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This paper presents an analytical formulation for correcting the diffraction associated with the second harmonic of

an acoustic wave, that is more compact than that usually used. This new formulation resulting from an approxi-

mation of the correction applied to the fundamentals, which makes it possible to obtain simple solutions for the

average second harmonic acoustic pressure but is sufficiently precise when measuring the parameter of nonlinearity

B/A in the finite amplitude method. Comparisons with other expressions requiring numerical integration show that

the solutions are precise in the near field. Furthermore, the effect of diffraction in the B/A parameter measurement

system is discussed.

1. INTRODUCTION

In acoustic parameter measurements of a medium, it is nec-

essary to take into account the diffraction effects of the ultra-

sonic source to improve the precision of measurements. The

measurement cells usually used in transmission consist of two

circular transducers (one used as a source and another as a de-

tector). In these situations, the detector will translate into an

electric voltage of the average acoustic pressure in its reception

area. The analytical solutions describing this average pressure

can be formulated as the sum of two terms, one corresponding

to the propagation of a plane wave, and the other including the

effects of diffraction generated by the geometry of the source-

detector unit.

The attenuation α and velocity c can be obtained in the case

of linear acoustics. Different authors1–4 give exact and asymp-

totic expressions of the average pressure received by a circular

transducer. These expressions permit correction functions of

diffraction in velocity and attenuation measurements.5, 6

On the other hand, the B/A parameter is measured in the

field of nonlinear acoustics. This parameter is defined as the

ratio of coefficients of quadratic term to the linear term in Tay-

lor expansion of the state equation. Consequently, it charac-

terizes the dominant finite-amplitude contribution to the sound

speed for an arbitrary fluid.7 The first measurements of B/A

parameter by finite amplitude methods rested on an analytical

expression of the second harmonic by considering the propa-

gation of a plane wave.8–10 Various authors11, 12 then improved

the precision of these methods by including a function to cor-

rect the diffraction effect resulting from the relation established

by Ingenito and Williams13 for the average pressure exerted by

the second harmonic. However, the correction of diffraction

obtained is not very practical because it can be evaluated only

by numerical integration.

The objective of this paper is to show that one can obtain a

simple and precise form by simplifying the correction function

of diffraction for the fundamental. Then we will give simple
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Figure 1: Geometrical configuration of the source-detector.

expressions of the average pressure exerted by the second har-

monic, including diffraction and attenuation effects. We will

show that the results obtained are equivalent to those estab-

lished by Coob and validated in measurement systems.11 But

before establishing this result it is necessary to present the var-

ious corrections of diffractions applicable to the fundamental

from acoustic pressure.

2. CORRECTION OF DIFFRACTION FOR

THE FUNDAMENTAL

2.1. Function D1(z) of diffraction correction

for the fundamental

For the nondissipative case (α1 = 0), Williams1 give the

exact expression of the average velocity potential (Fig. 1):

〈φ1(r, z)〉 =
jU0

k
ejkz−

j4U0

kπ

∫ π/2

0

ejk[z2+4a2cos2θ]1/2

sin2θdθ (1)

with a being the radius of the transducer.

The first term represents the velocity potential in the case of

a plane wave, therefore the average velocity potential on the
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