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The early development of machine diagnostics and condition monitoring was based on measurements from actual
failures, but these cannot be predicted or arranged to occur when and where desired. In recent years it has become
possible to make simulation models of a machine, such as a gearbox or engine, including the simulation of various
faults of different types, severity, and location. There are a number of benefits from doing this, the first being to be
able to produce sufficient representative signals to train automated fault recognition algorithms, such as artificial
neural networks, as it is not economically viable to experience the number of actual failures required. Being able
to produce signals from faults of different sizes and locations can be useful in the development of diagnostic and
prognostic procedures — the latter, for example, by being able to develop appropriate trend parameters. Finally,
the effects of faults in complex machines are often based on nonlinear interactions, which are difficult to foresee,
and the simulation modelling of the whole machine can be very useful to obtain a physical understanding of these
complex interactions. This paper illustrates these principles using examples of rolling element bearings, gears,
geared systems (including bearings), and internal combustion engines, with favourable results in all aspects.

1. INTRODUCTION

There are three main areas where fault simulation is valu-
able in machine diagnostics. The first has to do with the train-
ing of artificial neural networks (ANN) and similar classifiers
to perform diagnostics and prognostics of faults in machines.
Many authors have proposed using ANN to perform automated
machine diagnostics, by learning the features that character-
ize various types of faults. However, neural networks must
be trained using a considerable amount of data to character-
ize each condition to be detected and classified, with a certain
amount of random variation typical of the variations in operat-
ing conditions experienced by a machine in a given condition.
Virtually, the only condition which would provide sufficient
data to achieve this goal is the normal condition, and, so, ANN
can be used to detect this, as well as departures from it. On the
other hand, it would not be economical to actually experience
the number of faults and failures of each type required to train
ANN for all fault conditions.

Moreover, real faults cannot be made to appear at will; one
usually has to wait until they occur, which may be very infre-
quent. Another problem with some of the papers that describe
the use of ANN for diagnostics is that the data on which they
are trained comes from a particular machine (often a laboratory
test machine with seeded faults). Though the training process
may be successful in this situation, it is not at all clear how
the results could be extended to even a very similar machine,
let alone the wide range of machines in operation, where it is
impossible to experience the full gamut of faults for which the
machine must be protected.

Therefore, the only way to viably use ANN for machine di-
agnostics and prognostics is to use simulated signals to train
them. The level of sophistication of the simulation required
depends on the application, but this paper describes a range of
applications with different levels of sophistication. In general,
it is desirable for the simulations to cover as wide a range of

situations as possible, but there are cases with very valuable
machines (e.g., turbogenerator sets) where it is worth making
a detailed simulation model specific to a particular machine,
(e.g.,b?).

Simulation models can also be used to provide signals to
test new diagnostic methods and to compare different methods,
rather than being forced to rely on randomly captured case his-
tories, or data generated by laboratory test rigs, — often with
seeded faults.

A final application of simulation of machine faults is to give
a better understanding of signal characteristics that have been
experienced in practice, where, for example, nonlinearities can
give interactions which are difficult to predict, and this can be
used to help explain anomalies.

This paper illustrates a number of these applications, using
as examples the simulation of rolling element bearings, gears,
and geared systems, as well as the interactions between gears
and bearings. The simulation of signals from reciprocating ma-
chines (such as diesel and spark ignition engines) is also cov-
ered, mainly by simulation of their torsional vibrations, but a
project is also underway to simulate cylinder head and block
vibrations.

The examples that are illustrated are of increasing complex-
ity. As an example, local faults in rolling element bearings
give very distinctive patterns in the spectra of envelope sig-
nals obtained by demodulating frequency bands dominated by
the faults,? and such spectra can be simulated directly, without
having to go via the time signals. This type of modelling, while
general, would only indicate whether a particular type of fault
were present, and it would be difficult for it to indicate degree
of severity, although this is a goal of future development. The
type of simulation ranges in complexity up to the modelling of
a particular machine, showing how the small amount of actual
measurement data available (for good and faulty condition) can
be used to update and calibrate the model, and give confidence
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in its predictions for non-experienced cases.

In the following, the cases of rolling element bearings, gears
and geared systems (including the incorporation of detailed
bearing models), and reciprocating machines such as spark ig-
nition and diesel engines, are treated separately.

2. ROLLING ELEMENT BEARINGS

Figure 1 illustrates typical signals produced by local faults
in rolling element bearings, for the case of a constant unidi-
rectional load (vertically down in this case). Each basic type
of fault, in the outer race, inner race or rolling element pro-
duces very characteristic patterns in the time signals, and, in
particular, in the “envelope signals” obtained by amplitude de-
modulation of the time signals. An outer-race fault, for exam-
ple, would always be in the load zone, and in principle give a
uniform series of impulse responses (with repetition frequency
BPFO) as the successive rolling elements strike the fault. An
inner-race fault, on the other hand, passes through the load
zone at shaft speed, so the series of impulse responses at BPFI
are modulated by the shaft speed (additionally because the sig-
nal transmission path is also varying at this rate). Similarly, a
fault on a rolling element passes through the load zone at cage
speed, so the series of (pairs of) pulses at BSF is modulated by
this frequency.® In Reference” it is shown that spectrum analy-
sis gives very little diagnostic information about the repetition
rates of the faults (or their modulations), because of small ran-
dom fluctuations of the pulse period, but frequency analysis of
the envelope (and even more so, the squared envelope) of the
signals does reveal harmonics of the ballpass frequencies, as
well as sidebands (and low harmonics) spaced at the modulat-
ing frequencies.

The characteristic fault frequencies on the signals depicted i
n Fig. 1 are given by the following equations:

BPFO:anT{l—gcosgo} (1
BPFI — "Qf {1+gcos<p} )
FTF];”{1gcos<p} 3)
By = -0 {1_ (gcos<p>2} @

where n = no. of balls (rollers), f, = shaft speed, d = ball
(roller) diameter, D = pitch diameter and ¢ = load angle from
radial.

These very distinctive patterns in the envelope spectra can be
used to train ANN, at least for the simple go/no-go decision of
whether the fault in question is present. In Reference’ feature
vectors as described in Fig. 2, were extracted from envelope
spectra corresponding to faults in bearings on a small test rig.
Feature vectors are arrays of features characterising a particu-
lar condition, and used to train an ANN. The feature vectors
are unscaled, and particular features must be related to typical
values. In this case, spectrum peak values were sought in a
range within 2% of the calculated frequencies of the fault, to
allow for the normal slip (for inner-race faults, only BPFI has
this uncertainty; sidebands are spaced at exactly shaft speed).
Since an expert judges discrete envelope spectrum components

VIBRATION SIGNALS FROM FAULTS
IN ROLLING ELEMENT BEARINGS
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Figure 1: Typical signals and envelope signals from local faults
in rolling element bearings: BPFO = ballpass frequency, outer
race; BPFI = ballpass frequency, inner race; BSF = ball (roller)
spin frequency; FTF = fundamental train frequency (cage fre-
quency).
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Figure 2: Feature vector construction — each pattern as an
individual vector.

in comparison with the noise level in the spectrum, the median
values were used as a reference level for this noise (since they
are little affected by the appearance of a number of discrete
peaks). Initially they were placed in the order in which they
occur, but it was then realised that the order of the vector el-
ements is irrelevant, so the median values were placed at the
end of the array. Separate networks were trained for each type
of fault, even when some bearings had more than one type of
fault present.

Figure 3 on the left shows the resulting feature vectors for
an inner-race fault, made up from some cases with inner- race
fault only, and some with both inner and outer race faults.
Moreover, both the “no-fault” and “outer race” data were used
to train the “not inner race” classification. On the right are
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Figure 3: Feature vectors for inner-race fault frequencies: (a, d) inner race fault, (b, e) outer race fault, (c, f) no fault, (a, b, c)

measured data, (d, e, f) simulated data.

shown feature vectors with the same mean values, but a three
times greater standard deviation, which were successfully used
to train networks intended to be more generally applicable to
inner-race faults in general. When tested on data from a wide
range of case histories from machines of different sizes and
speeds (eight cases), they were found to have a 100% success
rate in determining whether the bearing in question had the
fault or not, though it would not have been possible to deter-
mine the degree of severity of the fault. This is, thus, the sim-
plest form of simulation, based on an expansion of actual mea-
sured data to simulate the general case. It cannot, of course, be
used to generate data to test diagnostic algorithms. The appli-
cation of the method is dependent on being able to extract the
bearing signal from background noise and masking by other

vibration signals, but a very powerful procedure for achieving
this has been presented in Reference.®

A more detailed simulation of faults in rolling element bear-
ings was presented in Reference.’” It is for a specified bear-
ing geometry, including the amount of clearance or preload-
ing of the bearing, which has a big effect on the size of the
load zone, and whether individual rolling elements become
unloaded. Shaft orbits can become chaotic, although always
bounded. It is based on a two-dimensional bearing model pre-
sented by Fukata et al. in Reference® but includes the random
slip actually encountered in bearing signals.

A similar bearing model has since been incorporated into
a gearbox simulation model, which is described in a separate
section below and will be discussed after that.
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3. GEARS

Much work has been done over the years in simulating gear
vibrations, but usually with a view to noise and vibration re-
duction. Simulation of gear faults is somewhat more lim-
ited. Reference’ included simulations by Velex and Cahouet
of spalls, and were used along with actual measured data to
test a new diagnostic method proposed by the other authors.
Ref. [10] simulated the effects of a tooth-root crack on gear
vibrations and included the effects of friction, which is often
otherwise ignored. Reference!! also simulated faults in a gear
dynamic model, but more by statistical variations of transmis-
sion error parameters.

Reference!? proposed a method of simulating meshing gears
with two types of faults: a tooth-root crack (TRC) and a spall,
since these have similar symptoms according to classical de-
tection and diagnostic methods, but would have very different
prognoses. A finite element program (Marc) was first used to
simulate the variation in transmission error for the two fault
types under static conditions. Transmission error (TE) is the
deviation in motion of the driven gear relative to the rotational
motion of the driving gear for perfect conjugate action (con-
stant output speed for constant input speed). It is synonymous
with “motion error” (ME), which forms part of RME in Fig. 4.
RME (relative motion error) is the difference in motion error
caused by the introduction of the fault. As shown in Fig. 4(a),
it was found that the TRC primarily gave a change in stiffness
at the mesh when the faulty tooth was in mesh, and, thus, the
change in TE was proportional to the load (as well as the size
of crack), but for spur gears at least, the timing did not change
because it always corresponded to the time of engagement of
the faulty tooth (either with a single tooth pair or a double tooth
pair); with the spall, however, (Fig. 3(b)), the main effect was
geometric, due to the loss of metal, and was thus virtually inde-
pendent of load. On the other hand, the length of the effect on
the TE (in terms of roll angle) was proportional to the length
of the spall in that direction.

These static models were then inserted into a lumped param-
eter dynamic model of the simulated gearbox to obtain typical
dynamic TE and acceleration responses under a range of speed
and load conditions. Figure 5(a) shows the actual test rig, and
Fig. 5(b) shows the lumped parameter model (LPM) used to
obtain dynamic responses. Figure 6(a) gives a comparison of
the predicted TE for a tooth-root crack, and Fig. 6(b) gives a
corresponding measured TE. Note that the shafts of the test
rig are unusually long and slender, making them very flexible.
This was originally done to place a shaft resonance in a fre-
quency range where it could be excited by the toothmeshing
frequency in the normal shaft speed range up to 12 Hz. How-
ever, it meant that the shaft flexibility is two orders of mag-
nitude greater than that of the toothmesh (not modelled in the
original FE model of the gears) and makes it difficult to de-
tect the changes in stiffness given by the tooth-root crack. For
this reason, nylon gears with a value of Young’s modulus two
orders of magnitude less than steel were used for the experi-
mental validation of the simulation model in this figure.

Figure 6 shows that the simulation closely represents the
measured characteristic of a tooth-root crack, and the measured
TEs in Figs. 7 and 8 agree with the predictions of the simula-
tion model with respect to the effects of load on the cases with
tooth-root crack and spall, respectively. Basically, the devia-
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Figure 4: The TEs of gears with (a) a tooth crack and (b) a
spall, for different loads.

tions in TE are proportional to the load (as is the toothmesh
component) for the crack, but do not change with load for the
spall. Simulated signals were used in Reference'? to develop
a differential diagnostic method to distinguish between cracks
and spalls, and the results were largely borne out by the exper-
imental measurements made by Endo as part of his PhD thesis
(of which Figs.6, 7 and 8 are examples).'3> Many of the results
of Endo’s thesis have recently been published in Reference.'*

It should be noted that in a recent paper by Mark and Reagor,
it was pointed out that with naturally generated cracks (rather
than the machined slots often used to simulate them), plastic
deformation at the crack tip gives a permanent tooth deforma-
tion in addition to the elastic load dependent component, but
this could be incorporated into the simulation.'>

4. GEAR/BEARING SYSTEMS

The lumped parameter model of the gearbox in Fig. 5 was
extended to include a bearing model similar to that in Refer-
ence.” The form of the model is quite similar for the bear-
ings and gears, with a time (or rotational angle) varying non-
linear stiffness. Results for local faults have been published
in Reference'® and for extended faults in Reference.!” In the
so-called lumped parameter model (LPM) of the gearbox, the

gears and shafts were modeled in some detail for both tor-
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Figure 5: (a) The spur gear test rig. (b) Lumped parameter
model.
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Figure 9: Comparison of autospectra for simulated and exper-
imental localized outer-race fault.

the casing was made, with a low-frequency rigid body mode
and a high-frequency (15 kHz) resonance typical of those de-
modulated to diagnose bearing faults.* Figure 9 compares
autospectra for the simulated and experimentally measured
cases for a localized outer-race fault. Despite the consider-
able differences in the spectra (caused by the primitive cas-
ing model), Fig. 10 shows that bandpass-filtered signals and
(squared) envelope spectra demodulated around the dominant
high-frequency resonance were very similar. Similarly good
results were achieved for localized inner-race and rolling-
element faults.

The results for extended faults in Reference!” were reason-
able but not so good. This could be ascribed to the fact that, as
explained in Reference,'® extended bearing faults in gearboxes
manifest themselves largely by modulating the gearmesh sig-
nals, because the gears are supported by the bearings. This
modulation occurs over a wide frequency range, and is af-
fected by the discrepancy in the response spectra in the “gear-
dominance region,” as depicted in Fig. 9.

In a first attempt to correct this, a finite element (FE) model
of the gearbox casing was made. A preliminary assumption
was that the bearing blocks were so rigid that the dynamics
of the thinner casing plates would have minimal effect on the
forces at the bearings. The forces generated at the bearings
by the LPM were thus applied to the modal model of the cas-
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Figure 10: Time signals and squared envelope spectra for sim-
ulated and measured outer-race faults, bandpass filtered and
demodulated around a high-frequency resonance: (a,b) sim-
ulated signal, (b,c) measured signal, (a,c) time signals, (b,d)
envelope spectra.

ing from the FE model (updated to agree with experimental
modal measurements for the modes up to about 1 kHz). The
FE model was thus used to generate FRFs and impulse re-
sponses from the bearings to the measurement point, and the
total response there simulated as a time signal by summing
the convolutions of each bearing force with the correspond-
ing impulse response.'® Figure 11 presents results from Refer-
ence'® comparing the spectral correlation functions for the two
cases of simulation (original LPM and combination with the
FE model) and an experimental measurement. In Ref. [18],
it was shown that where the bearing fault interacts multiplica-
tively with the gearmeshing signal, as with an extended fault,
the bearing frequencies can best be illustrated by the spec-
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Figure 11: Spectral correlation function after removal of
discrete-frequency components: (a) experimental, (b) com-
bined model, (c) LPM model.

tral correlation function, which on one axis shows normal fre-
quency (the resonances excited by the fault and noise modu-
lation sidebands around the gearmesh harmonics) and on the
other axis shows the “cyclic frequency” with which the mod-
ulation occurs. If discrete frequencies are first removed (e.g.
the modulating effects from normal or faulty gear operation),
the remaining signal can only come from bearing faults. Refer-
ence'® describes the case for an extended inner-race fault, but
here we see that an extended outer-race fault also shows up
at the BPFO (and as random modulation of the gearmesh fre-
quency). The combined model is much closer to the measured
result than the LPM result (and autospectra over the whole fre-
quency range are much closer than in Fig.9), but the interaction
between gears and bearings is still not fully represented.

An attempt is now being made to include the casing dy-
namics in the actual time-domain simulation, by including a
reduced modal model from the FE model in that simulation.
Results will be reported when they are available.

Before leaving the topic of gear/bearing systems, an
anomaly will be shown that was responsible for us recognizing
the two mechanisms by which bearing faults manifest them-
selves in gearboxes. It was reported in Reference.’’ Envelope
spectra demodulated over four frequency bands gave anoma-
lous results for an outer-race fault. When demodulated over
the bands 6-24 kHz and 4-24 kHz, the BPFO and its harmon-
ics were clearly shown. However, when demodulated over
the intermediate band 5-24 kHz, the BPFO component dis-
appeared. Demodulating the narrow band 5-5.5 kHz solved
the mystery, as this included modulation sidebands around the
fourth harmonic of gearmesh frequency. It was found that this
component from modulation (Fig. 12(d)) had the same am-
plitude as the component from additive impulses at high fre-
quency (Fig. 12(a)), but had opposite phase,so they the two
cancelled each other, as shown in Fig. 12(b). Stronger modu-
lation around the third harmonic of gearmesh frequency dom-
inated in Fig. 12(c).

The question arises as to why the third and fourth harmonics
of toothmesh frequency were modulated by the bearing fault,
but not the first, second, or fifth. Similar patterns have been
seen in some of our simulations of the UNSW gearbox test rig,
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Figure 12: Envelope spectra demodulated from frequency
band indicated (a) 6kHz — 24kHz, (b) 5kHz — 24kHz, (c) 4kHz
— 24kHz, (d) 5kHz - 5.5kHz.

so it is hoped that the updated simulation model will help to
explain the reason, mentioned in the introduction as a potential
benefit of simulation.

5. INTERNAL COMBUSTION ENGINES

Powerful dynamic simulation packages such as LMS’s Vir-
tual Lab© and AmesSim®© as well as ADAMS® have recently
become available, with templates for a number of special sit-
uations, such as internal combustion (IC) engines. A typical
diesel or spark-ignition engine can be modeled in terms of the
dynamic properties of the rotating and reciprocating compo-
nents, and structural dynamic properties of stationary compo-
nents, such as the engine block and head. This gives the pos-
sibility of simulating a range of different faults, such as com-
bustion faults, which affect the pressure time history in a given
cylinder, and mechanical faults, such as piston slap, which can
be simulated by increasing the clearance between piston and
cylinder.

A very simple but powerful indicator of non-uniform com-
bustion is given by the instantaneous angular velocity of the
crankshaft, which can be obtained by frequency demodulation
of a shaft-encoder signal from the crankshaft.?! The latter can
be as simple as the series of pulses from a proximity probe
detecting the passage of teeth on the ring gear.

Figure 13 gives a comparison of the instantaneous speed
for a complete misfire in one cylinder of a 6-cylinder spark-
ignition engine for a measured and a simulated case. A partial
misfire in one cylinder gives a somewhat less obvious change
in the speed but can be very well simulated. The technique
used to obtain the measured result in Fig. 13(a) involved first
a phase demodulation of the shaft-encoder signal, followed by
differentiation to obtain the frequency modulation (i.e., angu-
lar velocity variation) signal. The latter was done by a jw
operation in the frequency domain, since it can then be com-
bined with bandpass filtration to avoid enhancement of high-
frequency noise and to remove low-frequency speed variations
(at less than engine cycle frequency), which are unrelated to
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Figure 13: Angular velocity of the crankshaft for a misfire in
one cylinder: (a) measured signal, (b) simulated signal.

engine condition. However, to obtain a fixed number of sam-
ples per cycle (for example, to train an ANN to recognize the
pattern) it would be necessary to resample the signal using or-
der analysis. An alternative way to obtain the instantaneous
angular velocity very simply is to measure the time intervals
between encoder pulses, using a very high-frequency clock (eg
20-80 MHz), and then invert the passage times and convert the
result to crankshaft speed. This automatically gives a fixed
number of samples per cycle. Such clocks are now available in
commercial instrument systems.

The above discussion virtually assumes that the crankshaft
is rigid, as a torque pulse applied from any cylinder gives a
uniform response in terms of angular velocity. A somewhat
larger engine with 20 cylinders has recently been simulated,
where there are torsional vibration modes of the crankshaft ex-
cited by components within the running range of the engine. A
paper on this work is being presented at the CM-MFPT con-
ference in Dublin in June 2009.22 This demonstrates how a
minimal amount of measurement information can be used to
update a torsional vibration model of the crankshaft for the
normal, healthy condition. Figure 14 is a schematic of the tor-
sional model, where the generator is taken as running at fixed
speed and therefore built-in for analysis purposes. It was in
any case isolated by a flexible coupling tuned to about 9 Hz
from the crankshaft. The inertias were reasonably well-known
(using a standard formula to represent reciprocating compo-
nents as equivalent rotating inertias), but stiffnesses less so.
A genetic algorithm (GA) was used to optimise the values of
the stiffnesses to match the first five natural frequencies, re-
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Figure 15: Estimated mode shapes: (a-d) represent modes 1-4,
respectively.

sulting in the (unscaled) mode shapes (the first four) shown in
Fig. 15. The x-axis (dof) represents the “degree-of-freedom”
corresponding to each of the inertias (j;) in the lumped param-
eter model.

Mode 1 is the almost-rigid body mode of the crankshaft on
the coupling. Mode 2 is the damper mode, including some
participation of the crankshaft as a spring. Modes 3 and 4 are
the first two torsional modes of the crankshaft, and can be seen
to approximate a 1/4 and 3/4 wavelength shape as modified by
the damper. The estimated natural frequencies are compared
with the measured ones (from a run-up in speed) in Table 1.

Measurements of torsional vibration were made with a tor-
sional laser vibrometer (Polytec OFV-400) at the free end of
the crankshaft on one side of the damper (dof 12).

Torque inputs from each cylinder were estimated on the ba-
sis of an estimated pressure curve for the load at the time
of measurement. Since the aim of the modeling was to de-
tect changes in condition, combustion abnormalities in par-
ticular, a parametric model of the pressure curve was made
based on thermodynamic principles and the rate of heat re-

Table 1: Estimated and observed torsional resonance frequen-
cies.

Mode | Estimated frequency | Observed frequency
(Hz) (Hz)
1 7.2 94
2 332 37.3
3 63.0 51.8
4 1324 ~ 125
5 210.2 ~ 200

Figure 16: Simulated vs. measured responses: (a) initial es-
timates using analytical model, (b) final estimates using mea-
sured frequencies and optimised damping values.

leased (RoHR) corresponding to the fuel injection. A pressure
trace was available for 75% load, and this was also fitted for the
parameters using optimisation (GA followed by Levenberg-
Marquardt least squares optimization), giving a very close
match.

Torsional vibration responses at the measurement location
were then made using the optimized model parameters, ini-
tially giving the result shown in Fig. 16(a). The result was
greatly improved using the measured rather than the optimized
analytical natural frequencies (but analytical mode shapes) and
then by optimizing the damping values associated with each
mode (originally taken from the 3 dB bandwidths of the peaks
in the run-up curves).

As reported in Reference,? it has been found possible to
use this model to train ANNs to recognise departures from the
normal condition, to localise the faulty cylinder, and to deter-
mine approximately the change in RoHR corresponding to the
induced injector faults. The model was trained using two mea-
surements of healthy condition spaced two years apart (and
using the difference for an estimate of the standard deviation)
and three measurements of induced injection faults on differ-
ent cylinders made at the same time as the measurements of
healthy condition. Details are in Reference.??

6. CONCLUSION

Simulation of faults in machines may very well provide the
only way of obtaining a sufficient number of signals to train
artificial neural networks to detect and classify the potentially
very wide range of faults that may be encountered. This paper
demonstrates how such simulation can be done for bearings,
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gears and their combination, as well as for internal combus-
tion engines. The level of sophistication of the models ranges
from relatively simple models, which can be used fairly gen-
erally to determine whether a particular fault condition exists,
but not the severity of the condition; to powerful, detailed sim-
ulations of individual critical machines. The simulated signals
can also be used to develop and test diagnostic methods and to
study anomalous cases. Such examples are given for gears (to
aid in distinguishing between tooth-root cracks and spalls) and
bearings (to help explain an anomaly encountered).
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