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This paper presents an analytical formulation for correcting the diffraction associated with the second harmonic of
an acoustic wave, that is more compact than that usually used. This new formulation resulting from an approxi-
mation of the correction applied to the fundamentals, which makes it possible to obtain simple solutions for the
average second harmonic acoustic pressure but is sufficiently precise when measuring the parameter of nonlinearity
B/A in the finite amplitude method. Comparisons with other expressions requiring numerical integration show that
the solutions are precise in the near field. Furthermore, the effect of diffraction in the B/A parameter measurement
system is discussed.

1. INTRODUCTION

In acoustic parameter measurements of a medium, it is nec-
essary to take into account the diffraction effects of the ultra-
sonic source to improve the precision of measurements. The
measurement cells usually used in transmission consist of two
circular transducers (one used as a source and another as a de-
tector). In these situations, the detector will translate into an
electric voltage of the average acoustic pressure in its reception
area. The analytical solutions describing this average pressure
can be formulated as the sum of two terms, one corresponding
to the propagation of a plane wave, and the other including the
effects of diffraction generated by the geometry of the source-
detector unit.

The attenuation α and velocity c can be obtained in the case
of linear acoustics. Different authors1–4 give exact and asymp-
totic expressions of the average pressure received by a circular
transducer. These expressions permit correction functions of
diffraction in velocity and attenuation measurements.5, 6

On the other hand, the B/A parameter is measured in the
field of nonlinear acoustics. This parameter is defined as the
ratio of coefficients of quadratic term to the linear term in Tay-
lor expansion of the state equation. Consequently, it charac-
terizes the dominant finite-amplitude contribution to the sound
speed for an arbitrary fluid.7 The first measurements of B/A
parameter by finite amplitude methods rested on an analytical
expression of the second harmonic by considering the propa-
gation of a plane wave.8–10 Various authors11, 12 then improved
the precision of these methods by including a function to cor-
rect the diffraction effect resulting from the relation established
by Ingenito and Williams13 for the average pressure exerted by
the second harmonic. However, the correction of diffraction
obtained is not very practical because it can be evaluated only
by numerical integration.

The objective of this paper is to show that one can obtain a
simple and precise form by simplifying the correction function
of diffraction for the fundamental. Then we will give simple
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Figure 1: Geometrical configuration of the source-detector.

expressions of the average pressure exerted by the second har-
monic, including diffraction and attenuation effects. We will
show that the results obtained are equivalent to those estab-
lished by Coob and validated in measurement systems.11 But
before establishing this result it is necessary to present the var-
ious corrections of diffractions applicable to the fundamental
from acoustic pressure.

2. CORRECTION OF DIFFRACTION FOR
THE FUNDAMENTAL

2.1. Function D1(z) of diffraction correction
for the fundamental

For the nondissipative case (α1 = 0), Williams1 give the
exact expression of the average velocity potential (Fig. 1):

〈φ1(r, z)〉 =
jU0

k
ejkz−

j4U0

kπ

∫ π/2

0

ejk[z
2+4a2cos2θ]1/2

sin2θdθ (1)

with a being the radius of the transducer.
The first term represents the velocity potential in the case of

a plane wave, therefore the average velocity potential on the
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area of reception is φ10(z) = jU0
k ejkz = 〈φ10(r, z)〉. The sec-

ond part of Eq. (1) corresponds to the diffraction effect on the
velocity potential, where U0 is the source amplitude velocity
and k is the wave number.

The space average acoustic pressure applied on the receiver
is expressed in the form:

〈p1(r, z)〉 = −jρ0ω〈Φ1(r, z)〉.

The correction diffraction function D1(z) allows to adapt
the theoretical plane wave to a real situation. Consequently:

D1(z) =
〈φ1(r, z)〉
〈φ10(r, z)〉

=
〈p1(r, z)〉
〈p10(r, z)〉

with
〈p10(r, z)〉 = P0e

jkz. (2)

Here 〈p10(r, z)〉 is the average pressure provided by the fun-
damental in the case of a plane wave, where P0 = ρ0c0U0 is
the average acoustic pressure (the source). Thus the modulus
of the average pressure is given in dissipative medium in the
form:

|〈p1(r, z)〉| = P0e
−α1z|D1(z)| (3)

The exact solution for D1(z) is obtained from the Williams
Eq. (1):

D1(z) = 1− 4
π
e−jkz

∫ π/2

0

ejk[z
2+4a2cos2θ]1/2

sin2θdθ. (4)

2.2. Simplifications of the function of cor-
rection D1(z)

For z > a Bass2 gives a good approximation for Eq. (4)
which can be simplified for ξ(z)� 1 in the form:

D1(z) ≈ 1−
(

1− ξ(z)2

2(ka)2

)(
2

πξ(z)

)1/2

e−jπ/4 (5)

with ξ(z) = k
2

√
z2 + 4a2 − z. This expression was used by

Coob10 to reduce D2
1(z) and to evaluate the average pressure

of the second harmonic.
By limiting the development of []1/2 to the first order in

Eq. (4), Rogers et al.4 obtain the following good approxima-
tion:

D1(z) ≈ 1− e−j ka2
z

[
J0

(
ka2

z

)
+ jJ1

(
ka2

z

)]
, (6)

where J0 and J1 are the Bessel functions of the fist kind of
orders 0 and 1 respectively.

Equation (6) is valid for all the values of z/a if (ka)1/2 � 1.
Compared to the exact Eq. (4) the error using this simplifica-
tion is lower than 0.4% for ka = 100. Considering z/a <
(ka)1/2, implies that ka2/z > (ka)1/2 � 1. Thus, one can
simplify Eq. (6) by using the asymptotic developments of the
Bessel functions:

D1(z) ≈ 1−
(

2z
πka2

)1/2

e−jπ/4 = 1− g(z), (7)

where g(z) is the diffraction function related to the pa-
rameters of source a and k with plane wave case property
lim

ka→∞
[g(z)] = 0.
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Figure 2: Functions of diffraction correction. Comparison with
the exact solution to Williams, Eq. (4). c) presents the relative
errors between exact Eq. (4) and Eqs. (5) and (7).

2.3. Comparison of the various expressions
of D1(z)

Figure 2a and 2b represent the modulus |D1| of the different
equations. For the y axis, we use two variables z/a and s =
zλ/a2 = 2πz/ka2 (The Fresnel number for focused acoustic
beams is N = 1/s).13 With the variable s, we can distinguish
the near field (s ≤ 1) and the far field (s > 1). Simulations
are obtained with a = 1 cm and ka = 125.

The curves obtained with simplification of of Eq. (6) and the
exact Eq. (4) are superposed, and the asymptotic Eq. (7) then
constitutes a good approximation in the near field (Fig. 2a).
These equations diverge from the exact solution for z/a >
60 (s > 3) (Fig. 2b). The relative error (Fig. 2c) confirms
the range of validity z/a < (ka)1/2 (s < 2π/(ka)1/2) for
(ka)1/2 � 1. Thus the relative error is lower than 0.7%. The
lower limit is, in any event, limited in experiments to the ap-
pearance of standing waves in the measuring cell.
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3. CORRECTION OF DIFFRACTION OF THE
SECOND HARMONIC

3.1. Function of diffraction correction for
the second harmonic

The equation obtained by Ingenito and Williams13 for the
second harmonic in the case of monochromatic waves in non-
dissipative media (which can be found in11) is a good approxi-
mation for this Eq. that can be used in the dissipative case.

The average potential φ2 is given by:

〈φ2(r, z)〉 ≈ −βk
2

4c0
·∫ z

0

ejkψe−α2ψ

〈
φ2

1

(
r, z − ψ

2

)〉
e−2α1(z−ψ)dψ, (8)

where β = 1 + 1
2B/A and α2 is the second harmonic atten-

uation, p2 = −2jρ0ωφ2, and B/A is the parameter of non-
linearity.

Equation (8) is the reference analytical solution for the
second harmonic average velocity potential in a dissipative
medium. Ingenito and Williams13 show that a good approx-
imation consists in replacing 〈φ2

1〉 by 〈φ1〉2 in the expression
for 〈φ2〉. Thus, we can write:

〈φ1(r, z)〉2 = 〈φ10(r, z)〉2
[
1−

{
2g(z)− g(z)2

}]
= 〈φ10(r, z)〉2 [1− f(z)] (9)

with
f(z) = 2g(z)− g(z)2 = 1−D1(z)2. (10)

The average pressure of the second harmonic according to
D1(z) is obtained by using these relations:

〈p2(r, z)〉 ≈(
KP 2

0 e
−2α1z

∫ z

0

e(2α1−α2)ψD1

(
z − ψ

2

)2

dψ

)
ej2kz

(11)

with K = (2+B/A)ω
4ρ0c30

.
The function of diffraction in the second harmonic can be

given by D2(z) = 〈p2(r,z)〉
〈p20(r,z)〉 . Thus, while considering D2(z)

independent of the attenuation, which amounts to separating
the effects of the attenuation and diffraction, we obtain:

D2(z) = 1−1
z

∫ z

0

f

(
z − ψ

2

)
dψ

=
1
z

∫ z

0

D1

(
z − ψ

2

)2

dψ. (12)

3.2. Simplifications of D2(z) and 〈p2(r, z)〉
According to Eq. (12) the correction D2(z) is related to

D2
1(z), which can be simplified. Since D2

1(z) = 1 − 2g(z) +
g2(z) and lim

ka→∞
[g(z)] = 0, we can neglect the term g2(z) for

a large value of ka. Thus Eqs. (7) and (5) with the following
conditions: z/a < (ka)1/2 and (ka)1/2 � 1 result in this
simplified expression:

D2
1(z) ≈ 1− 2

(
2z
πka2

)1/2

e−jπ/4 (13)
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Figure 3: Simulations of analytic solutions of the second har-
monic average pressure for water (a) and glycerol (b). Rel-
ative variation between reference solution and solutions (15–
16), (11–14) for water (c) and glycerol (d).

D2
1(z) ≈ 1− 2

(
1− ξ(z)2

2(ka)2

)(
2

πξ(z)

)1/2

e−jπ/4 (14)

We can thus take advantage of the simpler Eq. (13) to calcu-
late a diffraction function D2(z). In this case, the integration
of Eq. (12) results in:

D2(z) ∼= 1− C
√

z

ka2
e−jπ/4
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Figure 4: System of B/A parameter measurement by the comparative method.

with
C =

4
3
√
π

(2
√

2− 1) ≈ 1.375. (15)

Finally, with Eq. (11), we have established a simple expres-
sion that is sufficiently accurate and one that can give the av-
erage pressure provided by the second harmonic on a receiver
with the same dimensions of the source:

|〈p2(r, z)〉| ≈ KP 2
0

(
e−α2z − e−2α1z

2α1 − α2

)
|D2(z)|. (16)

3.3. Comparison of solutions for the aver-
age pressure |〈p2(r, z)〉|

We simulated the expressions of the relative average pres-
sure |〈p2(r, z)〉|/P0 in two extreme mediums in term of atten-
uation and nonlinear effects:
Water: c0 = 1483 m/s, ρ0 = 1000 kg/m3, α0 = 0.25 ·
10−13 Npm−1Hz−2, α2 = 4 · α1, B/A = 5.2
Glycerol: c0 = 1909 m/s, ρ0 = 1260 kg/m3, α0 = 26 ·
10−13 Npm−1Hz−2, α2 = 4 · α1, B/A = 9.4
The conditions, close to the Coob experiments are: f =
3 MHz, a = 1 cm, I0 = 0.5 W/cm2 for water and I0 =
10 W/cm2 for glycerol, with I0 = P 2

0 /(2ρ0c0).
The results are presented in Fig. 3. Note that our Eq. (14–

15) is similar with that obtained by Coob.11 The importance of
the diffraction correction D2(z) is visualized by the represen-
tation of the simple case of a plane wave, i.e., for D2(z) = 1.
We also simulated the relative average pressure obtained with
the reference solution (8) and the King integral15, 16 for funda-
mental φ1.

Relative errors between the reference solution and the so-
lutions (14-15) and (11–14) are presented Fig. 3 c–d for wa-
ter and glycerol, where simulations are carried out with a tol-
erance of 10−6 for the calculation of the integrals (Romberg
Method) with the Mathcad R© software. They show that the so-
lution (15–16) is, overall, more precise than Eq. (11–14) and
is under the conditions adopted for simulation. Moreover, the
computing time necessary for Eqs. (15–16) is better than that
of the referenced equations, which includes a triple integral.

4. SIMULATIONS AND ANALYSES OF
DIFFRACTION FUNCTIONS

4.1. Measurement system
The objective of this section is to show the effects of diffrac-

tion in the B/A parameter measurement system. The ideal

model is established on the basis of geometrical configuration,
which is presented in Fig. 1. The two transducers are circular,
of the same diameter, and spaced to a distance of z. The elec-
tric excitation V e of the transducer source which is supposed to
be permanent and have a sinusoidal frequency f1. The detect-
ing transducer converts the average pressure P (z, t) received
on its front face in the electric signal V s(z, t) of spectral com-
ponents (V s1, f1) and (V s2, f2). The propagation medium is
defined by its density ρ0, the propagation velocity of the acous-
tic wave c0, its nonlinear B/A parameter, and its attenuations
α1 and α2 at the frequencies f1 and f2 = 2f1. The expres-
sion of fundamental (V s1, f1) will be established within the
framework of linear acoustics and that of the second harmonic
(V s2, f2) will be defined using the quasi-linear approximation
of the equation of propagation acoustic wave of pressure.16, 17

The average pressure P0, on which the second harmonic P2 de-
pends, can be deduced from the excitation V0 or the measure-
ment of the component V s1 from the fundamental detected.
We will study this last procedure. Figure 4 describes the func-
tional elements of the measurement system.

4.2. Procedure by measurement of the com-
ponents V s2 and V s1

The average acoustic pressures, fundamental P1 and the sec-
ond harmonic P2, can be expressed in the form:14, 18

P1(z, f) = P0e
−α1(f)z|D1(z, f)| (17)

P2(z, f) = K(f)P 2
0

(
e−α2(f)z − e−2α1(f)z

2α1(f)− α2(f)

)
|D2(z, f)|,

(18)
where P0 is the average pressure on the transducer. The non-
linear B/A parameter of the medium appears in the term:

K(f) =
πf(2 +B/A)

2ρ0c30
(19)

αn(f) = α0(nf)q is the attenuation at the frequency nf , α0

and q are the specific coefficients of the medium. D1 and D2

are related, respectively, to correct the diffraction of the funda-
mental (f) and the second harmonic (2f). Under the condi-
tion z/a < (ka)1/2 for (ka)1/2 � 1, where k = 2πf/c0, we
obtain good approximations for these functions. The electric
quantities are connected to the pressures by:19, 20

Vs1 = η1P1, Vs2 = η2P2, P0 = η1V0, (20)

where η1, η2: is the sensitivity of the transducer in reception
(detector) for 1st and 2nd harmonic, and η0 is the sensitivity of
the transducer in emission (source).
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With the preceding relations and by applying the procedure
of the simple comparative method, we can establish the com-
plete expression for the parameter B/A:

(
B

A

)
x

=
V s2x

V s2r

(
V s1r

V s1x

)2

Fη {FDiffFα} ·

· ρxc
3
x

ρrc3r

[(
B

A

)
r

+ 2
]
− 2, (21)

where we define:

Fη =
∣∣∣∣η2r

η2
1r

η2
1x

η2x

∣∣∣∣ ;Fα =
F (zr, α1r , α2r )
F (zx, α1x

, α2x
)

(22)

FDiff =
∣∣∣∣D2(zr, a, kr)
D2(zx, a, kx)

∣∣∣∣ ∣∣∣∣D1(zx, a, kx)2

D1(zr, a, kr)2

∣∣∣∣ . (23)

Fη is the sensitivity function of the measurement system.
Fα represents the attenuation function and FDiff takes into
account the diffraction effects for the fundamental and the sec-
ond harmonic. Indices r and x indicate the reference medium
and the medium under investigation, respectively. Simplified
expressions of B/A parameter can be obtained with approxi-
mations on the three functions defined previously, Fη , Fα and
FDiff . They lead to FDiff = 1 if the influence of diffrac-
tion is neglected, Fα = zr/zx if the influence of attenuation is
neglected and Fη = 1 if the influence of the transducer sensi-
tivities are neglected. All these approximations will be made
with the disadvantage of precision inB/A parameter measure-
ments.

We want to analyze the effect of the diffraction function
FDiff on the B/A parameter measurement in a comparative
method, FDiff is given by Eq. (23).

The transducers shown in Fig. 4 will be fixed, therefore
z = zr = zx. For the correction D2 one can use the sim-
plified form (Eq. 15). For the D1 correction, one must choose
Eq. (6), which is a simplification of the Bass Eq. 2 and prac-
tically equivalent to the exact solution of Williams Eq. (4). A
simple asymptote of this correction is given by relation (5).
Simulations are carried out at the resonance frequency of the
source transducer (2.02 MHz) by taking the relative position
z/a variable. Water is the reference medium (cr = 1500 m/s),
ethanol (cx = 1158 m/s) and glycerol (cx = 1900 m/s) are
the analysed mediums. The results obtained are presented in
Fig. 5.

Note that the asymptote obtained with D1 (Eq. 4) is only
valid in the very close domain (z/a < 5), the amplitude of
the undulations of the exact solution increases quickly beyond
that. Moreover, in this zone, the diffraction function can be ne-
glected (FDiff = 1) without degrading the measurement ac-
curacy of theB/A parameter. One can define the error brought
to the measurement of the B/A parameter, if the influence of
the diffraction is neglected, in the form:21

εB/A =
∣∣∣1− FD−1

iff

∣∣∣ · [1 + 2 · (B/A)−1
]

(24)

This error, presented in Fig. 5b, is more significant when:

1. the detector transducer is far from the source transducer,
and
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Figure 5: Diffraction Function and associated error εB/A for
f1 = frS = 2.02MHz. (kaethanol ≈ 68, kaglycerol ≈
53.5).

2. the wavelength in the analyzed medium is different from
that in the reference medium.

The validity zone of the diffraction function is limited by that
of the D2 function (2 < z/a� k · a).

5. CONCLUSION

We have shown in this paper that we can obtain a function
of diffraction correction for the second harmonic much simpler
than those usually used. This new formulation is obtained from
a simplification of the correction applied to the fundamental
acoustic pressure.

We can use this new and simple expression to describe accu-
rately the second harmonic pressure detected by a transducer.
It can be exploited in measurements of the non-linearity pa-
rameter B/A. Another interesting aspect of these simple an-
alytical solutions is the significant reduction in the computing
times when they are used in simulation processes of systems
working in the field of non-linear acoustics. Moreover, we
have obtained,for a measurement system for the B/A parame-
ter, the conditions necessary to neglect the diffraction effect.
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