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In this paper an analytical model has been developed to investigate the nonlinear dynamic behavior of an unbal-
anced rotor-bearing system due to ball size variation of the rolling elements. Two cases of ball-size variation were
considered: variations of 0.2 micron and 2 microns. In the analytical formulation, the contact between rolling
elements and inner/outer races was considered a nonlinear spring, which became stiff using the Hertzian elastic
deformation theory. A detailed contact-damping model reflecting the influences of the surface profiles and the
speeds of both contacting elements was developed and applied in the rolling-element bearing model. The mathe-
matical formulation accounted for the sources of nonlinearity, such as the Hertzian contact force, varying speed,
and radial internal clearance. The equations of motion of a rolling-element bearing were formulated in generalized
coordinates, using Lagrange’s equations that consider the vibration characteristics of the individual constituents,
such as inner race, outer race, rolling elements, and shaft, in order to investigate the structural vibration of the
bearing. All results have been presented in form of Fast Fourier Transformations (FFT) and Poincaré maps. The
highest radial vibrations due to ball-size variation were at a speed of the number of balls multiplied by the cage
speed (ω = kωcage Hz). The other vibrations due to ball-size variation occurred at V C ± kωcage, where k was a
constant. The current study provides a powerful tool for design and health monitoring of machine systems.

NOMENCLATURE

Fd-in – roller-inner race contact damping force
Fd-out – roller-outer race contact damping force
Fu – Unbalanced rotor force, N
kin – equivalent non-linear contact stiffness of the

roller-inner race contact
kout – equivalent non-linear contact stiffness of the

roller-outer race contact
kin-contact – contact stiffness of the roller-inner race con-

tact
kout-contact – contact stiffness of the roller-outer race con-

tact
cin – equivalent viscous damping factor of the

roller-inner race contact
cout – equivalent viscous damping factor of the

roller-outer race contact
I – moment of inertia of each rolling element
Icage – moment of inertia of the cage
Iin – moment of inertia of the inner race
Iout – moment of inertia of the outer race
Min – mass of the inner race, kg
Mj – mass of the rolling elements, kg
Mout – mass of the outer race, kg
Mrotor – mass of the rotor, kg
Nb – number of balls
R – radius of outer race
r – radius of inner race

rin – position of mass centre of inner race
rout – position of mass centre of outer race
T – kinetic energy of the bearing system
Tcage – kinetic energy of the cage
Ti-race – kinetic energy of the inner race
To-race – kinetic energy of the outer race
Tr.e – kinetic energy of the rolling elements
V – potential energy of the bearing system
Vcage – potential energy of the cage
Vi-race – potential energy of the inner race
Vo-race – potential energy of the outer race
Vr.e – potential energy of the rolling elements
Vspring – potential energy of the springs
xin, yin – centre of inner race
xout, yout – centre of outer race
δin + – contact deformation of the roller-inner race
δout + – contact deformation of the roller-outer race(
φ̇
)

in
– angular velocity of inner race(

φ̇
)

in
– angular velocity of outer race

δ – deformation at the point of contact at inner
and outer race, mm

∆Γ – diameter difference of the off-sized ball, µm
γ – internal radial clearance
λ – Lyapunov exponent
ωcage – angular velocity of the cage, rad/s
ωinner – angular velocity of the inner race, rad/s
ωouter – angular velocity of the outer race, rad/s

International Journal of Acoustics and Vibration, Vol. 14, No. 3, 2009 (pp. 163–171) 163



Sanjay H. Upadhyay, et al.: VIBRATION SIGNATURE ANALYSIS OF HIGH-SPEED UNBALANCED ROTORS. . .

ρj – radial position of the rolling element
ρr – radius of each rolling element
θj – angular position of rolling element
χj – position of jth rolling element from the centre

of inner race
V C – varying compliance frequency, Hz
X – rotational frequency, Hz
FFT – fast Fourier transformations

1. INTRODUCTION

Rolling-element bearings have widespread domestic and in-
dustrial applications. Proper functioning of the appliances de-
pends, to a great extent, on the smooth and quiet running of
the bearings. The defects in rolling-element bearings can be
categorized as “local” or “distributed.” The distributed defects
in rolling-element bearings include surface roughness, wavi-
ness, misaligned races, and off-size rolling elements.1–3 The
surface features were considered in terms of wavelength com-
pared to the Hertzian contact width of the rolling-element race-
way contacts. Surface features of wavelength characterized by
the contact width or less were termed “roughness,” whereas
longer wavelength features were termed “waviness.”3 Dis-
tributed defects are caused by manufacturing error, improper
installation, or abrasive wear.4 The variation in contact force
between rolling elements and raceways due to the distributed
defects resulted in increased vibration level.

Vibration produced by waviness was first studied by Tallian
and Gustafsson.1 It is generally known that a ball bearing may
still cause vibrations even when it is defect-free.5–7 Aktürk
studied some characteristic parameters that affect the natural
frequency of a rotating shaft supported by defect-free ball bear-
ings.8 The conclusion of this work shows that large values of
axial preload causes stiffer spring characteristics and results in
higher natural frequency values. Harsha et al. analyzed the
nonlinear behavior of ball bearings due to the number of balls
and the preload effect.9 We found the nonlinear dynamic re-
sponse to be associated with the ball-passage frequency. The
amplitude of the vibration is considerably reduced if the num-
ber of balls and the preload are correctly selected.

For this paper, a theoretical investigation was conducted to
observe the effect of ball-size variations on the nonlinear vi-
bration characteristics of a rotor-bearing system. To deter-
mine how the nonlinear bearing forces act on the system, the
implicit numerical integration technique Newmark-β with the
Newton–Raphson method was used to solve the nonlinear dif-
ferential equations iteratively.16 The results obtained from a
large number of numerical integrations are mainly presented in
the form of a fast Fourier transformation and Poincaré maps.

2. PROBLEM FORMULATION

A schematic diagram of the rolling-element bearing is
shown in Fig. 1. For investigating the structural vibration char-
acteristics of the rolling-element bearing, a model of bearing

Figure 1. Schematic diagram of rolling-element bearings.

assembly was considered a nonlinear spring-mass damper sys-
tem. Elastic deformation between races and rollers gives a
nonlinear force deformation relation, which is produced by
Hertzian theory. In the mathematical modeling, the rolling-
element bearing was considered a spring-mass system, and
rolling elements acted as a nonlinear contact spring, as shown
in Fig. 2. Since the Hertzian forces arose only when there was
contact deformation, the springs were only required to act in
compression. In other words, the respective spring force comes
into play when the instantaneous spring length is shorter than
its unstressed length; otherwise, balls and the races separate,
and the resultant force is set to zero.

2.1. Ball Diameter Variations

When there is an off-sized ball in a bearing, this ball causes
an additional deflection difference. This difference could be
larger or smaller than the rest, depending on the off-sized ball
diameter. Figure 3 shows that one ball has a greater diame-
ter than the rest of balls in the set. This ball was forced to
squeeze more in relation to the other balls and, hence, pro-
duced a greater force than the rest. Hence, for this off-sized
ball, the equation of displacement of the jth ball became (as-
suming the inner and outer races were rigid)

δθ = δθi + ∆Γ, (1)

where ∆Γ was the diameter difference of the off-sized ball.
Because of the different ball diameters, the race was deformed
into a complex shape that turned with the rotational speed of
the cage.

2.2. Contact Stiffness

Hertz considered the stress and deformation in the perfectly
smooth, ellipsoidal, and contacting elastic solids. Applying
the classical theory of elasticity to the problem formed the ba-
sis of the stress calculation for machine elements as ball and
roller bearings. Therefore, the point contact between the race
and the ball developed into an area contact that had the shape
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Figure 2. Mass-spring damper model of rolling-element bearings.

Figure 3. Presence of an off-sized ball in a ball set.

of an ellipse with a and b as the semi-major and semi-minor
axes, respectively. It was assumed that the principal planes of
curvature of the two bodies were concurrent; this is always the
case for rolling-element bearings because the curvatures ρ11

and ρ21, as well as ρ12 and ρ22, lie in a common plane. The
detailed description of the elastic modulus for the contact of a
ball with the inner and outer race was already derived in pa-
per;12 the authors of this paper are using the same description.

2.3. Energy Expression of the Rolling-
Element Bearings

The total energy of the system was considered to be the sum
of kinetic energy, potential energy, strain energy of the springs

representing contact, and dissipation energy due to contact
damping. The detailed description of the energy expressions
resulting from different parts of rolling bearings, which were
already derived in the papers published by Harsha, were used
in this paper.10, 11 The contacts between rolling elements and
races were treated as nonlinear springs, which became stiff as
a result of the Hertzian theory of elasticity. The nonlinear stiff-
ness resulted from Hertzian contact effects and was evaluated
by equations, which are given in Appendix A. In those previ-
ous papers, a constant damping value was chosen, but, for this
paper, a nonlinear viscous damping model was adopted.

Energy dissipation

The lubrication was assumed to behave in a Newtonian
way. Hence, a viscous damping model in which the dissipa-
tive forces were proportional to the time derivate of the mutual
approach was adopted. The resulting equation yields

Fd = c (δ) δ̇q, (2)

where c (δ) is also a function of the contact geometry, the mate-
rial properties of the elastic bodies, the properties of lubricant,
and the contact-surface velocities. Hence, the total-energy dis-
sipation can be calculated, which is given in Appendix B.

2.4. Equations of Motion

The kinetic energy and potential energy contributed by the
inner race, outer race, balls, rotor, and springs, could be dif-
ferentiated with respect to the generalized coordinates ρj , j =
1, 2, . . . , Nb, xin, and yin to obtain the equations of motion.
For the generalized coordinates ρj , where j = 1, 2, . . . , Nb,
the equations were

ρ̈j + g sin θj + ρj θ̇
2 − 1

mj
(kin contact) [δin]

3/2
+

∂χj
∂ρj

+
1
mj

(kout contact) [δout]
3/2
+

+
1

2mj

∂
[
(kin contact)

(
[δin]

1/2
+

)]
∂ρj

[δin]2+

+
1

2mj

∂
[
(kout contact)

(
[δout]

1/2
+

)]
∂ρj

[δout]
2
+

+
3

2mj

Nr.e.∑
j=1

{
cin (kin contact) δ

3/2
in+

(−χj)q
∂χj
∂ρ̇j

}

+
3

2mj

Nr.e.∑
j=1

cout (kout contact) δ
3/2
out+ (−ρ̇j)q = 0

j = 1, 2, . . . Nr.e.. (3)
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For the generalized coordinate xin the equation was

ẍin −
1

mrotation

Nr.e.∑
j=1

(kin contact) [δin]
3/2
+

∂χj
∂xin

+
3

2mrotation

Nr.e.∑
j=1

{
cin (kin contact) δ

3/2
in+

(−χ̇j)q
∂χ̇j
∂ẋin

}
=
Fu sin(ωst)
mrotation

. (4)

For the generalized coordinate yin the equation was

ÿin + g − 1
mrotation

Nr.e.∑
j=1

(kin contact) [δin]
3/2
+

∂χj
∂yin

+
3

2mrotation

Nr.e.∑
j=1

{
cin (kin contact) δ

3/2
in+

(−χ̇j)q
∂χ̇j
∂ẏin

}
=

(W + Fu cos(ωst))
mrotation

, (5)

where mrotation = (minner +mrotor).

This was a system of (Nb + 2) non-linear differential equa-
tions. There was no external radial force allowed to act on
the bearing system and no external mass attached to the outer
race. The “+” sign as subscript in these equations signified
that if the expression inside the bracket was greater than zero,
then the rolling element at angular location θj was loaded giv-
ing rise to a restoring force, and if the expression inside the
bracket was negative or zero, then the rolling element was not
in the load zone, and the restoring force was set to zero.

3. METHODS OF SOLUTION

The nonlinear, second-order differential equations were
solved by numerical integration, which is a time-domain ap-
proach. The non-analytic nature of the stiffness term rendered
the system equations difficult for analytical solution.

3.1. Numerical Integration

The equations of motion, Eqs. (3), 4, and (5) were solved us-
ing the modified Newmark-β method to obtain the radial dis-
placement, velocity, and acceleration of the rolling elements.
To observe the nonlinear behavior of the system, parameters
of the ball-bearings were selected and are given in Table 1.
These bearings can operate at high speed without introducing
much frictional effect; hence, they were suitable for high-speed
applications (i.e., speeds greater than 5000 rpm). The ball-
bearing 6002 was used for this study. The time step for the
investigation was taken as ∆t = 10−5 sec.

3.2. Power Spectra, Poincaré Maps, and Lya-
punov Exponent

Aperiodic behavior in a deterministic dynamical system
was characterized by broadband frequency spectra. In sub-
synchronous frequencies, the significant energy showed the

aperiodic nature of the response. Poincaré maps were pro-
duced by plotting one of the system variables, e.g., the vertical
or horizontal displacement against its derivative, once per ro-
tational periodic of the system. For a synchronous limit cycle,
a single point in the plane was repeated every cycle, while nth
sub-harmonic was revealed by n and only n-repeated points.
The Lyapunov exponent is a quantitative measure of the di-
vergence properties of initially infinitesimally close attractor
trajectories in the phase space. To calculate the Lyapunov ex-
ponent λ, two infinitesimally close points on an attractor were
chosen. The trajectories that passed through these points were
initially separated by a distance ε0. After time t, the two points
were separated by a distance ε1, as discussed by Wolf et al.13

It was measured in bits per second. A positive Lyapunov expo-
nent indicates that εt > ε0 (i.e., that the trajectories are diverg-
ing and that the system is chaotic). The Lyapunov exponent
(λ) for the system is defined as

λ = lim
[

1
t

log2

(
εt
ε0

)]
. (6)

4. RESULTS AND DISCUSSION

4.1. Ball-Size Variation is 0.2 µm

Because of the different ball diameters, the race was de-
formed into a complex shape that turns with the rotational
speed of the cage. The off-sized balls were located symmet-
rically in bearings, such that they moved in the same direction
simultaneously (i.e., the balls were assumed to be in phase).
First, two balls assumed to be 0.2 µm oversized were taken.
The responses were obtained for the bearing with varying ball
size and for varying the speed of an unbalanced rotor. The
ball set rotated at the cage speed around the inner race and the
oversized ball. Since the ball set comes to the same position
after one cage rotation, the system shows vibrations at a fre-
quency that is equal to the number of balls multiplied by the
cage speed Nbωcage, i.e., at the system excitation frequency,
i.e., at varying compliance frequency (Nbωcage = V C). The
overall response plot of the rolling-element bearing for point
contact with internal radial clearance 10 µm, radial load of 6
N, and unbalanced forces of 15% is shown in Fig. 4. To sim-
plify the study, constant unbalanced force was assumed for the
entire speed range. The overall response plots were generated
for the combination of radial internal clearance, off-sized balls,
and unbalanced force and have a high rough appearance.

The observed nature of response is 1T stable with a low am-
plitude of vibration up-to a shaft speed 450 rpm, which is con-
firmed by a negative value of the Lyapunov exponent (λ < 0),
as shown in Fig. 5. When the speed of the rotor increases the
period, one solution becomes multi-orbit unstable from 500
to 2350 rpm because of periodic doubling bifurcations. The
Eigen values of the monodromy matrix go out through −1,
and also the value of the Lyapunov exponent varies in between
0 to 0.45, i.e., λ > 0. The solution undergoes pitchfork bi-
furcation until 2350 rpm, after which the chaotic solution is
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Figure 4. Speed-response plot for ball-size variation of unbalanced rotor.

Figure 5. Lyapunov exponent.

obtained at 2500 rpm. The nature of the solution at 2500 rpm
is observed as the onset of chaos with super-harmonic char-
acter of frequency spectra, as shown in Fig. 6. The dense
band of frequency spectrum shows the presence of both the
rotational frequency (X = 41.66 Hz) and the varying com-
pliance frequency (V C = 8ωcage = 133.33 Hz). The pres-
ence of dense regions in the orbit is indicative of the onset of
chaos. It cannot be considered perfectly periodic, since the
two are not exactly line spectra. The peak amplitude of vi-
bration appeared in the spectrum at the varying compliance
frequency (V C = 8ωcage = 133.33 Hz) and rotational fre-
quency (X/2 = 20.83 Hz), as shown in Fig. 6. Other major
peaks at super harmonics of vibration appear at V C +X/2 =
154.16 Hz, V C+ωcage = 149.99 Hz, 2V C+X = 308.32 Hz,
3V C = 400 Hz and 3V C + 4ωcage = 466.64 Hz.

The first chaotic region appeared between 2500 to 4250 rpm;
the loss of stability could be seen to be by the Eigen value
crossing +1. The chaotic solutions at 2500 and 4100 rpm
are shown in Figs. 6 and 7, respectively. The frequency spec-
trum had a broadband structure, as seen in between spikes of
V C, X/2, and their multiples. The Lyapunov exponent had a
high positive value in this region (λ > 0), which confirms the
chaotic nature of system, as shown in Fig. 5. The vibration
spectrum shows the interaction between both the frequency
components that produce sum and difference combination fre-
quencies. It is clear that a loss of periodicity is a characteris-
tic feature of a chaotic solution. As the speed increases, the
system showed quasi-periodic behavior. The second chaotic
region appeared in between the speed range of 6000 to 6950
rpm. The system showed onset of chaos when the rotor speed

Figure 6. Poincaré map and FFT of unbalanced rotor at speed 2500 rpm for
ball-size variation 0.2 µm.

Figure 7. Poincaré map and FFT of unbalanced rotor at speed 4100 rpm for
ball-size variation 0.2 µm.

is 6000 rpm, as shown in Fig. 8. For rotor speed 6000 rpm,
the peak amplitude appears in the vibration spectra at the rota-
tional frequency X/2 = 50 Hz and at 7V C/5 = 448 Hz, as
shown in Fig.8. Other major peaks at super-harmonics of vi-
bration appear at V C = 8ωcage = 320 Hz, V C+X = 420 Hz,
V C−X = 220 Hz, V C+2X = 520 Hz, V C+ωcage = 360 Hz
and V C − ωcage = 280 Hz.

When the speed of the unbalanced rotor was 6900 rpm, the
dense frequency spectrum observed during the peak amplitude
of vibration appears at the rotational frequencyX/2 = 57.5 Hz
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Figure 8. Poincaré map and FFT of unbalanced rotor at speed 6000 rpm for
ball-size variation 0.2 µm.

Figure 9. Poincaré map and FFT of unbalanced rotor at speed 6900 rpm for
ball-size variation 0.2 µm.

and at V C + ωcage = 414 Hz, as shown in Fig. 9. Other ma-
jor peaks of vibration amplitude appear at V C = 8ωcage =
368 Hz, V C − ωcage = 322 Hz, V C + ωcage = 414 Hz, and
V C +X = 483 Hz. The frequency spectra for chaotic nature
are broadband, which may have spikes at particular excited fre-
quencies. A chaotic solution of the system is also confirmed
by variation in the positive value of the Lyapunov exponent
(λ > 0), as shown in Fig. 5. The Poincaré map of a chaotic
solution has a fractal structure, which repeats itself as the map
is magnified. Loss of periodicity is clearly seen, which is a

Figure 10. Poincaré map and FFT of unbalanced rotor at speed 8500 rpm for
ball-size variation 0.2 µm.

Figure 11. Poincaré map and FFT of unbalanced rotor at speed 11000 rpm for
ball-size variation 0.2 µm.

well-known characteristic of chaotic response.

The low-amplitude region of the unstable-period solution
started from 7500 rpm and extended up to 9500 rpm. For
the third chaotic region between 7600 rpm to 10000 rpm, the
loss of stability was seen when the Eigen value crossed +1.
In Fig. 10, the chaotic response at 8500 rpm is shown by
the band structure of frequencies in frequency spectra. These
band structures developed around X/2 in the vertical and in
the entire speed range for the horizontal displacement. The
fine-layered structure of the strange attractor is also clear from
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Figure 12. Poincaré map and FFT of unbalanced rotor at speed 2500 rpm for
ball-size variation 2 µm.

Figure 13. Poincaré map and FFT of unbalanced rotor at speed 4100 rpm for
ball-size variation 2 µm.

the Poincaré maps. The presence of dense regions in the orbit
is indicative of chaos. Again as the speed increases, the sys-
tem shows quasi-periodic behavior. For this speed, the region
value of the Lyapunov exponent varied nearly to zero, which
confirms the quasi-periodic behavior of the system. As speed
increases to 11000 rpm, system stability returned, and system
shows a periodic nature, as shown in Fig. 11.

Figure 14. Poincaré map and FFT of unbalanced rotor at speed 6000 rpm for
ball-size variation 2 µm.

4.2. Ball-Size Variation is 2 µm

The off-sized balls were located symmetrically in bearings
in such a way that they moved in the same direction simultane-
ously (i.e., the balls were assumed to be in phase). First, two
balls that were assumed to be 2 µm oversized were taken. The
responses were obtained for the bearing with varying ball size
and for varying the speed of unbalanced rotor.

The nature of the solution at 2500 rpm was observed as
the onset of chaos with multiple excitation peaks of frequency
spectra, as shown in Fig. 12. The frequency spectrum shows
the presence of both the rotational frequency (X) and the vary-
ing compliance frequency (V C). The presence of dense re-
gions in the orbit is indicative of the onset of chaos. It could
be considered perfectly periodic, since the two were not ex-
actly line spectra. The nature of solutions at 4100 rpm shows
the chaos with a weak attractor, as shown in Fig. 13. The fre-
quency spectrum shows the spikes of V C,X/2 , and their mul-
tiples. When the speed of the unbalanced rotor is 6000 rpm, the
dense-frequency spectrum observed with the peak amplitude
of vibration appears at the interaction between varying compli-
ance frequency and rotational frequency as at 3/2V C + 3X ,
which is shown in Fig. 14. The Poincaré map of a chaotic
solution has a fractal structure, which repeats itself as the
map is magnified in Fig. 14. A loss of periodicity is clearly
seen, which is a well-known characteristic of chaotic response.
When the speed is increased to 6900 rpm, the system shows a
chaotic nature with a weak attractor and peak excitation ap-
pearing at V C and at X , along with their interactions, as
shown in Fig. 15.
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Figure 15. Poincaré map and FFT of unbalanced rotor at speed 6900 rpm for
ball-size variation 2 µm.

5. CONCLUSION

In the present investigation, a mathematical model of a rotor-
bearing system was developed to observe the nonlinear re-
sponse of an unbalanced rotor due to ball-size variations. Two
cases of ball-size variation were considered: variations of 0.2
micron and 2 microns. Using this model, the vibration re-
sponse of the bearing was demonstrated to be chaotic for some
specific combinations of nonlinear stiffness, nonlinear damp-
ing, and rotational speed combined with off-sized rolling ele-
ments to provide sufficient nonlinearity. For cases that were
stable during free motion and not close to the neutral-stability
line, a limited range of chaos could be detected. The route
to chaos was observed to be an intermittency mechanism by
period-doubling behavior. Frequency spectra displayed multi-
ples of 1X and V C as well as the linear combination of the
two frequencies. From the obtained response, the following
conclusions are drawn:

• In the case of ball-size variation, symmetric combina-
tions will produce vibrations at the multiple of the cage
speed. A single off-sized ball within a bearing produces
vibrations at the cage speed. This is true for linear and
nonlinear ball-to-race deflection coefficients. The high-
est radial vibrations caused by ball-size variation are at a
speed of the number of balls multiplied by the cage speed
(ω = kωcage Hz). The other vibrations due to ball-size
variation also occur at V C ± kωcage, where k is a con-
stant. From this analysis, a prediction can be made about
the major peaks at frequencies for off-sized balls, and the
model predicts discrete spectra having significant compo-
nents at multiples of cage frequency.

• Nonlinear dynamic responses are found to be associated

Table 1. Geometric and physical properties used for the ball bearings.

Ball radius 4.762 mm
Inner Race Diameter 18.738 mm
Outer Race Diameter 28.262 mm
Internal radial clearance 10 µm
Radial load 6 N
Mass of rotor 0.6 kg
Pitch radius of the ball set 27 mm
Ball diameter variation 0.2 µm, 2 µm
Unbalanced rotor force 15 %
No. of rolling elements 08

with rotational frequency. From the obtained responses,
it can be inferred that a speed with an unbalanced force in
the set will produce nonlinear vibrations at the rotational
frequency of the ball (X). Other major peaks also appear
at the combination of two exciting frequencies such as
V C +X .

• The rotor-bearing system has three high-amplitude re-
gions. The first region is one of periodic doubling
response where the period-one response is unstable.
Chaotic responses appear in this region, which has a
strong attractor compared to the chaotic behavior in other
regions. The second region shows a chaotic nature with a
weak attractor, and it also exists for a short speed range.
The third region has a maximum p-p value, and this region
has an unstable response due to Hopf bifurcation gener-
ating amplitude modulation and quasi-periodic response.
The ratio of the carrier frequency (V C) to the modulating
frequency decreases as the speed is increased. This leads
to quasi-periodic and mode-locked behavior.
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APPENDIX A. CONTACT DEFORMATION

For pure-point contact, the potential energy related to the
contact is calculated from the theory of Hertzian contact de-
formation; the relationships for a point contact in ball bearings
is an expression of a force with the displacement raised to an
exponent (q).14 Where

kin

∫ δin

0

((kin contact) δ
q
in) df , (A.1)

kin =
1

q + 1
kin contactδ

q+1
in+ , (A.2)

now the generalized part of potential energy is

1
q + 1

kin contactδ
q+1
in+ =

1
q + 1

kinδ
2
in+. (A.3)

Hence, ball-bearing (q = 3/2) stiffness at inner and outer
race is

kin = kin contact

√
δin+, (A.4)

kout = kout contact

√
δout+. (A.5)

APPENDIX B. CONTACT DAMPING

For the jth rolling element the equivalent contact stiffness
between the rolling element and race is

kEq =
3
2
kcontactδ

1
2 . (B.1)

The deforming forces for the jth rolling element and inner
race is

Fd in = cinkEq

(
˙δin

)q
+
, (B.2)

Fd in =
3
2
cin (kin contact) δ

1
2
in+δ̇

q
in+.

15 (B.3)

Similarly, the damping force for the jth rolling element with
the outer race is

Fd out = coutδout+keq, (B.4)

Fd out =
3
2
cout (kout contact) δ

1
2
out+δ̇

q
out+. (B.5)

Hence, the total energy dissipation at both contact points of
the rolling element with the inner and outer race is

Edissipation =
3

2 (q + 1)

Nr.e.∑
j=1

[{
cin (kin contact) δ

3
2
in+δ̇

q+1
in+

}
+
{
cout (kout contact) δ

3
2
out+δ̇

q+1
out+

}]
. (B.6)
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