
1. INTRODUCTION

Friction induced instability in elastic systems has received
serious attention from a large number of researchers. Several
seminal review articles on the topic are available.1-3 Depend-
ing upon the mechanisms involved, friction induced sliding
instability may be broadly classified into two categories:
1) instability induced by the Stribeck effect and 2) mode-
coupling instability. The central focus of the present article is
on a particular type of mode-coupling instability, which goes
by the name of ‘kinematic constraint instability’ in early lit-
erature. The term ‘kinematic constraint instability’ is relevant
only for perfectly rigid contact assumption, where the contact
boundaries are viewed as the rigid constraints to the motion.
In reality, any contact surface involves elastic deformation,
however small this may be. Thus, contact force emerges as the
coupling force among the different modes of vibration of a
sliding elastic structure. Several early studies, assuming per-
fectly rigid contact, are available on the topic.1

Mode-coupling instability is caused due to the coupling
of several modes of vibration of one or more structures slid-
ing along frictional constraint. Mode-coupling instability
may or may not involve structural coupling. Hoffman and co-
workers4,5 consider mode-coupling instability in presence of
structural coupling terms. Even though contact is modelled as
compliant, the effects of contact parameters, such as contact
stiffness and damping are not discussed. Duffour and Wood-
house6,7 consider the transfer function approach to discuss the
stability of sliding frictional contact at a single point. Discus-
sion on the two-mode interaction is quite comprehensive and
the effect of a third mode is also considered. The effects of
contact compliance in normal and tangential directions are
also addressed. However, the role of contact damping is miss-
ing in their discussion. Roles of normal, tangential, and angu-

lar mode coupling in friction-induced vibration have been ad-
dressed several times in reference.8-10

Besides mechanical systems with sliding components, slid-
ing instabilities of the tectonic plates during earthquakes are
also studied using the same class of models discussed above.11,12

Other important classes of problems, similar to the problems
of sliding instabilities, are discussed under the heading of the
‘dynamics of multibody systems with unilateral constraints.’13-15

These classes of problems deal with the dynamics of the con-
tact bounce and the hopping phenomena of rigid or elastic
multibody systems sliding along frictional boundaries. These
studies find applications in robotic devices used for the slid-
ing manipulation of objects. 

Kinematic constraint instability is the central theme of the
present article. Though in reference1 this kind of instability is
discussed in the context of rigid contact, it can be viewed as
the special case of mode-coupling instability when compli-
ance in the contact boundary allows elastic deformation. In
order to throw light on some of the grey areas of the topic,
the problem is framed in a rigorous physical and mathemati-
cal setup. Kinematic constraint instability is analysed from
both rigid contact and compliant contact considerations with
the objective of finding a point of convergence between the
two formalisms. The minimal model of this kind of instability
involves two structural modes. Even for this simple model, a
complete picture of the stability characteristics is not avail-
able in literature. The present article tries to give a complete
picture of the stability characteristics for two-mode interac-
tion. 

2. MATHEMATICAL MODEL AND STABILITY ANALYSIS

Friction induced self-excited instability is possible due to
the mode-coupling effect. The minimal model explicating this
effect involves two coupled structural modes of vibration.
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The major objective of the present paper is to bring out the
general effects of modal and contact parameters on the stabil-
ity of two-mode sliding interaction at a point contact with
constant coefficient of friction. Keeping the above objective
in view, first the mathematical model of a specific system is
considered. The mathematical model of this specific system
helps one to reach a generalised mathematical model. 

2.1. Mathematical Model of a Specific System
The mathematical model of an elastic element with tan-

gential, normal and torsional compliance is depicted in Fig. 1.
The elastic component is held, with the help of a preload, ,P0
against a surface moving with velocity, . The above modelvs

&

may be used to study the dynamics of a simple brake shoe
and various other similar systems. Equations of motion of the
system (for the situation when contact is active) are written as:

                         (1)Mx∏∏ + cxx∏ + kxx = F&;

                      (2)My ∏∏ + cyy ∏ + kyy = P0 − N&;

              (3)J ∏∏ + c ∏ + k = P0L2 + F&H − N&L ,

where prime  denotes differentiation with respect to time, t.(∏)
M and  are mass and moment of inertia of the elastic ele-J
ment, respectively.  and  represent damping coeffi-cx,y, kx,y,
cients and stiffness in x, y, and  directions, respectively.

 and  represent normal and friction force, respectively.N& F&
Normal contact deformation  is expressed as:c

                                     (4)c = y + L .

For stable sliding contact, friction force is computed ac-
cording to the Coulomb’s model:

                                       (5)F& = N&,

where  is the coefficient of friction.
Non-dimensional equations of motion read as:

                                (6)
..
X + c0X

.
+ X = N ;

                             (7)
..
Y +c2Y

.
+ k2Y = P− N;

                      (8)r2
..

+c1
.
+ k1 = lpP + ( h − l)N .

Non-dimensional parameters used in Eqs. (7)-(9) are de-
fined below.

X = x
x0 ; Y =

y
x0 ; x0 = L; P = P0

x0M 0
2 ; 0 = kx

M ;

k2 =
ky

kx
; k1 =

k
kx

; c0 = cx
M 0

; c2 =
cy

M 0
;

c1 =
c

M 0x0
2 ; lp = L2

x0 ; h = H
x0 ; r2 =

J
Mx0

2 ; vs =
vs
&

0x0 ;

Kc =
kc
&

kx
; F = F&

Mx0 0
2 ; N = N&

Mx0 0
2 .

Figure 1. Mathematical model of a representative system.

In Eqs. (6)-(8), ‘dot’ denotes the differentiation with re-
spect to the non-dimensional time . For perfectly rigid= 0t
contact condition, the normal contact deformation must be
zero when one rewrites Eq. (4) in the following non-dimen-
sional form:

                                      (9)Y + = 0 .

Before proceeding further, it may be noted that the tan-
gential degree-of-freedom (X) has no effect on the stability of
steady sliding. Therefore, only Eqs. (7) to (9) are relevant for
ascertaining the stability of the system.

2.2. General Two-mode Interaction Model
For the general qualitative analysis of the stability of fric-

tional sliding in the case of two-mode interaction, one may
consider the following generalisation of Eqs. (7) and (8):

  (10)m1
..
X1 + c1X

.
1 + k1X1 + A2(X1 − 2X2) = f1N + 1P ;

   (11)m2
..
X2 + c2X

.
2 + k2X2 + A1(X2 − 1X1) = f2N + 2P .

Here,  denotes the non-dimensional coordinate of theXi
i-th degree-of-freedom and the time is normalised in the same
fashion as in Eqs. (6)-(8).  and  are contact coupling fac-f1 f2
tors and are, in general, functions of the coefficient of fric-
tion and other parameters of the system (geometry etc.).
N and P represent non-dimensional normal load and external
preload, respectively.  and  represent preload influence1 2
factors in mode 1 and 2, respectively. , , and  denotemi ci ki
the i-th normalised modal mass, damping, and stiffness, re-
spectively. Though the system shown in Fig. 1 does not in-
volve any structural coupling terms between the modes of vi-
bration, in a more general situation, structural coupling may
be present. Therefore, structural coupling terms are also in-
cluded in the generalised model.  and  are the structuralAi i
coupling coefficients. It may be noted that the basis of the
two structural modes involved is not a major concern; those
may belong to the same component or to two different inter-
acting components. Initially, structural coupling terms are
considered absent, i.e., .A1 = A2 = 0
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2.2.1. Rigid contact
As discussed earlier, the majority of early works consider

rigid sliding contact. Under the assumption of rigid sliding
contact, relative normal penetration at the contact point is
zero. This is mathematically recast as a constraint equation.
Though the constraint equation may be nonlinear in general,
for small structural displacements, a linear constraint equa-
tion suffices for the stability analysis. Therefore, the follow-
ing linear constraint equation is introduced:

                           (12)1X1 + 2X2 = 0.

In Eq. (12),  and  represent constraint coefficients.1 2
One may note that the constraint Eq. (12) is the generalisation
of Eq. (9). Using Eq. (12) in Eqs. (10) and (11) and eliminat-
ing N, one finally obtains:

          (13)Me
..
X2 + CeX

.
2 + KeX2 = ( 1f2 − 2f1)P ,

where

Me = −m1 f2 1 − m2
m1 ; Ce = −c1 f2 1 − c2

c1 ;

Ke = −k1 f2 1 − k2
k1

,

with .= 2/ 1, = −f1/ f2
From Eq. (13), it is inferred that the steady sliding state is

stable if, and only if, , , and  bear the same sign.Me Ce Ke
Thus, steady sliding becomes unstable in more than one way.
Further discussions on this are deferred until section 2.2.4. At
this point, validity of rigid contact assumption is questioned.
In what follows, the problem is analysed in a more rigorous
and realistic setup considering the contact point as compliant
and the normal penetration at the contact point as non-zero.
Rigidity of the contact point may be approached in the limit
of high contact stiffness.

2.2.2. Rigid contact as the limiting case of compliant contact
According to the Kelvin-Voigt viscoelastic model of com-

pliant contact, normal force of interaction is expressed as:

         (14)N = Kc( 1X1 + 2X2) + Dc( 1X
.
1 + 2X

.
2) ,

where  and  represent normalised contact stiffness andKc Dc
damping constant, respectively. For compliant contact condi-
tion, contact deformation is small but non-zero, even for
reasonably high contact stiffness. Therefore, one rewrites
Eq. (12) as:

                          (15)1X1 + 2X2 = Z .

Now the normal contact force is expressed as:

                          (16)N = 1 Z + dc Z
.
,

Where  and . Z is the conservative= 1/Kc ^ 1 dc = Dc
part (i.e., elastic component) of the normal force N. Introduc-
ing Eqs. (15) and (16) in Eqs. (10) and (11), one obtains

m1
..
Z + 4 − dc 0 Z

.
+ 3 − 0 Z + 1X

.
2 + 2X2 = 5 ,

 (17)

where

0 = 2m1
m2 f2 + 1f1; 1 = 2m1

m2 c2 − 2c1;

2 = 2m1
m2 k2 − 2k1; 3 = k1; 4 = c1;

5 = 2m1
m2 2 + 1 1 P .

Equation (19) assumes the standard form of singular per-
turbation16 problem if the following two restricted conditions
are satisfied:

                       (18)4 − dc 0 ~ O − 1
2 ,

and
                           (19)3 − 0 ~ O( −1) .

Putting  (that corresponds to a perfectly rigid con-= 0
straint) in Eq. (17), the slow manifold (which describes the
slow dynamics i.e., dynamics captured in the natural time
scale of the system) of the system is obtained as follows:

                        (20)Z = 0 + 1X2 + 2X
.
2 ,

where

0 = − 5

0
; 1 = 2

0
; 2 = 1

0
.

Obviously, the slow manifold represents the solution con-
sistent with the rigid contact condition. Following co-ordi-
nate and time transformations are applied to Eq. (19):

                        (21)= Z − 0 − 1X2 − 2X
.
2

and
                                 (22)f = ,

where  represents the deviation Z from the slow manifold
and  represents a rescaled time which will be used to cap-f
ture the fast dynamics of the deviation . Fast dynamics of
the deviation  from the slow manifold is given by the Tik-
honov’s Boundary Layer equation obtained below:

                   (23)m1
d2

d f
2 − 0dc

d
d f

− 0 = 0 .

The equilibrium  of Eq. (23) is uniformly asymptoti-= 0
cally stable for . According to the Tikhonov’s Theorem,0 < 0
stability of  implies that the slow manifold, governed by= 0
Eq. (20), represents an approximate solution (accurate up to

) of Eq. (17). Thus, the assumption of the rigid constraintO( )
is valid only for . However, in case of unstable bound-0 < 0
ary layer, one has to consider the effect of contact compli-
ance.

2.2.3. LCP formulation and the Painleve paradox
The Linear Complementary Problem (LCP)17 of the rigid

sliding contact is formulated considering the contact defor-
mation  and the contact deformation rate  as zero.( Z) ( Z

.)
Thus, one deals with only the conservative part of the normal
load, i.e., . Denoting the normal contact acceleration N = Z

..
Z

as a, the LCP is formulated from Eq. (17) as follows:

                               (24)a = AN + b ,
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where

A = 0
m1 ; b = 5 − 1X

.
2 − 2X2

m1 .

For maintaining the contact, the following conditions must
be satisfied

                        (25)aN = 0 ≤ a m 0, N m 0.

Possible solutions of the LCP Eq. (24) and the corre-
sponding stability conditions of the boundary layer Eq. (23)
are listed in Table 1. For , there exist three possibilities:0 m 0
1) non-contact solution, 2) non-unique solutions, or 3) no so-
lution at all. Non-existence and non-uniqueness of the solu-
tions of the contact sliding problems is known as the Pain-
leve paradox in the literature. However, the condition of the
Painleve paradox  coincides with the boundary of in-( 0 m 0)
validity of the rigid contact assumption, which forms the ba-
sis of the Painleve paradox. As  condition warrants the0 m 0
use of compliant contact model, the Painleve paradox is re-
solved under the compliant contact assumption. Even though
the Painleve paradox is not the central theme of this article,
certain instability phenomena13 are strongly connected to it.
This is discussed elsewhere in the paper. Now the discussion
again reverts to the stability of sliding.

Table 1. The symbol p denotes Painleve paradox.

N/ANo solution (p)A = 0, b > 0
Infinite number of solutions (p)A = 0, b = 0

Stable: no contactN = 0, a = bA = 0, b < 0
N/ANo solution (p)A > 0, b > 0

Stable: no contactN = 0, a = 0A > 0, b = 0
Unstable: contactN = −b/A, a = 0

Stable: no contactN = 0, a = b
A > 0, b < 0

Stable: contactN = −b/A, a = 0A < 0, b > 0
Stable: no contactN = 0, a = 0A < 0, b = 0
Stable: no contactN = 0, a = bA < 0, b < 0

Stability of
boundary layer 

LCP solutions
for rigid sliding contactConditions

2.2.4. Stability analysis for rigid contact
One may note that 

                              (26)Me = − m2 0

1
.

One rewrites Eq. (13) as

   (27)−m2 0
..
X2 + 1CeX

.
2 + 1KeX2 = 1( 1 f2 − 2 f1)P .

As the condition for a well-defined and unique rigid con-
tact is , sliding becomes unstable when  and/or0 < 0 1Ce

 are negative. From Eq. (13), the following important1Ke
parameters that influence the stability, are identified: ,Kr = k2/k1

, , and . Though it is notCr = c2/c1 mr = m2/m1 = −f1/ f2
possible to ascertain the sign of the parameters in general,
one may rearrange the mathematical model of a particular
system to satisfy the following conditions:

                              (28)= 2f2 < 0,
and

                                     (29)> 0.

This signifies that the numbering of the modes may be
done to satisfy the above two conditions. Now the stability
boundary is delineated in  vs.  plane. Depending upon thecr
other parameter values, two cases arise and these are shown
in Figs. 2(a) and (b).

Figure 2. Stability plots for steady perfectly rigid contact sliding.

Case I:  (Fig. 2(a)). For the higher ratios of modalKr > mr
damping , stability boundary is defined by the hy-Cr (> Kr)
perbolic line , which corresponds to . Hopf bi-Cr = 1 Ce = 0
furcation leading to flutter type instability of the steady slid-
ing condition takes place across this line. However, for lower
values of , stability is lost across the line , whichCr = 1/Kr
runs parallel to the  axis and corresponds to . TheCr Ke = 0
associated motion leads to divergence type instability.

Case II:  (Fig. 2(b)). Similar to the Case I, stabil-Kr < mr
ity boundary for higher modal damping ratio  is(Cr > mr)
given by the hyperbolic line . Across this line, stabil-Cr = 1
ity is lost by the Hopf bifurcation leading to flutter. However,
when , the condition  or  is reached onCr < mr 0 = 0 Me = 0
the  line, which is below the hyperbolic line. One= 1/mr
must understand that on and beyond this boundary, the rigid
contact assumption fails. A more complete description of the
system in this parameter zone warrants the consideration of
compliant contact model, where rigidity of the contact may
be approached in the limit, i.e., by putting a high numerical
value of the contact stiffness. However, if one still sticks to
the rigidity assumption, the conditions of the Painleve para-
dox (as discussed in section 2.2.3) may be satisfied. The as-
sociated bifurcation across this boundary and the correspond-
ing instability is termed as ‘the bifurcation induced by the
Painleve paradox’ in some recent reference.13 However, char-
acteristics of this kind of bifurcation should be studied using
a complaint contact model.

Similar stability boundary is obtained by presenting the
plot in  vs.  plane where  and  exchange the respec-Kr Cr Kr
tive roles. A complete picture of the stability zone is depicted
in Fig. 2(c), where the stability surface is generated by plot-
ting the critical value of   with respect to  and . The re-Cr Kr
gion below the surface corresponds to stable sliding. Three dis-
tinct zones of the stability surface are apparent from Fig. 2(c)
and each zone represents a distinct instability. In the region
of higher  and lower , stability is lost byKr (> mr) Cr (< Kr)
divergence, whereas flutter is observed for higher values of
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. However, the stability surface looks likeCr (> max(Kr, mr))
a flat plateau for lower values of  and  (both less than ).Cr Kr mr
On and above the entire flat plateau, either there is loss of
contact or the conditions of the Painleve paradox are satisfied.
In the context of rigid contact analysis, this surface coincides
with the Painleve paradox induced bifurcation.13 However, as
the rigid contact assumption is not valid on and above this
flat plateau, stability analysis based on a more realistic com-
pliant contact model is required for this region and the rigid-
ity of contact is to be simulated as the limiting condition (for
very high value of contact stiffness) of the complaint contact
model.

The singular perturbation analysis presented in section 2.2.2
throws significant light on the possible instability mechanism.
The boundary layer equation (Eq. (23)) gives a linear de-
scription of the fast local dynamics of an arbitrary perturba-
tion  imposed on the slow manifold (steady normal load cor-
responding to steady sliding) and this dynamics case is de-
scribed on a rescaled time (fast), . Therefore, when thef
equilibrium of the boundary layer equation becomes unstable
just on the flat plateau, perturbation is expected to drift away
very fast from the steady state normal load, and consequently
steady sliding becomes unstable. Under such circumstances,
one cannot physically reduce the order of the model, because
the normal load fluctuation is governed by another independ-
ent degree-of-freedom (faster compared to the structural de-
grees-of-freedom), which may be termed hereafter as the
contact degree-of-freedom. One must discern this instability
as different from ordinary divergence or flutter where insta-
bility is not strongly governed by the contact degree-of-free-
dom. It is enlightening to note that under the jurisdiction of
perfectly rigid contact assumption, the stable slow manifold
(Eq. (20)) describes the conservative part of the normal force
and thus, the dissipative part of the normal force is negligibly
small. Therefore, normal contact force either remains steady
(for stable sliding) or varies slowly and/or oscillates with low
frequency (for unstable sliding) for the parameter values that
promote the perfectly rigid contact assumption.

Figure 3. Variation of Stability and frequency plots with contact
damping for linear compliant contact, . (a) and (c) Kc = 1000

; (b) and (d) .Kr = 0.5 Kr = 1.5

2.2.5. Stability analysis for compliant contact
From the discussions made in the preceding sections, it is

apparent that the rigid contact model is not uniformly valid in

the entire parameter space, particularly when . In this0 < 0
section, stability of sliding is analysed using compliant con-
tact, where the normal load is expressed as given in Eq. (14).
Using Eq. (14), Eqs. (10) and (11) are rewritten as:

m1
..
X1 + (c1 − 1f1Dc)X

.
1 + (k1 − 1f1Kc)X1

                 (30)− f1 2KcX2 − f1 2DcX
.

2 = 1P ,

m2
..
X2 + (c2 − 2f2Dc)X

.
2 + (k2 − 2f2Kc)X2

                  (31)− f2 1KcX1 − f2 1DcX
.

1 = 2P .

Now the stability of sliding contact is determined by the
eigenvalue analysis of the following Jacobian matrix of the
flow of Eqs. (30) and (31):

J =

0 1 0 0
1f1Kc

_k1
m1

1f1Dc
_c1

m1
f1 2Kc

m1
f1 2Dc

m1
0 0 0 1

f2 1Kc
m2

f2 1Dc
m2

2f2Kc
_k2

m2
2f2Dc

_c2
m2

.

 (32)

Sliding is stable if, and only if, all the eigenvalues of J
have negative real parts. Now one can easily construct the
stability surfaces by plotting critical values of  with respect
to  and . The effect of normal contact compliance on theCr Kr
stability of sliding is discussed with respect to the reference
stability surface shown in Fig. 2(c) that is obtained for the
perfectly rigid contact. To avoid unwieldy algebra, a closed
form expression the stability surface for compliant contact is
not attempted here. Specific numerical examples are taken to
discuss the effects of normal contact compliance on the sta-
bility surface. Without losing any generality, the following
parameter values are chosen for subsequent discussions:

m1 = m2 = 1.0; 1 = 2 = 1.0; c1 = 0.1; k1 = 1; f2 = −1.

Now , , and  are varied to satisfy the conditionsf1 k2 c2
Eqs. (28) and (29). With the objective of simulating rigid
contact condition, the contact stiffness parameter, , is cho-Kc
sen to be a few orders higher in magnitude than the system
stiffness parameters,  and . Stability threshold lines andk1 k2
the corresponding frequencies of instability are plotted in
Fig. 3. As before, two separate cases arise.

Case I:  (Figs. 3(a) and (c)). It is evidentKr = 0.5 < mr
from Figs. 3(a) and (c) that the stability threshold value is
less than that corresponding to the rigid contact condition for

 (here, unity). With the increasing value of , theCr < mr Dc
stability boundary gradually approaches the limiting value
defined by  (equivalent to ) line corresponding= 1/mr 0 = 0
to the rigid contact condition. Under these circumstances, sta-
bility is always lost by high frequency flutter. Therefore, in
these range of parameter values, the stability characteristics
of the compliant sliding contact are substantially different
from that for rigid contact condition except for large value of
contact damping. However, for , stability is lost dueCr > mr
to low frequency flutter. In this region, contact damping does
not have any appreciable effect on the stability threshold.
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Therefore, resemblance of the stability characteristics with
the rigid contact condition is observed in the higher range of
values of .Cr

Case II:  (Figs. 3(b) and (d)). Low frequencyKr = 1.5 > mr
flutter is observed for higher values of  ( here).Cr > Kr = 1.5
The stability threshold remains independent of contact damp-
ing. For lower values of , the stability thresholds, asCr (< Kr)
well as the type of instability, strongly depend on contact
damping. With low value of , the stability threshold is be-Dc
low the corresponding value observed in case of rigid contact,
i.e.,  (  here) line. In addition, the stability is= 1/Kr = 0.67
not lost due to divergence in the entire lower range of values
of . However, for large contact damping, the stabil-Cr (< Kr)
ity threshold and the type of instability (divergence) in the
lower range of values of  match perfectly with thatCr (< Kr)
obtained in case of rigid contact sliding.

A complete, as well as qualitatively generic, description
of the stability characteristics over the entire parameter space
is illustrated in Fig. 4. Similar to the case of rigid contact
condition, three distinct stability zones exist also in the case
of compliant contact. However, the plateau region is only
observed in the limit of high value of contact damping

. For relatively lower values of contact damping,~ O ( Kc )
the stability threshold surface is a slanted surface (which lies
below the plateau) in the region of low . However, withCr
the increasing value of contact damping, the slanted surface
approaches the shape of flat plateau. For higher values of
contact damping, the stability zone expands in the region of
low  and . Evidently, contact damping  has a mini-Cr Kr (> 0)
mal or no effect on the stability zone for higher values of Kr
and .Cr

Figure 4. Stability surface plots for linear compliant contact model,
.Kc = 1000

In Fig. 5, imaginary parts of the marginally unstable ei-
genvalues are plotted against  and . Imaginary parts ofCr Kr
the marginally unstable eigenvalues signify the frequency of
perturbation growth. Zero frequency corresponds to diver-
gence. Depending upon the frequency of instability, one de-
marcates three different regions of the stability surfaces de-
picted in Fig. 4. The regions marked as 1, correspond to high
frequency flutter. It is not difficult to envisage that the high
frequency flutter is associated with an extremely active con-
tact phenomenon. The regions marked as 2 and 3, correspond

to divergence and low frequency flutter, respectively. From
the above observations, one may conclude that the rigid con-
tact assumption may not be uniformly valid over the entire
parameter space. The stability zone computed from the rigid
contact assumption deviates substantially from that obtained
from the compliant contact model when both  and  as-Cr Kr
sumes low values . However, for higher values of both(< mr)

 and , the rigid contact condition turns out to be a validCr Kr
assumption.

Figure 5. Frequency maps for linear compliant contact model,
.Kc = 1000

It is fairly interesting and counterintuitive to note that
when contact damping is zero, the flat plateau (the character-
istic part of the stability surface obtained from the perfectly
rigid contact formalism) cannot be produced in the limiting
condition of compliant contact model even for a very large
value of contact stiffness. However, the flat plateau consis-
tently appears for large values  of contact damping.(O ( Kc ))
Then what is the point of convergence between the perfectly
rigid contact formalism and the compliant contact doctrine?
The question of non-convergence is of course relevant for
only a particular parameter region, i.e., the region where the
flat plateau exists. The above analysis and results suggests
that the compliant contact model can simulate conditions
similar to the perfectly rigid contact only for high contact
stiffness and damping. However, so long as contact is main-
tained, the perfectly rigid contact model does not regard any
form of contact damping. Damping in the form of coefficient
of restitution becomes relevant only after contact separates
due to instability followed by reengagement through impact.
Thus, for studying sliding stability, one naturally tends to
simulate rigid contact condition by using high value of con-
tact stiffness and zero contact damping in the compliant con-
tact model. However, the above results clearly indicate that
perfectly rigid contact conditions are not obtained for zero
contact damping. According to the singular perturbation
analysis, the compliant contact model does not approach the
rigid contact condition in unconditional and stable fashion
for higher values of contact damping in the order of .O ( Kc )
Even though similar results are not available for zero contact
damping (One requires high damping in the first mode to
continue with the singular perturbation analysis. Such a situa-
tion, being unrealistic, is not pursued here), it is reasonable to
believe that the perfectly rigid contact condition is also not
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approached in a stable fashion from a compliant contact model
with zero contact damping. Results of the compliant contact
model confirm this belief.

In a number of practical situations, the contact surface
may be sufficiently compliant such that the contact stiffness
is of the same order of magnitude as the structural stiffness
parameters. Stability surfaces are plotted in Fig. 6 for low
values of contact stiffness and different values of contact
damping. As illustrated in Fig. 6, the flat plateau appears in
the stability surface for a large value of contact damping.
From Fig. 7, one observes that high frequency flutter is pos-
sible for low  and . It is also noted that the divergenceCr Kr
region (hatched region) becomes substantially constricted for
higher contact damping as compared to what is observed in
the case of stiff contact. 

Figure 6. Stability surface plots for .Kc = 5

Figure 7. Frequency map for .Kc = 5

3. STABILITY ANALYSIS 
FOR NONLINEAR CONTACT MODEL

In the foregoing analysis, the simplified Kelvin-Voigt type
linear model is considered for the computation of contact
force. The major deficiency of a linear model is that it may
give rise to negative contact force during contact separation,
which is a nonphysical situation. This is ascribed to the pres-

ence of linear dissipative term in the contact model. This un-
realistic situation is circumvented if normal contact force is
computed according to the Hunt-Crossley model,18 which in-
corporates nonlinear elastic and dissipative terms as follows:

                       (33)N = Kc( c + 3
2 c

.
c) .

where  and  are the contact deformation and the deforma-c
.
c

tion rate, respectively and are given by:

         (34)c = 1X1 + 2X2 ;
.
c = 1X

.
1 + 2X

.
2 .

 and  are the two parameters of the model and values of
these parameters depend on the material and geometry of the
contact.  models the non-linearity of the contact spring and 

 determines the level of contact damping. Stability analysis
can be carried out using Eqs. (10), (11) and (33) in a manner
similar to that explained in section 2.1.5. For stability analy-
sis, one must find out the equilibrium configuration corre-
sponding to steady sliding condition as given below

       (35)Xeq = X1 = x10, X
.
1 = 0, X2 = x20,X

.
2 = 0 T,

where  and  are obtained asx10 x20

     (36)x10 =
f1Kc 0 + 1P

k1
; x20 =

f2Kc 0 + 2P
k2

,

where  is the solution of the following equation:0

                         (37)a0 − + a1 = 0,
with

  (38)a0 = Kc
f1 1
k1

+ f2 2
k2

; a1 = P 1 1
k1

+ 2 2
k2

.

Now, the stability of steady sliding is determined by the
eigenvalues of the following Jacobian matrix computed at the
equilibrium :Xeq

    (39)J =

0 1 0 0
−k1 + f1D1

m1
−c1 + f1D1

&

m1
f1D2
m1

f1D2
&

m1
0 0 0 1

−k2 + f2D1
m2

−c2 + f2D1
&

m2
f2D2
m2

f2D2
&

m2

;

          (40)Di = ØN
ØXi Xeq

= Kc i 0
−1, for i = 1, 2 ,

and

          (41)Di
& = ØN

ØX
.

i Xeq

= 3
2 Kc i 0, for i = 1, 2 .

More often,  is close to unity,19 but the value may vary
widely depending upon the geometry and material. For ex-
ample, in case of non-conformal contact, the Hertzian contact
theory suggests . For subsequent analysis, the value of= 1.5

 is taken as unity. Considering the focus of the present
analysis being on the qualitative aspects of the stability char-
acteristics, such a choice does not defeat the purpose. Moreo-
ver, it has been noted that contact damping plays a vital role
in determining the shape of the stability surface. Therefore,
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the effect of the dissipative part of the contact force is ex-
plored in the present section. The chosen value of  renders
the dissipative part of the contact force nonlinear, keeping
the conservative part linear and intact.

Stability surfaces and the corresponding frequency maps
are depicted in Figs. 8 and 9, respectively. Three regions of
the stability surfaces are identified as before and these are
marked as 1, 2, and 3. Regions marked as 1 and 3 correspond
to high frequency and low frequency flutter, respectively.
One observes that for large values of the contact damping pa-
rameter , the flat plateau appears in the region (region 1) of
low values of  and . However, the characteristics of theKr Cr
stability regions marked as 2 are qualitatively different from
that observed for linear contact model, particularly for the
low level of contact damping. In the case of the linear contact
model, region 2 corresponds to divergence. Whereas for the
nonlinear contact model, the surfaces marked as 2 do not cor-
respond solely to divergence; for low values of contact
damping, a good portion of this surface correspond to high or
low frequency flutter. However, when contact damping is
substantial, the entire region of the surface represents diver-
gence, similar to what has been observed previously for lin-
ear contact model.

Figure 8. Stability plot for nonlinear contact model, .Kc = 1000

Figure 9. Frequency map for nonlinear contact model, .Kc = 1000

One may note the interesting fact that the linear contact
model does not bring out the effect of preload parameters, ,1

, and P on the stability surface. However, it may be ob-2
served from Eqs. (35)-(41) that the nonlinear contact model

reveals the influence of preload parameters on the stability of
sliding. From the stability surface plots and the frequency
maps (results are not presented due to the lack of space) one
may conclude that the increasing level of preload has a more
or less similar qualitative effect as caused by the increasing
level of contact damping. Similar effects are also revealed if,
instead of P, any one or both of the other preload factors 1
and  are increased, keeping other parameters fixed.2

Effects of the structural coupling terms  and  on theA1 A2
stability of sliding are also studied. Stability surfaces and the
corresponding frequency maps are plotted against  and Cr Kr
for different values of  and  (results are not presented).A1 A2
It is observed that for the increasing value of , with A1 A2
fixed at a certain value, the plots (both the stability and fre-
quency plots) undergo a shift towards the lower range of .Kr
The shift is just towards the opposite direction in case of the
increasing value of .A2

4. AN EXAMPLE SYSTEM

Here, the example system considered in section 2.1 is ana-
lysed in light of the foregoing discussions. Eqs. (6)-(8) are
numerically simulated. Numerical computation of the friction
force during stick-slip or slip-stick contact transition is a very
difficult process. Because of the discontinuity at zero veloc-
ity, the Coulomb’s model is not numerically efficient. This is
circumvented in a large number of regularised models pro-
posed in literature. Here, the following model proposed by
Martins and Oden10 is considered

  (42)F =
⎧ 

⎩ 
⎨ 
⎪ 

⎪ 

−
N
c (vs − X

.
− h

.
), if |vs − X

.
− h

.
| ñ c ;

− N sgn(vs − X
.

− h
.
), if |vs − X

.
− h

.
| > c .

In the above model of friction,  represents a small non-c
dimensional quantity of the order of magnitude . Normal10−4

contact force N is computed according to the Hunt-Crossley
model given by Eq. (33). Now comparing Eqs. (7) and (8)
with Eqs. (10) and (11), respectively one notes that

X1 = ; m1 = r2; P = 1; 1 = lp; f1 = h − 1;

X2 = Y; m2 = 1; 2 = 1; f2 = −1; 1 = 1; 2 = 1.

Therefore,  for  and .= ( h − 1) > 0 h > 1 = −1 < 0
Thus, the conditions Eqs. (28) and (29) discussed in section
2.2.4 are satisfied for . The following non-dimen-h > 1
sional parameter values are considered for the subsequent
discussions: , , , , ,k1 = 1.0 c1 = 0.1 r = 1.0 lp = 1.0 Kc = 103

, . Other parameter values arec = 1.5 x0 0 = 10−5 = 0.5
varied as and when required. The stability characteristics of
the system are depicted in Fig. 10 where stability threshold
lines and the corresponding frequencies of unstable growth
(imaginary parts of the unstable eigenvalues) are plotted with
respect  for two different values of . From these plots,Cr k2
one easily observes the existence of the high frequency, low
frequency flutter lines, and the divergence threshold lines. In
order to reveal the nature of the normal load variation across
the high frequency and low frequency flutter lines, equation
of motion are numerically simulated in MATLAB. Time his-
tory of the normal load variation at the two stability bounda-
ries are plotted in Fig. 11. One observes that for ,c2 = 0.3
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normal load oscillates with low frequency at the stability
threshold and after the initial growth is over, the normal load
continues to oscillate with low frequency without any loss of
contact (not shown). Whereas for , normal load var-c2 = 0.05
ies with very high frequency at the point of instability and the
high frequency transient ultimately leads to intermittent con-
tact bounce and reengagement through impact.

Figure 10. Stability and frequency plot for the example system.
(a) and (b) ; (c) and (d) .k2 = 0.5 k2 = 1.5

Figure 11. Numerically simulated time history of normal force. ,c1 = 0.1
k2 = 0.5, k1 = 1, lp = 1, = 0.5, vs = 10, Kc = 1000, c = 10−5.

5. CONCLUSIONS

Friction induced sliding instabilities due to the interaction
of two structural modes of vibration is the central theme of
the present paper. A general mathematical model of sliding
elastic systems represented by two interacting modes of vi-
bration is considered to explore the effects of various pa-
rameters on the nature of instability. Both rigid and compli-
ant contact conditions are analysed and compared. Several
important conclusions are drawn from the discussions made
in the article and these are as follows:
1. In a two-mode interaction model, sliding friction contact

causes three types of instabilities namely, low-frequency
flutter, high-frequency flutter, and divergence. The dy-

namics involved in high-frequency flutter is interesting
and has received special attention in the paper. It is
shown that this particular type of instability cannot be ex-
plained in the rigid contact formalisms. One requires a
compliant contact model to explain the exact nature of the
instability. It is also observed that the condition of the
Painleve paradox induced bifurcation in the rigid contact
model coincides with the high-frequency flutter boundary.
Though numerical evidences of high-frequency instability
exist in references,11,12 rigorous mathematical analysis was
missing so far.

2. It is shown that, except in a particular parameter region,
rigid contact assumption is valid in terms of the shape,
size, and characteristics of the stability surface. However,
there exists a parameter region where the results of the
compliant contact model do not converge to that obtained
from the rigid contact model. This result is known in the
context of rigid body interaction.15 However, to the best
of the author’s knowledge, the results are first extended
for interacting bodies with elastic degrees-of-freedom in
this article.

3. The most interesting finding of the article is that perfectly
rigid contact conditions can be simulated from the com-
pliant contact formalism only for high values of contact
stiffness  with high contact damping in the order of (Kc)

. However, a perfectly rigid contact condition isO ( Kc )
not equivalent to a compliant contact condition with ex-
tremely high contact stiffness, but zero contact damping.
Of course, this conclusion holds good only in a specific
parameter region. This is a new finding of the present ar-
ticle.

4. Dissipative part of the contact force plays the most domi-
nating role in ascertaining the stability of sliding, as well
as differentiating between the perfectly rigid contact model
and the compliant contact model. It is observed that a dis-
proportionate distribution of damping among different
modes is in general detrimental and this conforms to the
previous findings.4,5 However, for higher values of con-
tact damping, the above conclusion does not hold true in
a particular parameter region. This is also a new finding
of the present article.

Future work should consider the analysis of multi-mode
interaction. The effect of contact damping on distributed con-
tact must also be addressed.
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