
Nomenclature
A  area−

 constantAj −
b  width−

 soil dampingcS −
 damping per lengthc∏ −

D  material damping−
E  modulus of elasticity−
EI  bending stiffness−
f  frequency−

 compliance functionfzz −
f  compliance matrix−
F  force−

 transversal, radial, vertical forceFt, Fr,Fz −
 total force acting on the soilFS −
 wheel-set force on the trackFT −
 exciting force on the vehicleFV −
 force per lengthFS

∏ , FT
∏ −

G  shear modulus−
h  height−
H  total force transfer function − FS/FV

 track force transfer function HT − FS/FT
 vehicle-track force transfer function HVT − FT/FV

i  imaginary unit−
 soil stiffnesskS −
 track stiffnessKT −
 vehicle stiffnessKV −
 soil stiffness matrixKS −
 track stiffness matrixKF −
 stiffness per lengthk∏ −
 soil stiffness per lengthkS

∏ −
 complex soil stiffness KS

∏ − kS
∏ + i cS

∏

 dynamic stiffness kD
∏ − k∏ + i c∏ −m∏ 2

 dynamic stiffness KD
∏ − K∏ −m∏ 2

 stiffness per areak∏∏ −
 wheel-set massmW −
 mass per lengthm∏ −

 mass matrix of multi-beam trackm ∏ −
M  finite element mass matrix−

 compliance in wavenumber domainNzz −
r  radial distance−
s  irregularities of vehicle and track−
t  time−
u  displacement−

 transversal, radial, vertical displacementut, ur, uz −
 shear and compression wave speedvS, vP −
 eigenvectorvj −

x  position along the track−
x  position vector−

 Poisson ratio−
 mass density−
 wavenumber−
 shear and compression wavenumberS, P −
 circular frequency−
 multiple differentiation with respect to x (position)u∏∏∏∏ −
 multiple differentiation with respect to t (time)..u −

1. INTRODUCTION

A variety of isolation measures exists to reduce the vibra-
tion in the neighbourhood of railway lines. They can be roughly
classified as elastic or stiffening systems. The following elas-
tic elements are used (Fig. 1): railpads or resilient fixation
systems between rail and sleeper,1 sleeper shoes under the
sleepers,2 and ballast mats under the ballast1,3,4. Stiffening sys-
tems (plates) are used as slab tracks,5-7 floating slab tracks,1,8,9

or mass-spring systems10 and in a different way, as an under
ballast plate11-13. The main interest of this contribution is bal-
last mats.

Ballast mats are an efficient measure to reduce the vibra-
tions near railway lines. The vehicle-track system gets a low
eigenfrequency due to the insertion of an elastic ballast mat
under the ballast. For frequencies higher than this low
vehicle-track eigenfrequency, the forces, that are generating
the vibration of the soil, are considerably reduced.
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The reduction of this force  acting on the soil is ana-FS
lysed for different tracks – ballasted tracks, non-ballasted
tracks, with or without isolation measure – by three-dimen-
sional combined finite element boundary element models or
by simple two-dimensional models. The different models are
illustrated in Figs. 1 and 2, and the parameters used through-
out this paper are listed in the corresponding Tables 1 and 2.
The parameters of the two-dimensional model are adjusted so
that the two-dimensional results are similar to the three-di-
mensional results.

Table 1. Parameters of the two-dimensional track model.

 mb = 1.3effective widthballast, mat
and plate 

D = 0.1hysteretic
damping

elastic ele-
ments

 Ns/mcS = 3.8, 5.3, 7.5, 10.5 % 105damping

 N/mkS = 2, 4, 8, 16 % 107stiffness soil

 mhP = 0, 0.25, 0.5, 1height

 kg/m3= 2.5 % 103mass density

 N/m2E = 3 % 1010modulus of
elasticityconcrete plate

 N/m3kM
∏∏ = 2, 4, 8, 16% 107stiffness per

areaballast mat

 mhB = 0.35height

 N/m2EB
& = 0.5, 1.1, 2.2, 4.4 % 108modulus of

elasticity

 kg/m3
B = 2000mass densityballast

 N/m3kSS
∏∏ = 3 % 108stiffness per

areasleeper shoe

 kgmS/2 = 170masssleeper

 kN/mmkP = 40, 80, 150, 300stiffnessrail pads

 kg/mmR
∏ = 60mass per

length

 Nm2EIR = 6.4 % 106flexural
stiffnessUIC60 rail

 kgmW/2 = 750, 1500masswheelset

Table 2. Additional parameters of the three-dimensional track model.

 mbB = bP = 5.6widthtrack
(ballast, plate)

vP = 2vS
compression-
wave speed

 m/svS = 100, 150, 200, 300shear-wave speed

 N/m2G = 2, 4.5, 8, 18 % 107shear modulus

= 0.33Poisson’s ratio

 kg/m3= 2 % 103mass densitythe soil

 kg/m3= 2.5 % 103mass density

= 0.15Poisson’s ratio

 N/m2E = 3 % 1010modulus
of elasticity

concrete
sleepers

Figure 1. Simple two-dimensional beam-on-support model of the track.

Figure 2. Three-dimensional finite-element boundary-element model
of the track.

The 3D calculation of track-soil systems is described in
full details in reference14 for homogeneous soil, whereas the
details for layered soils are given in reference15. The experi-
mental verification of the 3D method is done by measure-
ments of train, track, and soil vibration.14

Similar track-soil models have been established at a num-
ber of institutes and have been compared in a benchmark test
by the author.16 There exist more detailed methods7,13,17 which
include infinite tracks and moving load effects. These effects
are of interest for very high train speeds and for very soft
soils. These methods are also called 2.5D methods18 as they
make use of the homogeneous or periodic structure19 of the
track. On the contrary, much simpler models are used to cal-
culate isolated tracks.1,3 One problem of the 1D and 2D meth-
ods is the choice of the correct parameters. This problem has
been solved by fitting the 2D results to the 3D results.

The complete three-dimensional method is described first
because it is the base of all calculations (section 2). In section 3,
the simple two-dimensional beam-on-support method which
is used for most of the results presented here, is given. The
different steps of vehicle-track calculation, which are neces-
sary to get the total force transfer function, are explained in
section 4 and illustrated by a track with an under-ballast
plate. The main part of the contribution (section 5) consists
of the calculated force transfer functions of different tracks,
especially of tracks with ballast mats. At the end of this sec-
tion, the force reductions of other railway isolators are pre-
sented. Finally, section 6 discusses the practical application
of the methods and two experimental examples are given.

2. THREE-DIMENSIONAL FINITE-ELEMENT
BOUNDARY-ELEMENT METHOD

A three-dimensional track model is combined with the
boundary element formulation of the soil.20 That means that
the Greens’ functions of a homogeneous or layered soil15 are
used to establish a fully coupling soil matrix which is added
to the FEM matrix of the track.
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2.1. Green’s Functions of the Soil
The soil is a homogeneous or horizontally layered elastic

half-space, which is excited at its surface by dynamic forces F,
and the displacements u have to be calculated for surface
points, too. The relation between the displacements u and the
force F can be described in cylindrical (transversal, radial, and
vertical) components as

                 (1)
ut

ur

uz

=
ftt 0 0
0 frr frz

0 −frz fzz

Ft

Fr

Fz

.

The four functions  can be calculated by integra-fij(r, )
tion in wavenumber domain,15 for example as

                     (2)fzz = 1
2 ¶

0

∞

Nzz( )J0( r) d

for the simplest case of the vertical component.  is the Bes-J0
sel function of the first kind and the vertical compliance Nzz
in wavenumber domain  can be given explicitly for the ho-
mogeneous half-space

     (3)Nzz =
S
2

P
2 − 2

iG ( S
2 − 2 2)2 + 4 2

S
2 − 2

P
2 − 2

,

with the abbreviations

                       (4)S = /vS ; P = /vP ,

or calculated by matrix methods for a layered soil.15 Similar
formulas hold for the other components and the complete set
of Green’s functions Eq. (1) is used in the present boundary
element method of the soil.

2.2. The Stiffness Matrix of the Discretised Soil
First, the soil has to be defined by a set of m surface

points with coordinates . A certain portion  of the sur-x A
face area belongs to each surface point. A force F at a point 

 of the surface of the soil is considered. By using thex
Green’s functions (of the preceding section), the displace-
ments at all other points  are calculatedx

 (5)
ux

uy

uz

=
frrxr

2 + fttyr
2 ( frr − ftt) xryr frzxr

( frr − ftt) xryr frryr
2 + fttxr

2 frzyr

−frzxr −frzyr fzz

Fx

Fy

Fz

,

with 
xr = (x − x )/r ; yr = (y − y )/r .

Equation (5) is the same as Eq. (1), but transformed into
the cartesian coordinate system.

For the point of excitation  itself, the Green’s functionx
cannot be evaluated because the solution is singular at this
point. This difficulty can be overcome by calculating the
mean value over the corresponding surface area. This leads
to the mean values of the scalar functions fii(r)

                           (6)f ii = 2
r2 ¶

0

r

fii(r)rdr ,

where  is the radius of area . So the compliance relationr A
at the excited point of the soil is 

       (7)
ux

uy

uz

=

f rr + f tt
2 0 0

0 f rr + f tt
2 0

0 0 f zz

Fx

Fy

Fz

.

The flexibility matrix of the soil is assembled of all these
 matrices 3% 3 f

        (8a)

u1

§

u
§

um

=

f11 £ f1 £ f1m

§ • § • §

f 1 £ f £ f m

§ • § • §

fm1 £ fm £ fmm

F1

§

F
§

Fm

,

with m the number of points, or in short form

                                     (8b)u = fF .

The inversion of this equation

                                  (9)F = f −1u =: KSu

gives the dynamic stiffness matrix  of the soil whichKS = f −1

is introduced in the finite element procedure for the structure.

2.3. Combined Finite-Element 
Boundary-Element Method

Now the coupling of both subsystems, track and soil, is
done by introducing the soil into the finite element code as a
new type of element. The points of the soil define one special
element of which the dynamic stiffness matrix  is calcu-KS
lated by the boundary element method. The track structure is
described by the conventional finite-element method. Local
stiffness matrices, as well as local mass matrices, are assem-
bled in a global stiffness matrix, , and a global mass ma-K0
trix M, respectively. Combining these matrices, the frequen-
cy-dependent dynamic stiffness matrix  of the trackKF( )
structure

                               (10)KF =K0 − 2M

is obtained. Then, the coupling of the boundary-element and
finite element part of the system can be expressed in terms of
global representations of the matrices and 

                           (11)F = (KF( ) +KS( ))u

is the equation of the whole track-soil system. This has to be
solved for given external forces F, for example the wheel-set
forces of Fig. 2.

From the solution of Eq. (11), the stiffness, , of the trackKT
under the wheel-set load and the force transfer function, ,HT

L. Auersch: METHODS FOR THE ASSESSMENT OF BALLAST MATS, BALLAST PLATES AND OTHER ISOLATORS OF RAILWAY VIBRATION

International Journal of Acoustics and Vibration, Vol. 11, No. 4, 2006 169



of the track are calculated, which relate the displacement, ,uT
of the rail under the wheel and the (complex) sum of the soil
forces, , below the track to the exciting wheel-set load .FS FT
These FEBEM results are used for further vehicle-track ana-
lyses.

In this contribution, the finite-element model of the track
consists of two rails and eleven sleepers (Fig. 1). The rails are
represented by  Euler beam elements, the sleepers by2 % 40

 plate elements. The ballast is modelled by 11% 12 44% 48% 3
eight-node solid elements. An underlying plate consists of

 plate elements. The elastic elements are modelled as44% 48
 truss elements (railpads) or as  solid elements2% 11 44% 48

(ballast mat). The parameters used in this contribution are
given in Tables 1 and 2. The parameters of the elastic ele-
ments are in the range of available products. Only one type
of elastic element is applied at a time. The underlined values
are used as standard if the corresponding parameter is not
varied.

3. SIMPLE TWO-DIMENSIONAL 
BEAM-ON-SUPPORT METHOD

The track model consists of a rail beam which is supported
on a combination of spring, damper, and mass elements (Fig. 1).
These elements represent railpads, sleepers, the ballast, and
any isolation measure. The assembly of all these elements
can be represented by a dynamic, frequency-dependent sup-
port stiffness per length . The most simple model would bekD

∏

a mass  on a spring  and a damper m∏ k∏ c∏

                        (12)kD
∏ = k ∏ + c ∏i − m ∏ 2.

The stiffness of such a beam-on-support track system is
derived as follows:

A beam on continuous support is described by the differ-
ential equation

                  (13)EIu∏∏∏∏ + k∏u+ c∏u. +m∏ ..u = 0

for the displacement u. If the complex exponential function

                                 (14)u = Ae( x+i t)

is inserted into the differential equation, the following condi-
tion for the wavenumber  is obtained

                   (15)EI 4 + k∏ + c∏i −m∏ 2 = 0.

This equation has four roots 

               (16)1,2,3,4 = − k ∏ + c ∏i −m ∏ 2

EI
1/4

of which the both wavenumbers with negative real part are
chosen so that the solution is decreasing in x-direction

1 = 0
−1 + i

2
; 2 = 0

−1 − i
2

,

with  the principal value of the root 0

0 = k ∏ + c ∏i −m ∏ 2

EI
1/4

.

The solution is found by fitting the general solution
Eq. (14) to the boundary conditions as

u(x = 0) = 2 − 1

2
A ; F = 2EI u ∏∏∏(x = 0) = 2EI 2 1

3 − 1 2
3

2
A.

Therefore, the stiffness of the track can be expressed as

KT = F
u = 2EIu ∏∏∏

u = 2EI 2 1
3 − 1 2

3

2 − 1

= −2EI 1 2( 1 + 2) = 2EI 0
3 2 ;

             (17)KT = 2 2 EI1/4(k∏ + c∏i −m∏ 2)3/4.

The transfer function  of the force is the ratio of theHT
force  acting on the soil to the wheel load  acting on topFS FT
of the track. It can be calculated for a single support chain if
the mass of the rail is included. This remarkable result, which
further simplifies the force transfer function of the track, is
proved in the appendix. For the simple support model it follows

               (18)HT =
FS
FT

=
FS
∏

FT
∏ = k ∏ + c ∏i

k ∏ + c ∏i − m ∏ 2 .

Equations (17) and (18) are the simplest versions for a
beam-on-support system. The support can be more complex
and be calculated with transfer matrices.21 A general method
for the combination of support elements with more than one
beam is given in the appendix.

Although the method is simple, it is not easy to get appro-
priate parameters for the model. The simple two-dimensional
models have been calibrated by the FEBEM results. Rules for
the parameters of the simple model are established by ap-
proximating the dynamic FEBEM-stiffness of the track.21,22

The results of the simple method presented in this paper are
quite similar to corresponding results of the three-dimen-
sional finite-element boundary-element method. Namely, the
vehicle-track eigenfrequencies are the same for both methods
if the parameters of the simple model are properly chosen.

4. VEHICLE-TRACK INTERACTION

The track model is combined with a vehicle model. A sin-
gle rigid wheel mass  is used throughout this paper. ThemW
dynamic stiffness  of the vehicle is introducedKV = −mW 2

into the vehicle-track-interaction analysis. A force  actingFV
on the vehicle yields a force  acting on the track according toFT

                       (19)HVT =
FT
FV

= KT
KT +KV

,

and a force  on the soil according toFS

     (20)H = FS
FV

= FS
FT

FT
FV

= FS
FT

KT
KT +KV

= HTHVT .

For the simplest two-dimensional case, the result can be
given explicitly as

                       (21)FS
FV

= k ∏ + i c ∏
k ∏ + i c ∏ −m ∏& 2 ,

which looks almost as simple as a single-degree-of-freedom
oscillator. However,  is a frequency-dependent combina-m∏&

tion of the wheel and track mass.
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The four steps of calculation with their results , ,KT HT
, and H are illustrated by Fig. 3 for ballasted tracks onHVT

different plates (2D models). The static stiffness of the track
increases with increasing height of the plate (Fig. 3(a)), but
the situation changes at high frequencies. The force transfer
of the track (Fig. 3(b)) shows a moderate resonance at low
frequencies which is a resonance of the heavy ballast-plate
track on the soil. A corresponding force reduction is found
around 100 Hz, especially for the thickest plate. The vehicle-
track interaction (Fig. 3(c)) yields another more pronounced
resonance at 100 Hz which is mainly ruled by the wheel-set
mass and the ballast stiffness. The height of the plate has
only a slight influence on the resonance frequency, but the
resonance amplitude is increased for thicker plates. The over-
all force transfer (Fig. 3(d)), which is the product of the force
transfer of the track and the vehicle track interaction, dis-
plays both resonance frequencies. Only minor reductions of
the force can be found in the given frequency range.

5. FORCE TRANSFER OF DIFFERENT TRACKS

The two- and three-dimensional methods have been used
to calculate a number of different tracks with and without
isolation measures. For each track, the specific parameters,
which are important for the force transfer from the vehicle to
the soil, have been investigated.

5.1. Conventional Tracks
A ballasted track on a homogeneous subsoil is highly in-

fluenced by the stiffness of this subsoil (Fig. 4). The vehicle-
track eigenfrequency can vary between 50 Hz and more than

Figure 4. Track on homogeneous subsoil (a) 2D results with kS
∏ =

 N/m2 and ,2(±), 4(O), 8(¿), 16(+) % 107 cS
∏ = 3.8(±), 5.3(O), 7.5(¿)

 Ns/m2, (b) 3D results with shear wave speeds , 10.5(+) % 105 100(±)
 m/s.150(O), 200(¿), 300(+)
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Figure 3. 2D ballasted track on a concrete plate of ,  m, (a) stiffness  and (b) force transfer  of the track, (c)hP = 0(±), 0.25(O) 0.5(¿), 1(+) KT HT
vehicle-track transfer function , (d) and total force transfer function H.HVT



Figure 5. Slab track with different railpads ,kP = 40(±), 80(O), 160(¿)
 kN/mm, (a) 2D results, (b) 3D results.300(+)

Figure 6. Ballast track on a plate of  m, ballast stiffnesshP = 0.5
 N/m2, (a) 2D results, (b) 3DEB

& = 0.5(±), 1.1(O), 2.2(¿), 4.4(+) % 107

results.

100 Hz (for wheel-sets of 1500 kg). The resonance is highly
damped by the radiation in the soil. There is a reduction of
the force at frequencies higher than the resonance frequency,
but this is a minor effect for conventional tracks and the fre-

quency range of interest. Figure 5 shows results for slab
tracks where the sleepers are placed on a concrete plate

 instead of the ballast. Slab tracks are usually(hP = 0.2 m)
constructed with elastic railpads which determine the stiff-
ness of the track and the vehicle-track resonance. Elastic rail-
pads can provide the same compliance that ballasted tracks
have and yield similar eigenfrequencies. The resonance am-
plitudes, however, are considerably higher as the radiation
damping is impeded (there is no material damping for this
example). If the ballasted track is laid on a plate, for example
the tunnel floor, the most important parameter is the stiffness
of the ballast (Fig. 6). The vehicle-track eigenfrequency is a
little higher and the damping is reduced compared to a track
on a soil with corresponding stiffness (see Fig. 4). 

5.2. Ballast Mat Tracks
A ballast mat supports the ballast mass in addition to the

sleeper, rail, and wheel masses. Therefore, eigenfrequencies
as low as 20 Hz are possible, depending on the stiffness of
the mat (Fig. 7). For higher frequencies, the force amplitudes
are strongly reduced where the strongest reduction is ob-
tained for the softest mat and the lowest eigenfrequency. A
number of calculations – 2D as well as 3D – have shown the
following effects. The wheel mass has only a minor influence
(Fig. 8). For wheel-set masses between 1000 and 3000 kg,
the shift of the resonance frequency is only 20%, which dem-
onstrates that the track mass and especially the ballast mass is
of importance. The subsoil has almost no influence on the
performance of the ballast mat (Fig. 9). A soft soil increases
the damping. A stiff soil, as well as a plate under the ballast
mat, cannot improve the effect of a ballast mat, but they can
reduce the damping.

Figure 7. Track on a ballast mat of stiffness ,kM
∏∏ = 2(±), 4(O), 8(¿)

 N/m3, (a) 2D results, (b) 3D results.16(+) % 107
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Figure 8. Track on a ballast mat with different wheel-set mass
 kg, (a) 2D results, (b) 3DmW = 1000(±), 1500(O), 2000(¿), 3000(+)

results.

Figure 9. Tracks on a ballast mat on different soils, shear wave
speed  m/s, (a) 2D re-vS = 1000(±), 500(O), 300(¿), 200(+), 150(%)
sults, (b) 3D results.

5.3. Other Isolators of Railway Vibration
Figure 10 gives an overview of the results of different

tracks. A conventional track is compared with tracks on iso-

lators. The isolators are elastic elements placed at different
places of the track. The lower the position of the isolator, the
greater the supported mass. The lower the eigenfrequency of
the system and the better the obtained reduction of the force.
While the conventional track has a resonance at 90 Hz
(Fig. 10 ), it is shifted to 70 Hz for the track with medium±
soft railpads (Fig. 10 O). If there is a ballast track with sleeper
shoes, more mass is elastically supported and a lower vehi-
cle-track eigenfrequency is achieved at 50 Hz (Fig. 10 ¿).
Ballast mat tracks further reduce the eigenfrequency to 30 Hz
(Fig. 10 +). Floating slab tracks which are using the same
mats would result in approximately the same eigenfrequen-
cies as mats under ballast tracks. In Fig. 10, a lower tuning
frequency of the floating slab track (light weight mass-spring
system) is assumed. Heavy mass-spring systems resting on an
elastic strip or on single elements can have very low eigen-
frequencies (Fig. 10 ). According to that, they have the¡
highest reduction of the forces and ground-borne vibrations.

Figure 10. Tracks with different isolation measures,  ballast±
track on a plate, O slab track with elastic rail pads (  kN/mm),kP = 60

 ballast track with sleeper shoes (  N/m3), + ballast¿ kSS
∏∏ = 12 % 107

track with ballast mat (  N/m3),  floating slab trackkM
∏∏ = 4 % 107 %

and  heavy mass-spring system, 2D results.(

5.4. Comparison of 2D and 3D Results
The 2D and 3D results are given together in Figs. 4

through 9. The general agreement is very good, especially re-
garding that the 2D parameters are chosen by a general rule
and not by fitting each curve. Of course, there are more de-
tails in the 3D results, for example two maxima instead of
one in Fig. 7(a), curve + and Fig. 9(a), curve  and +, and a%
related frequency shift. This might be due to bending of the
sleepers and waves in the ballast. (The minimum between the
two maxima is at the frequency where the shear wavelength
equals the ballast width.) But these differences between 2D
and 3D results are not so significant. The 2D method is much
faster and yields acceptable results so that it is more conven-
ient for a railway design engineer. 

6. EXPERIMENTAL RESULTS

The isolation effect of the different track systems has to
be checked experimentally. For the under-ballast mat, two
practical examples are presented. The first example is a bal-
last mat with stiffness  N/m3, which is installedkM

∏∏ = 4 % 107

in a surface line on a soft soil (modelled as  m/s, allvS = 100
other parameters are chosen as the standard values of this
contribution).
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Figure 11(a) shows the corresponding two force transfer
functions. They have a resonance at  Hz with mat and atf = 30

 Hz without mat. The ratio of these transfer functions isf = 55

FS
FV with mat

FS
FV without mat

,

and yields the relative force amplitude (Fig. 11(b)). Due to
the small difference between these two resonance frequencies,
the reduction at high frequencies is limited to 1:3 to 1:4 (−10
to  dB). The vibration amplitudes have been measured at−12
two neighboured track sections, one section with a ballast
mat, one section without a ballast mat. The relative vibration
amplitudes of these two sections are shown in Fig. 11(b). The
measured vibration reduction is a little worse than the theo-
retical force reduction, but in general, the theoretical and ex-
perimental curve agree well. Similar experimental results for
ballast mats in surface lines are reported in Nelson.1 The
agreement of force and vibration reduction may be expected
because the total force acting on the soil is the only source of
the soil vibration if the measuring point is far enough away
from the quasi static-track deformation.

Figure 11. Track on soft soil with and without ballast mat, (a) force
transfer functions, (b)  relative force amplitudes (theory) and±
O relative vibration amplitudes (measurement).

The second example is a track in a tunnel for which the
isolation effect is demonstrated in Fig. 12. The soil and bal-
last are modelled with  m/s. The stiffness of the bal-vS = 200
last mat is  N/m3, and the unsprung mass of thekM

∏∏ = 4 % 107

vehicle is  kg, according to Wettschureck.3 ThemW = 3000
tunnel base plate reduces the radiation damping of the soil,
and the resonances at  and 70 Hz are more pronouncedf = 25
(Fig. 12(a)). The reduction at high frequencies reaches values
of 1:10 (  dB). The theoretical and experimental reduction−20
agree very well, demonstrating the high performance of bal-
last-mat tracks in case of a tunnel line.

Figure 12. Tunnel track with and without ballast mat, (a) force
transfer functions, (b)  relative force amplitudes (theory) and±
O relative vibration amplitudes (measurement).

There is a principal error found in the measured reduction
curve. From the measurement, it might be concluded that
there is a significant reduction at low frequencies  Hz.f < 10
Actually, this is a systematic error which occurs if the vibra-
tion amplitudes are measured at or close to the track. At these
measuring points, the low frequency passage of the static
train loads are included in the measured signals. The wider
load distribution along the track leads to a reduced response
to these passing static loads. But this effect will not be found
at far-field points.23 Therefore, measuring points at a longer
distance from the track should be preferred to get a realistic
vibration reduction.

Besides the modified load distribution, there is another
non-dynamic effect of isolating track systems. Elastic, as
well as stiffening elements, may have an influence on the
track stability. A ballast mat may cause more ballast settle-
ments due to stronger ballast vibration. In a tunnel track or
for surface tracks with under-ballast mat and plate,24 the side
walls prevent this track detoriation. Plate tracks have a better
track quality which yields lower vibration amplitudes at low
frequencies. This has been found more or less pronounced in
several measurements.5,6,25 Under-ballast plates (without mats)
show a similar reduction at low frequencies.25

The methods presented in this contribution are suited to
predict the effectiveness of isolation measures realistically.
Moreover, they are used to perform complete predictions for
a vehicle-track-soil-building situation.21,26 The force transfer
function is used to calculate the resulting soil force, , forFS
vehicle forces, , or for the main source of train inducedFV
vibration, the irregularities, s, of the vehicle and the track6

which are introduced into the calculation as . In aFV
& = KVs

second and third step, the vibration amplitudes of the soil and
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nearby buildings are calculated where the effect of the load
distribution of  is introduced in an approximate manner.6FS
Such a validated simple tool for the force transfer of tracks,
the isolation performance and the prediction of environ-
mental vibration will be useful for railway operators and per-
manent way designers.

7. CONCLUSIONS

Two methods are available to calculate tracks with isola-
tion measures, the three-dimensional finite-element boundary-
element method and the simple two-dimensional beam-on-
support method. Results are presented about railway tracks
without and with ballast mats. The reduction of the forces
acting on the ground is considerable. The influence of a num-
ber of parameters is analysed. The most important parameters
are the mat stiffness, the track mass, and, partly, the wheel
mass. The methods have also been applied to other isolation
measures at railway tracks such as soft railpads, elastic sleeper
shoes, lightweight floating slab tracks, and heavy mass-
spring systems. It turns out that each system has a specific
frequency range. The system with the lowest vehicle-track ei-
genfrequency yields the best reduction but this may be the
most expensive reduction measure. Therefore, the best reduc-
tion measure must be chosen according to the situation at
hand.

APPENDIX. TWO-DIMENSIONAL MULTI-BEAM METHOD

The track system consists of n beams with bending stiff-
ness  and mass density . Between the beams, there areEIi mi

∏

support elements as springs, dampers, masses, and columns.
The multi-beam system is described by a set of n differential
equations

                     (A1)EIu∏∏∏∏ +m∏ ..u +K∏u = 0 ,

and a set of boundary conditions

                (A2)EIu∏∏∏(0) = F
2 e1 ; u∏(0) = 0 ,

EI is a diagonal matrix of the , and  is a diagonal matrixEIi m∏

of the , and  is a  matrix assembled from the mi
∏ K∏ n% n 2% 2

dynamic stiffness matrices  of each support section. TheKij
solution for this track system – for one of the symmetric
halves of the system – is found as

                         (A3)u(x) =
j=1

2n
Ajv je jx,

with the solutions  of the eigenvalue problemi

(EI 4 −m∏ 2 +K∏)u = 0 ;

             (A4)EI −1(m∏ 2 −K∏)u = 4I ; Au = I ,

with the corresponding eigenvectors . The  eigenval-vj 2% n
ues with a negative real part are chosen from the  roots4% n
of the n eigenvalues  in order to get the physically correct4

solution for positive values of x. The contribution, , of eachAj
eigenform, , is calculated from the system of  linearvj 2% n
boundary conditions

 (A5)u ∏(0) =
j=1

2n
v j j Aj = 0 ; u∏∏∏(0) =

j=1

2n
v j j

3 Aj = F
2 EI −1e1 .

The solution Eq. (A3) gives the compliance or stiffness of
the track as  and the force on the soil is cal-NT = 1/KT = u1(0)
culated as

FS = ¶
− ∞

∞

KS
∏ un(x)dx = 2KS

∏ ¶
0

∞

j = 1

2n
Ajvjne jxdx

        (A6)= 2KS
∏

j = 1

2n
Ajvjn ¶

0

∞

e jxdx = 2KS
∏

j = 1

2n Ajvjn

j
.

There is another way to calculate the force transfer of the
track. The following relations hold for the integrals of the
forces and displacements

¶
−∞

∞

F ∏dx = (K ∏ −m ∏ 2 ) ¶
−∞

∞

u dx = KD
∏ ¶

−∞

∞

u dx ;

                   (A7)¶
−∞

∞

u dx = KD
∏−1 ¶

−∞

∞

F ∏dx ,

because the bending stiffness redistributes the load without
modifying the total force. Therefore, the total force  can beFS
given as

FS = ¶
− ∞

∞

FS
∏ dx = KS

∏ ¶
− ∞

∞

undx = KS
∏ (KD

∏−1 )n1 ¶
− ∞

∞

FT
∏ dx

                        (A8)= KS
∏ (KD

∏−1 )n1FT .

The force transfer of the track is determined by the dy-
namic stiffness, , of the support elements and the mass, ,K ∏ m∏

of the beams, whereas the bending stiffness has no influence.27

Equation (A8) reads as 

      (A9)FS = KS
∏ (KD

∏−1 )n1FT = k∏ + c∏i
k∏ + c∏i −m∏ 2 FT ,

for a single rail beam and a simple support and this proves
Eq. (18) of section 3.
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