 1.

Figure 1. The diagram of damped displacement for resonance frequency.

Figure 2. The empirical power induced by the wind.

3. THE ENERGY BALANCE PRINCIPLE

The energy balance principle is expressed by the following

equation:2

Ew = Ed
C + Ed

D, (22)

with EW serving as the energy induced by the wind, Ed
C and

Ed
D serving as the energy dissipated by the cable for any mode

of vibration, respectively by the dampers, and mounted on the

extremities zones of the transmission line span. The energy

balance permits us to determine the amplitude of the vibration

mode analyzed and the dynamic bending strain of the cable,

which is the key factor in evaluating the dynamical stress/strain

in the cable and, thus, the position regarding the fatigue dam-

age. The dynamic bending strain εb
r of the cable, at the rigidly

clamped extremities, can be expressed by the following empir-

ical relationship:21

εb
r = kεdyr(xb). (23)

In relation to Eq. (23), xb = 0.089 m, d is the diameter

of outer strand of the cable, yr(xb) is the bending amplitude

for the mode r of the cable vibration, and kε is the empirical

coefficient.

Concerning the wind energy, several authors have studied

the wind energy imparted to the conductor (see Fig. 2).22

For example, the following relationships, Eqs. (24)–(26), are

deduced experimentally or theoretically:

Pw

f3D4
=

Ew

f2D4
= fnc(yo/D) = 10z. (24)

In the above formula, Pw is the wind power on the unit

length of the conductor, Ew is the wind energy on the unit
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length of the conductor, f is the frequency, D is the conduc-

tor diameter, yo is the antinodes amplitude, yo/D is defined as

dimensionless amplitude, fnc(yo/D) is a reduced power (or

reduced energy) of the wind and could be taken into account

by power z of the form z =
∑

n anXn, X = log10(2yo/D).

For the experimental diagram of the wind energy of Di-

ana (Italy) we propose the following analytical expression of

the reduced power, defined by z =
∑9

n=0 anXn and X =
log10(2yo/D) with values a0, . . . , a9 done by

a0 = 1.26575, a1 = 1.69387, a2 = −1.08622,

a3 = −12.7859, a4 = −34.620,

a5 = −43.7526, a6 = −31.583, a7 = −13.190,

a8 = −2.96931, a9 = −0.27798. (25)

The energy dissipated by the conductor per cycle, in the hy-

pothesis of hysteretic damping only, is given by the relation2

Ec
r =

π

16
cH × r3 × Y 02

r /L2. (26)

In Eq. (26), r is the modal number, cH is the hysteretic

damping coefficient that depends of the type of the conduc-

tor, Y o
r is the cycle amplitude of the conductor, and L is the

span length.

The last term of the energy-balance equation will be evalu-

ated in terms of the per-cycle frequency characteristics of the

dampers when the cycle amplitude is Do. This way, the ex-

perimental data {Ed
i (Do, f)}i∈N can be extrapolated from the

assumption of linearity of the dynamic system of the damper,

spaced at abscissa xd
i , for the frequency fr and amplitude Y o

r .

We use the relation8

Ed
i (Y o

r , fr) = Ed
i (Do, fr)

(

Y o
r

Do

)2

sin2

(

πr
xd

i

L

)

. (27)

The balance-energy relationship yields a transcendental

equation for Y o
r from which the amplitude of the rth vibration

mode is obtained.

The dynamic bending strain at the clamped extremities can

be evaluated according to the relationship in Eq. (23) for all

resonance frequencies in the range of practical interest, such as

fmin ≤ fr ≤ fmax The values of fmin and fmax are given

by the minimum and maximum wind velocities that can induce

aeolian vibration in the conductor. The corresponding interval

for the modal numbers can also be obtained. The resulting εr

is compared with the maximum allowable value εa.

Based on the semi-analytical model presented above, an al-

gorithm and a computing program were made in order to obtain

the diagrams of dynamic bending strain versus frequency.

To illustrate the method, a span of a single ACSR 54/19 con-

ductor type, without dampers or equipped with two dampers of

Table 1. Parameters for computation

Conductor diameter D [m] 3.15× 10
−2

Diameter of the outer strands d [m] 3.5× 10
−3

Hysteretic damping constant cH [Nm] 10,791

Mass of conductor unit length mL [Kg/m] 1.982

Span length L [m] 400; 800

Dynamic bending rigidity EI [Nm2] 23.35

Air density ρ [ Kg/m3] 1.25

Strouhal constant ks 0.185

Coefficient for D.B.S. evaluation kε [m−2] 390

Traction force along the conductor T [N] 40,050

the same kind, equally spaced from the span clamped extremi-

ties, was considered.

Two construction types of Stockbridge dampers were con-

sidered: one with two resonance frequencies (Avb5) from the

current production of a specialized manufacturer and one with

five resonance frequencies (AvbT), a prototype developed in

our institute.

The diagrams of the energy dissipated per cycle (Nm) versus

frequency (Hz) obtained on a hydraulic shaker for Do = 25×
10−5 m are shown in Figs. 3 and 6.

Figure 3. Energy dissipated by the Avb5 damper.

Figure 4. DBS for a conductor with Avb5 damper, L=400 m.

Figure 5. DBS. for a conductor with Avb5 damper, L=800 m.
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Figure 6. Energy dissipated by the AvbT damper.

Figure 7. DBS for a conductor with AvbT damper, L=400 m.

Figure 8. DBS for a conductor with AvbT damper, L=800 m.

The conductor tension T was chosen to represent 25% of

its ultimate tensile stresses (UTS), which is the usual value for

the conductor (EDS). The numerical values of the parameters

used in the computations are given in Table 1. The numerical

results are shown in Figs. 4, 5, 7, 8, as the diagrams of dynamic

bending strain (µm/m) versus frequency (Hz) for different

damper-spacing values denoted XA and measured in meters.

The case of the span without dampers is obtained for XA = 0.

In the case studied, the dynamic bending strain (DBS) of the

tested conductor is of small variability for all wind velocities

that can induce aeolian vibration in the frequency range 10 Hz
– 50 Hz. This value is bigger than the maximum allowable

bending strain. Therefore, the span must be provided with vi-

bration dampers for both span extremity zones.

The effect of vibration dampers spaced in the usual range

is obvious since the dynamic bending strain is in all cases re-

duced under the safety limit. The diagrams show that (AvbT)

is more efficient then (Avb5), but both types could be used for

the aeolian vibration control of the considered spans.

One can see that adequate damper spacing could further re-

duce the vibration level and implicit fatigue of the conductor.

This spacing effect could become very important, especially

when the dynamic bending strain was close to the maximum

allowable value.

A comparison between a span of 400 m and a span of 800 m

gives conclusions about the vibration level and the optimum

position for dampers in each case. The model with analytical

expression of the wind energy is more accurate than a model

with concentrate wind force.

4. ANALYTICAL CONSIDERATIONS ON THE

SYSTEM ENERGY

We considered the analytical expression in Eq. (14) of the

solution wi(x, t) = Xi(x)Ti(t) (with fixed i) in the hypothesis

of viscous damped free vibrations only for Eq. (1), with the

values q(x, t) = 0, cH
i = 0, cH∗

i = 0.

This solution is for a cable clamped to the extremities and

with the initial conditions Doi, Voi. Also using the notations

βim = cV
i /mL/2 and ω2

iβ = ω2
i − β2

im, the kinetic energy per

cycle of the cable, is

Eic =
1

2
mL

∫ tβ
o

to

(

dTi(t)

dt

)2
(

∫ L

0

X2
i (x)dx

)

dt

tβ0 = t0 +
2π

ωiβ
. (28)

The kinetic energy is evaluated using the values x0 = L/2,

t0 = 0, and V0i = 0. In this case, Doi is the amplitude of the

vibration mode.

Firstly, we calculate the integral referred to variable x. We

deduce it as follows:

∫ L

0

X2
i (x)dx = L + L

(

3

4δi
+

α2

2ε2
i

−
5δi

4ε2
i

)

+

+
L

εi

(

α2

4ε2
i

+
α2

δ2
i + ε2

i

+
2δ2

i

δ2
i + ε2

i

)

sin2εi+

+ L

(

δi

2ε2
i

+
α2δi

ε2
i (δ

2
i + ε2

i )
− 2

δi

δ2
i + ε2

i

+

−
α2

4δiε2
i

)

cos2εi = LkL. (29)

Also, we calculate

∫ tβ
0

t0

(

dTi(t)

dt

)2

dt =
1

x2
io

∫ tβ
0

t0

e−2βt
im(V Doi)

2dt,
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tβ0 = t0 +
2π

ωiβ
, βt

im = βim(t− t0), X2
io = X2

i (x0),

V Doi = Voicosω
t
iβ − ωDV

i sinωt
iβ ,

ωDV
i = ω2

i

Doi

ωiβ
+ βim

Voi

ωiβ
, ωt

iβ = ωiβ(t− t0). (30)

For t0 = 0, Voi = 0 we get

∫ 2π
ωiβ

0

(

dTi(t)

dt

)2

dt =
1− e−4πβim/ωiβ

4X2
i (x0)βim

ω2
i D2

oi,

∫ 2π
ωiβ

0

(

dTi(t)

dt

)2

dt ≈
π

4X2
i (x0)ωiβ

ω2
i D2

oi. (31)

In the initial conditions for the damped free vibration wi(x, t),
when Doi is the ventral amplitude of the vibration mode, we

can calculate the maximum kinetic energy (or power) and,

therefore, the total energy of the cable, using these relations:

Eic =
1

2
mL

∫ 2π
ωiβ

0

(

dTi(t)

dt

)2
(

∫ L

0

X2
i (x)dx

)

dt.

Eic ≈
πmLLkL

2X2
i (x0)ωiβ

ω2
i D2

oi (32)

X2
i (x0) = X2

i (L/2) =

δ2
i + ε2

i

2ε2
i

−
α2

2ε2
i

cosεi −
δi

εi
sinεi. (33)

The calculation of the kinetic energy of the cable can be

compared with the percentage of the dissipated energy, ob-

tained experimentally, from the total energy of the cable.

5. EXPERIMENTAL DEDUCTION OF THE

DISSIPATED ENERGY

The experimental determination of the self-damping charac-

teristic of a cable is based on the recommendations from spe-

cialty papers.2, 23–29

For measuring the dissipated energy per cycle by a cable that

vibrates in one of the free modes, there are several methods that

can be grouped in two main categories: the methods of free

vibration and forced vibration. The forced vibration method

can be applied in two variants: the stationary wave method

and the power method.

In the case of the power method, the one employed here,

the conductor cable is excited to reach several possible reso-

nances, and the induced power is directly determined by the

product between the concentrated-force amplitude and the am-

plitude of the velocity of the resultant displacement, in the

exciting point. In the stationary state, this power equals the

self-dissipated power of the cable, with the condition that the

two quantities are harmonic and in quadrate (a phase shift of

π/2). Thus, the dissipated energy per cycle and, respectively,

the power dissipated, have the same magnitude as the ones in-

duced by the exciter. For such a regime, in the application

point of excitation, one can write the following relations:

w = W0sin(2πft− θ1), v = V0sin(2πft− θ2),

F = F0sin(2πft), (34)

θ1 = θ1(f), θ2 = θ2(f), V0 = 2πfW0. (35)

This method is faster and simpler than the other, but for

good results it is necessary to minimize the losses of energy at

the ends; therefore, one firmly embeds the cable in very solid

clamps.

6. NUMERICAL RESULTS

A collective from our institute determined the self-damping

of a conductor cable on an experimental site endowed with

an Al-St 300/69 conductor, having the characteristics from Ta-

ble 2:26, 28, 29

Table 2. Parameters of the conductor

Characteristic Values Dimension

Outer diameter 2.515× 10
−2 m

Breaking force 129,603 N

Mass per unit length 1.389 Kg m−1

Span length 28 m

traction 35000 N

First, one calculates the values of the total power of the ca-

ble at the resonance frequencies, using the relation (32), for

the viscous internal-damping hypothesis (cH
i = 0, cH∗

i = 0).

Also, one experimentally performs the dissipated power of the

cable (Fig. 9) and then calculates the percentage of the dis-

sipated power from the total power induced to the cable. This

percentage directly increases with the resonance frequency values.

Figure 9. Experimentally dissipated power versus frequency.

7. CONCLUSIONS

The original analytical considerations about the definition

of the cable in a viscous, hysteretic, or dry friction internal-

damping hypothesis, using our cable model detached from the

Euler-Bernoulli beam model, permit us to perform the analyti-

cal vibration modes of the cable and control these vibrations.

The energy-balance principle presented here can be used to

establish the optimum values of the cable parameters such that

the vibration level of the cable with or without Stockbridge

dampers is in safety limits, taking into account the frequencies

of the cable in the domain of interest.

From the last experimental results for the cable, we noticed

that with the increase of the resonance frequencies value, the

percentage of the dissipated power also increased, tending to

reach almost 100% for higher frequencies, toward the limit of

the common range. This proves that the self-damping is a very

important component in the overall damping assessment.

We proved analytically that it is possible for the conductor

cable to simultaneously consider the influence of viscous, hys-

teretic, and dry friction internal damping of the cable, but the

hysteretic and dry-friction damping are negligible to maintain
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a sufficiently high vibration mode of the cable while the influ-

ence of viscous damping is maintained.

The analytical results of the cable model are entered for the

studies about how much can lead the analytical calculation in

the mathematical modeling of the mechanical phenomena up

to replacing with a numerical method of the solution calcula-

tion by using the numerical values of the parameters.30 The

large analytical phase for the deduction of the mathematical

model of mechanical phenomena increases the precision of the

results and shortens the time needed on the computer calculation.
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