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The problem of vibration control of overhead line conductors subjected to laminar transverse wind, which induces

stationary vibrations by Kármán effect, is important due to the consequences on these structures lifetime and ser-

vice. We consider the conductor (cable) model as the Euler-Bernoulli beam, fulfilling the authors’ condition that

detaches the conductor model of the beam model with viscous, hysteretic, or dry friction internal-damping hypoth-

esis. The aeolian vibration control of the conductor is based on the energy-balance principle that takes accounts

for the wind-energy input, the energy dissipated by the conductor due to hysteretic self-damping properties (or

equivalent viscous damping) and, eventually, the energy dissipated by the Stockbridge dampers. The aim of this

approach is to mitigate the vibration level of overhead line conductors. The original analytical expression of the

free-vibration modes and the resonance-frequencies equation for the cable with clamped extremities have been

produced. The analytical expression of the kinetic energy of the cable is compared with the amount of dissipated

energy, obtained by experimental means, for the control of vibration of transmission lines. Some applications are

presented here.

1. INTRODUCTION

We consider the cable model derived from the Euler-

Bernoulli beam with viscous, hysteretic, or Coulomb internal

damping.1–11 The analytical expression of the free-vibration

modes and the resonance-frequencies equation for the cable

with clamped extremities are produced using our hypothesis of

the cable imposed to the Euler-Bernoulli beam, essentially for

accurate identification of the cable-model parameters. High-

lighted in this paper is the property of any Euler-Bernoulli

beam model to be substituted with our cable model for suf-

ficient high frequencies because our hypothesis of the cable is

respected by the Euler-Bernoulli beam in these conditions. The

classic analytical solutions of the Euler-Bernoulli beam equa-

tion are applicable for low frequencies, but for high frequen-

cies (see the case of fuel bundle beams of the nuclear power

plant), our cable model gives analytical solutions. We were

able to find some recent studies in our domain of interest.12–21

Our experimental research was performed on a specialized

stand endowed with an overhead conductor with clamped ex-

tremities, alone or with a choice of Stockbridge dampers, and

mounted on the extreme zones of the span. The resonance fre-

quencies and vibration modes of the conductor in the stand

are also identified theoretically and experimentally. The possi-

bility of analyzing the influence of the concentrated harmonic

force, applied on the cable middle span, and the influence of

the aeolian forces through their energy diagrams were discov-

ered. This gives the possibility of using the energy-balance

principle to determine the vibration level of the cable at the

resonance and the dynamic bending strain of the cable, versus

frequencies, in the domain of interest. The analytical aspects

of the internal-damping terms influence versus frequencies in

the cable models are discussed.

2. MATHEMATICAL MODEL OF CABLE

WITH GENERAL DAMPING

The following equation of free vibrations is considered:1–7
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Equation (1) describes the behavior of the cable, excited by

the force q = q(x, t), applied transversal on the cable, acting

in the point of abscissa x at time t, on the viscous damping

hypothesis by the constant coefficient cV

i
, on the hysteretic

damping hypothesis by the constant coefficient of the form

cH

i
/ωV H

i
, and on the dry friction (Coulomb) damping hypoth-

esis, expressed by the coefficient cH∗

i
. The coefficient cH∗

i

is, piecewise, constant, as a function of time t, and the sign

is such that the sign of the damping force cH∗

i
wi(x, t) is op-

posite to that of the velocity ẇi(x, t) = ∂wi(x, t)/∂t at any

time t. Other explicit expression of the dry-friction force is

cH1

i
|wi(x, t)|sign(ẇi(x, t)), where cH1

i
is constant.7 The first

expression of the dry-friction force is deduced, in our case, tak-

ing into account that the functions wi(x, t) and ∂wi(x, t)/∂t
continue with separable variables. We denote by ωV H

i
the

circular frequency of order i for damped free vibration, by

fV H

i
= ωV H

i
/π/2 the resonance frequency of order i for

damped free vibration, by mL the mass unit length of the ca-

ble, by EI the bending rigidity of the cable, by T the tension in

the cable, by yi(x, t) the corresponding vertical displacement

of the cable for vibration mode of order i, and by L the span

length of the cable.

Firstly, we searched the stabilized free transverse vibrations

of the cable without damping and with clamped extremities,

which are of standing waves form:

wr(x, t) = wr(x)sin(ωrt + ϕ). (2)

In Eq. (2), the notations signify that ωr = 2πfr is the circu-

lar frequency, with fr the resonance frequency of the cable in

free vibrations without damping, and that ϕ is the phase angle

between the initial impulse and displacement. The following
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