
Nomenclature
depth of cracka1 −
depth of cracka2 −

A cross-sectional area of beam−
unknown coefficients of matrix AAi, i = 1, 18 −

B width of the beam−
W depth of beam−

vector of exciting motionB1 −
cu = (E / )1/2

cy = (EI / )1/2

E Young’s modulus of elasticity−
experimentally determined functionFi, i = 1, 2 −
variablesi, j −

J strain-energy release rate−
stress intensity factors for  loadsKIi, i = 1, 2 − Pi

ku = L /cu
ky = ( L2/cy )1/2

local flexibility matrix elementKij −
L length of beam−

location of the crack from fixed endL1, L2 −
compliance constantMi, i = 1,4 −

Mij = Mi/Mj
axial force ( ), bending moment ( )Pi, i = 1, 2 − i = 1 i = 2

K stiffness matrix for free vibration−
stiffness matrix of first and second crack locationsK∏, K∏∏ −
normal functions (longitudinal) ui, i = 1, 3 − ui(x)

x co-ordinate of the beam−
y co-ordinate of the beam−

amplitude of the exciting vibrationY0 −
normal functions (transverse) yi, i = 1, 3 − yi(x)
natural circular frequency−
relative crack location 1 − (L1/L)
relative crack location 2 − (L2/L)

= A
mass density of the beam−
Poison’s ratio−

relative crack depth 1 − (a1/W)
relative crack depth 2 − (a2/W)
determinant of QQ −

1. INTRODUCTION

For the last several years, a considerable amount of re-
search work has been undertaken to investigate the faults in
structures. It has been observed that most of the structural
members fail due to the presence of cracks. The cracks are
developed mainly due to fatigue loading. Therefore the de-
tection of cracks is an important aspect of structural design.
A crack that occurs in a structural element causes some local
variation in its stiffness, which affects the dynamic behaviour
of the element and the whole structure to a considerable de-
gree. The frequencies of natural vibration, amplitudes of
forced vibration, and areas of dynamic stability change due to
the existence of such cracks.1-5 An analysis of these changes
makes it possible to identify the magnitude and location of
the crack. This information enables one to determine the de-
gree of sustainability of the structural element and the whole
structure.

Regarding the above problem, Cawley et al.6 have com-
bined sensitivity analysis with FEM to determine crack loca-
tion. The coupling of vibration modes of vibration of a
clamped – free circular cross-section Timoshenko beam with
a transverse crack was investigated by Papadopoulos and
Dimarogonas.7 The crack is simulated using a  local6% 6
flexibility matrix. The nondiagonal terms of this matrix cause
coupling between the longitudinal, torsional, and bending vi-
brations. The researchers observed that the method used is
very sensitive even in the case of small cracks.

Gudmundson8 has investigated the transverse vibration of
a cracked beam experimentally to validate a perturbation
method which he had developed. He observed that depend-
ing upon the crack location, a crack may remain completely
open, partially open, or closed if the vibration amplitudes are
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too small. Chondros and Dimarogonas9 have considered the
crack as a local elasticity which affects the whole cracked struc-
ture under consideration, and they related the crack depth
with the decrease in frequency.

Gounaris and Papazoglou10 have used a mixed finite-
boundary element method to study the dynamic behaviour of
a cracked Timoshenko beam. They have vibrated the beam in
air and in water in plain bending, using two degrees of free-
dom for each mode. Papadopoulos et al.11 have used a 6% 6
compliance matrix to simulate a cracked shaft and to study its
dynamic behaviour. They concluded that the presence of a
crack affects the modes of vibration.

Papadopoulos and Dimarogonas12 have described the cou-
pling of the bending and longitudinal vibration of a station-
ary cracked shaft with an open crack. The crack is modelled
using a  local flexibility matrix with coupling terms. The2% 2
elements of this matrix are obtained analytically. The free vi-
bration of the shaft and the influence of this crack on the vi-
brational behaviour of the shaft are analysed.

Dimarogonas and Massours13 have investigated the dy-
namic behaviour of a circumferentially cracked shaft in tor-
sion and proposed nomographs for finding the crack depth
and location.

A diagnostic method of determining the position and size
of a transverse open crack on a stationary shaft without dis-
engaging it from the machine system was investigated by
Tsai and Wang.14 The crack is modelled as a joint of a local
spring. To obtain the dynamic characteristics of a stepped
shaft and a multi-disc shaft, the transfer matrix method is em-
ployed on the basis of the Timoshenko beam theory. The
post-buckling behaviour of a cracked column with an edge
crack was studied by Anifantis and Dimarogonas.15

The prediction and identification of transverse cracks in
beams with different end conditions were studied by Moham-
mad.16 He has developed an algorithm for crack identification.
The input data for his algorithm are the natural frequencies of
the first two bending modes of vibration of the damaged
beam. Using these two input values, and with the availability
of accurate frequency measurements and ideal end conditions,
the crack location and depth are identified in terms of known
beam parameters.

A numerical method was described by Chinchalkar17 for
determining the location of a crack in a beam of varying
depth when the lowest three natural frequencies of the
cracked beam are known. The crack is modelled as a rota-
tional spring. The graphs of the spring stiffness versus crack
location are plotted for each natural frequency to find out the
crack location.

A theoretical and experimental study of the dynamic be-
haviour of different multi-beams systems with a transverse
crack was presented by Saavedra and Cuitino.18 The addi-
tional flexibility that the crack generates in its vicinity is
evaluated using the strain energy density function. Based on
this flexibility, a new cracked finite element stiffness matrix
is deduced. The proposed element is used to evaluate the dy-
namic response of a cracked free-free beam subjected to a
harmonic force.

The experimental vibration behaviour of a free-free beam
with a breathing crack was simulated by Jyoti et al.19 The
cracked beam is simulated for a sinusoidal input force using a
simple finite element model. The simulation results are com-
pared with an earlier study and found to be more realistic.

The fundamental frequency of cracked Euler-Bernoulli
beams in bending vibrations was studied analytically by Fer-
nandez and Navaro.20 They have solved the problem using
the flexibility influence function which leads to an eigen-
value problem formulated in integral form.

In the present paper, an analytical-computational tech-
nique has been developed for vibration analysis of the canti-
lever beam with cracks. The numerical results are compared
with the experimental results in order to confirm the authen-
city of the theory developed.

2. LOCAL FLEXIBILITY OF A CRACKED BEAM 
UNDER BENDING AND AXIAL LOADING

Transverse surface cracks of depths  and  are consid-a1 a2
ered on a beam of length L. The beam has local flexibilities
which are affected in many directions by the cracks. The re-
sulting flexibilities  depend on the direction of the applied
forces. The beam has a depth W and a width B. The beam is
assumed to be loaded with an axial tensile force  and aP1
bending moment  (shown in Fig. 1). The bending momentP2
has a direction so that its influence opens the crack. The axial
force  and bending moment  provide coupling with theP1 P2
longitudinal and transverse vibration motion. For these load-
ings, the additional displacement  along the direction ofui
forces  due to the presence of the cracks are computed us-Pi
ing Castigliano’s theorem21 and by generalisation of the Paris
equation, under the assumption of linear, elastic fracture me-
chanics conditions.

Figure 1. Geometry of cantilever beam.

In general, the strain energy of a fracture section can be
written as:

                           (1)UT = ¶
Af

ØUT
ØAf

dAf ,

where  is the total strain energy due to the crack and  isUT Af
the surface of the fractured section. The energy release rate J
is given by:

                                   (2)J = ØUT
ØAf

.

Using Eqs. (1) and (2), one can find

                               (3)UT = ¶
Af

JdAf .
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From Castigliano’s theorem,21 the displacements  are ui

                                 (4)UT =
ØUT
ØPi

,

where  are the relative displacements in the neighbourhoodui
of the crack and  are the corresponding loads. The compli-Pi
ance factors are determined by

                                 (5)Cij =
Øui
ØPj

,

where  is the influence coefficient, i.e., the deflection inCij
the direction of  due to a unit force applied in the directionui
of . Combining Eqs. (3) to (5), one obtainsuj

                  (6)Cij =
Øui
ØPj

= Ø2

ØPiØPj
¶
Af

JdAf .

Equation (6) gives the compliance factors as functions of
the strain energy release rate. The energy release rate is a
function of the stress intensity factors. The stress intensity
factors for all modes of fractures22 are given by the expres-
sion

    (7)J = 1
E ∏ n=1

2
KI n

2

+
n=1

2
KII n

2

+ k
n=1

2
KIII n

2

,

where ,  is the Poisson’s ratio,  fork = 1+ E∏ = E/(1− )
plain strain condition, and E is Young’s modulus.

For the open mode of the crack of the beam, Eq. (7) can
be rewritten as

                            (8)J = 1
E∏

(KI1 +KI2 )2.

The expressions for stress intensity factors from earlier
studies22 are

                   (9)KI 1 =
P1
BW a F1

a
W ;

                 (10)KI 2 =
6P2
BW2 a F2

a
W ,

where the functions  and  are given by22F1 F2

F1
a
W = 2W

a tan a
2W

%
0.752 + 2.02(a/W) + 0.37(1 − sin( a/2W))3

cos( a/2W) ;

F2
a
W = 2W

a tan a
2W

0.923 + 0.199(1 − sin( a/2W))4

cos( a/2W) .

For a beam with a surface crack of width B, the flexibility
elements can be written as

            (11)Cij =
Øui
ØPj

= Ø2

ØPiØPj
¶

−B/2

B/2

¶
0

a1

J(a)da dz .

Incorporating the value of the strain energy release rate J,
Eq. (8), and stress intensity factors  and , Eq. (9) andKI 1 KI 2
(10), Eq. (11) can be modified as

               (12)Cij = B
E∏

Ø2

ØPiØPj
¶
0

a1

(KI1 +KI2 )2 da .

Writing , one obtains .= (a/W) d = da/W
We get  and when , , and when , da =Wd a = 0 = 0 a = a1

.= a1/W = 1
From the above condition, Eq. (12) becomes

               (13)Cij = BW
E∏

Ø2

ØPiØPj
¶
0

1

(KI1 +KI2 )2d .

From Eq. (13), the influence coefficients ,C11,C12(=C21)
and  can be calculated as:C22

             (14)C11 = BW
E∏ ¶

0

1 a
B2W2 2(FI ( ))2d ;

C12 = C21 = 12
E∏BW ¶

0

1

F1( )F2( ) d = 2
BE∏ ¶

0

1

(F1( ))2d ;

 (15)

             (16)C22 = 72
E∏BW2 ¶

0

1

F1( )F2( ) d .

In dimensionless form, the above equations, Eqs. (14) to
(16), can be written as:

                            (17)C11 = C11
BE∏

2 ;

                     (18)C12 = C21 = C12
E ∏BW
12 ;

                          (19)C22 = C22
E ∏BW2

72 .

The local stiffness matrix can be obtained by taking the
inverse of the compliance matrix.

K =
K11 K12

K21 K22
=

C11 C12

C21 C22

−1

.

The stiffness matrix for the position of first and second
crack can be obtained as follows:

            (20a)K ∏ =
K11
∏ K12

∏

K21
∏ K22

∏ =
C11
∏ C12

∏

C21
∏ C22

∏

−1

and

           (20b)K ∏∏ =
K11
∏∏ K12

∏∏

K21
∏∏ K22

∏∏ =
C11
∏∏ C12

∏∏

C21
∏∏ C22

∏∏

−1

.

Figure 2. Relative crack depth vs. dimensionless compliance.
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The dependence of the crack depth on the dimensionless
compliance is shown in Fig. 2 for three values of compliance
factor.

3. ANALYSIS OF VIBRATION CHARACTERISTICS 
OF THE CRACKED BEAM

3.1. Free Vibration
A cantilever beam of length L, width B, and depth W with

crack depth  at a distance  and crack depth  at a dis-a1 L1 a2
tance  from the fixed end is considered (shown in Fig. 1).L2
The system is described by equations for longitudinal and
transverse vibration23

 and           (21)Ø2u
Øx2 = 1

cu2
Ø2u
Ø t2 −

Ø4y
Øx4 = 1

cy2
Ø2y
Ø t2 ,

where  and .cu = (E / )1/2 cy = (EI / )1/2

Here, , and  are longitudinal vibra-u1(x, t), u2(x, t) u3(x, t)
tions for the sections before and after the cracks. Moreover,

, and  are bending vibrations for they1(x, t), y2(x, t) y3(x, t)
same sections (shown in Fig. 3).

Figure 3. Beam model with cracks.

If T is the period of vibration, Eq. (21) can be written in
nondimensional form as

 and              (22)Ø2u
Øx2 = 1

cu
2
Ø2u
Ø t 2 −

Ø4y
Øx4 = 1

cy
2
Ø2y
Ø t 2 ,

where 
x = x

L ; u = u
L ; y =

y
L ; t = t

T ; 1 =
L1
L ; 2 =

L2
L .

The normal functions for the system (22) are23

            (23a)u1(x) = A1 cos kux + A2 sin kux ;

           (23b)u2(x) = A3 cos(kux) + A4 sin(kux) ;

           (23c)u3(x) = A5 cos(kux) + A6 sin(kux) ;

         (23d)y1(x) = A7 cosh kyx + A8 sinh kyx

+ A9 cos kyx + A10 sin kyx ;

        (23e)y2(x) = A11 cosh kyx + A12 sinh kyx

+ A13 cos kyx + A14 sin kyx ;

         (23f)
y3(x) = A15 cosh(kyx) + A16 sinh(kyx)

+ A17 cos(kyx) + A18 sin(kyx) ,

where ,  are theku = L
cu , ky = L2

cy

1/2
, = A Ai (i = 1, 18)

constants to be determined by the boundary conditions.
The associated boundary conditions for the cracked canti-

lever beam under consideration are: at the clamped end, the
longitudinal deformation (24), the bending deflection (25),
and slope of beam (26) are zero. At the free end, the longitu-
dinal force (27), the vertical bending moment (28), and the
shear force (29) are zero. At the crack section, the axial force
before and after the crack (30) and (34), the lateral displace-
ment (31) and (35), the bending moment (32) and (36), and
the shear force (33) and (37) are same. To the left and right
of the crack, we find discontinuity of axial deformations (38)
and (40) and bending moments (39) and (41).

                                (24)u1(0) = 0;

                                (25)y1(0) = 0 ;

                                (26)y1
∏ (0) = 0 ;

                                (27)u3
∏ (1) = 0 ;

                                (28)y3
∏∏(1) = 0 ;

                                 (29)y3
∏∏∏(1) = 0 ;

                           (30)u1
∏ ( 1 ) = u2

∏ ( 1 ) ;

                           (31)y1( 1 ) = y2( 1 ) ;

                              (32)y1
∏∏( 1 ) = y2

∏∏( 1 ) ;

                             (33)y1
∏∏∏( 1 ) = y2

∏∏∏( 1 ) ;

                             (34)u2
∏ ( 2 ) = u3

∏ ( 2 ) ;

                             (35)y2( 2 ) = y3( 2 ) ;

                             (36)y2
∏∏( 2 ) = y3

∏∏( 2 ) ;

                            (37)y2
∏∏∏( 2 ) = y3

∏∏∏( 2 ) ;

M1M2u1
∏ ( 1 ) = M2(u2( 1 ) − u1( 1 )) + M1(y2

∏ ( 1 ) − y1
∏ ( 1 )) ;

 (38)

M3M4y1
∏∏( 1 ) = M4(y2

∏ ( 1 ) − y1
∏ ( 1 )) + M3(u2( 1 ) − u1( 1 )) ;

(39)

M5M6u2
∏ ( 2 ) = M6(u3( 2 ) − u2( 2 )) + M5(y3

∏ ( 2 ) − y2
∏ ( 2 )) ;

(40)

M7M8y2
∏∏( 2 ) = M8(y3

∏ ( 2 ) − y2
∏ ( 2 )) + M7(u3( 2 ) − u2( 2 )) ,

(41)
where

M1 = AE
LK11

∏ ; M2 = AE
K12
∏ ; M3 = EI

LK22
∏ ; M4 = EI

L2K21
∏ ;

M5 = AE
LK11

∏∏ ; M6 = AE
K12
∏∏ ; M7 = EI

LK22
∏∏ ; M8 = EI

L2K21
∏∏ .

The normal functions given in Eqs. (23) along with the
boundary conditions assumed in Eq. (24) through Eq. (41)
yield the characteristic equation of the system as:

                                  (42)Q = 0,
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where

T1 = sin ku; T2 = cos ku; T3 = cos(ku );

T4 = sin(ku ); T5 = cos(ku ); T6 = sin(ku );

G1 = cosh(ky ); G2 = sinh(ky ); G3 = cosh(ky );

G4 = sinh(ky ); G5 = cos(ky ); G6 = sin(ky );

G7 = cos(ky ); G8 = sin(ky ); G9 = cosh(ky );

G10 = sinh(ky ); G11 = cos(ky ); G12 = sin(ky );

M1 = AE
Lk11

∏ ; M2 = AE
k12
∏ ; M3 = EI

Lk22
∏ ; M4 = EI

L2k21
∏ ;

M12 = M1/M2; M34 = M3/M4;

S1 = T5 −M1kuT6; S2 = T6 +M1kuT5; S3 = M12kyG2;

S4 = M12kyG1; S5 = M12kyG6; S6 = M12kyG5;

S7 = M3ky
2 G1 + kyG2; S8 = M3ky

2 G2 + kyG1;

S9 = M3ky
2 G5 + kyG6; S10 = M3ky

2 G6 − kyG5;

S11 = kyG2; S12 = kyG1; S13 = kyG6;

S14 = kyG5; S15 = M34T5; S16 = M34T6;

M5 = AE
Lk22

∏∏ ; M6 = AE
k23
∏∏ ; M7 = EI

Lk33
∏∏ ; M8 = EI

L2K32
∏∏ ;

M56 = M5/M6; M78 = M7/M8;

V1 = T3 −M5kuT4; V2 = T4 +M5kuT3; V3 = M56kyG10;

V4 = M56kyG9; V5 = M56kyG12; V6 = M56kyG11;

V7 = M7ky
2 G9 + kyG10; V8 = M7ky

2 G10 + kyG9;

V9 = M7ky
2 G11 + kyG12; V10 = M7ky

2 G12 − kyG11;

V11 = kyG10; V12 = kyG9; V13 = kyG12;

V14 = kyG11; V15 = M78T3; V16 = M78T4,

where  is a function of the natural circular frequency ,Q
the relative crack locations  and , and the local stiffness1 2
matrices  and , which in turn are functions of the relativeK∏ K∏∏

crack depths.
3.2. Forced Vibration

If the cantilever beam with transverse cracks is excited at
its free end by a harmonic excitation , the non-(Y = Y0 sin t)
dimensional amplitude at the free end may be expressed as 

. Therefore, the boundary conditions for they3(1) = y0/L = y0
beam remain the same as before except in the case of the ex-
pression Eq. (29), which is changed to .y3(1) = y0

The constants  are computed from the alge-Ai (i = 1, 18)
braic condition , where  is the ( ) matrixQ1D = B1 Q1 18% 18
obtained from the boundary conditions as mentioned before,
D is a column matrix obtained from the constants, and  is aB1
column matrix whose transpose is given by

B1
T = [0 0 0 y0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] .

4. NUMERICAL ANALYSIS
An aluminium cantilever beam with a uniform cross-sec-

tion area of length 80 cm, breadth 5 cm, depth 6 mm, modu-
lus of elasticity  N/m2, Poison’s ratio ,E = 0.724% 1011 = 0.334
and density  kg/m3 is considered for numerical ana-= 2713
lysis. The cracks are situated at two different positions

). The crack depths are chosen such(L1/L = 0.125, L2/L = 0.25
that , and 0.5. The first, second,a1,2/W = 0.001, 0.1667, 0.334
and third natural frequencies corresponding to various crack
conditions are calculated. The fundamental mode shapes for
longitudinal and transverse vibration of cracked and un-
cracked beams are plotted and compared. The transverse and
longitudinal mode shapes for the beams are plotted for beam
position (x) in cm vs. relative amplitude ( ) and ( ) respec-u y
tively. The magnified view of the mode shapes is also plotted
for the elastic cantilever beams in the vicinity of the crack in
order to observe the change in the mode shape.

Similarly, results are obtained for a mild steel beam having
the same geometry as an aluminium beam. The mild steel beam
specimen has a modulus of elasticity  N/m2,E = 2.1% 1011

Poison’s ratio , and density  kg/m3. The nu-= 0.3 = 7860
merical results are shown in Figs. 4-32.
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where

[Q] =

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −T1 −T2

0 0 0 0 0 0 0 0 G3 G4 −G7 −G8 0 0 0 0 0 0
0 0 0 0 0 0 0 0 G4 G3 G8 −G7 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −T6 T5 T6 −T5 0 0

G1 G2 G5 G6 −G1 −G2 −G5 −G6 0 0 0 0 0 0 0 0 0 0
G1 G2 −G5 −G6 −G1 −G2 G5 G6 0 0 0 0 0 0 0 0 0 0
G2 G1 G6 −G5 −G2 −G1 −G6 G5 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −T4 T3 T4 −T3

0 0 0 0 G9 G10 G11 G12 −G9 −G10 −G11 −G12 0 0 0 0 0 0
0 0 0 0 G9 G10 −G11 −G12 −G9 −G10 G11 G12 0 0 0 0 0 0
0 0 0 0 G10 G9 G12 −G11 −G10 −G9 −G12 G11 0 0 0 0 0 0
−S3 −S4 S5 −S6 S3 S4 −S5 S6 0 0 0 0 S1 −S2 T5 T6 0 0
S7 S8 −S9 −S10 −S11 −S12 S13 −S14 0 0 0 0 S15 S16 −S15 −S16 0 0
0 0 0 0 V3 V4 −V5 V6 −V3 −V4 V5 −V6 0 0 V1 V2 −T3 −T4

0 0 0 0 V7 V8 −V9 −V10 −V11 −V12 V13 −V14 0 0 V15 V16 −V15 −V16

,



Figure 4. Transverse vibration ( ). (a) First1 = 0.1667, 1 = 0.125
mode; (b) second mode; (c) third mode.

Figure 5. Transverse vibration ( ). (a) First1 = 0.334, 1 = 0.125
mode; (b) second mode; (c) third mode.

Figure 6. Transverse vibration ( ). (a) First mode;1 = 0.5, 1 = 0.125
(b) second mode; (c) third mode.

Figure 7. Transverse vibration ( ,1 = 0.1667, 2 = 0.334, 1 = 0.125
). (a) First mode; (b) second mode; (c) third mode.2 = 0.25
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Figure 8. Transverse vibration ( ,1 = 0.334, 2 = 0.1667, 1 = 0.125
). (a) First mode; (b) second mode; (c) third mode.2 = 0.25

Figure 9. Transverse vibration ( ,1 = 0.334, 2 = 0.334, 1 = 0.125
). (a) First mode; (b) second mode; (c) third mode.2 = 0.25

Figure 10. Transverse vibration ( ,1 = 0.5, 2 = 0.5, 1 = 0.125
). (a) First mode; (b) second mode; (c) third mode.2 = 0.25

Figure 11. Longitudinal vibration ( ). (a) First1 = 0.5, 1 = 0.125
mode; (b) second mode; (c) third mode.
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Figure 12. Longitudinal vibration ( ,1 = 0.5, 2 = 0.5, 1 = 0.125
). (a) First mode; (b) second mode; (c) third mode.2 = 0.25

Figure 13. Magnified view of transverse vibration, aluminium beam
( , ). (a) First mode; (b) second mode; (c) third mode.1 = 0.01 1 = 0.125

Figure 14. Magnified view of transverse vibration, aluminium beam
( , ). (a) First mode; (b) second mode; (c) third mode.1 = 0.1667 1 = 0.125

Figure 15. Transverse vibration, mild steel beam ( ,1 = 0.001
). (a) First mode; (b) second mode; (c) third mode.1 = 0.125
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Figure 16. Longitudinal vibration, mild steel beam ( ,1 = 0.001
). (a) First mode; (b) second mode; (c) third mode.1 = 0.125

Figure 17. Transverse vibration, mild steel beam ( , ,1 = 0.001 2 = 0.001
, ). (a) First mode; (b) second mode; (c) third mode.1 = 0.125 2 = 0.25

Figure 18. Magnified view of first mode of transverse vibration,
mild steel beam ( , ). (a) , (b) .1 = 0.001 2 = 0.001 1 = 0.125 2 = 0.25

Figure 19. Magnified view of second mode of transverse vibration,
mild steel beam ( , ). (a) , (b) .1 = 0.001 2 = 0.001 1 = 0.125 2 = 0.25

Figure 20. Magnified view of third mode of transverse vibration,
mild steel beam ( , ). (a) , (b) .1 = 0.001 2 = 0.001 1 = 0.125 2 = 0.25
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Figure 21. Transverse vibration, mild steel beam ( , ,1 = 0.1667 2 = 0.1667
, ). (a) First mode; (b) second mode; (c) third mode.1 = 0.125 2 = 0.25

Figure 22. Longitudinal vibration, mild steel beam ( , ,1 = 0.001 2 = 0.001
, ). (a) First mode; (b) second mode; (c) third mode.1 = 0.125 2 = 0.25

Figure 23. Longitudinal vibration, mild steel beam ( ,1 = 0.1667
, , ). (a) First mode; (b) second mode;2 = 0.1667 1 = 0.125 2 = 0.25

(c) third mode.

5. EXPERIMENTAL SET-UP

An experimental set-up shown in the schematic diagram
(Fig. 33) was used for performing the experiments on alu-
minium and mild steel cantilever beam specimens. While
conducting the experiment on the aluminium specimen, small
mild steel foils (length 1 cm, width 1 cm, and thickness 0.05 cm)
are adhered on the surface of beam. Ten foils are placed at
10 cm apart each on the aluminium beam. The specimen is
set to vibrate under first, second, and third fundamental fre-
quencies. A non-contact type of magnetic sensor (vibration
pickup) was used to receive the signals at various positions
where the foils are placed. The gap between the sensor and
foil was kept as 0.2 cm. The signals obtained were fed to the
vibration indicator through a power amplifier. The measured
signals were used to plot the mode shapes for comparison
with the theoretical results.

Similarly, experiments are performed on mild steel beam
specimens. The experimental results for the aluminium beam
are shown in Table 1.

6. DISCUSSION

The results obtained from the numerical analysis are pre-
sented in graphical forms.

The transverse vibration mode shapes for an aluminium
beam with a single crack are shown in Figs. 4-6. In these fig-
ures, the relative crack depths considered are 0.1667, 0.334,
and 0.5 respectively. However, the relative crack position was
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Figure 24. Magnified view of first mode of transverse vibration, mild
steel beam ( , ). (a) , (b) .1 = 0.1667 2 = 0.1667 1 = 0.125 2 = 0.25

Figure 25. Magnified view of second mode of transverse vibration, mild
steel beam ( , ). (a) , (b) .1 = 0.1667 2 = 0.1667 1 = 0.125 2 = 0.25

Figure 26. Magnified view of third mode of transverse vibration, mild
steel beam ( , ). (a) , (b) .1 = 0.1667 2 = 0.1667 1 = 0.125 2 = 0.25

Figure 27. Variation of the eigen values of a mild steel cracked beam
vs. the relative crack depth ( ), .1 1 = 0.125

Figure 28. Variation of the eigen values of two cracked mild steel
beam vs. the relative crack depth ( ), , ,2 1 = 0.001 1 = 0.125

.2 = 0.25

Figure 29. Variation of the eigen values of a cracked aluminium
beam vs. the relative crack depth ( ), .1 1 = 0.125

Figure 30. Variation of the eigen values of two cracked aluminium
beam vs. the relative crack depth ( ), , ,1 2 = 0.01 1 = 0.125

.2 = 0.25
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Figure 31. First fundamental frequencies of a cracked aluminium
beam for various crack positions and depths. (a) Contours; (b) 3-D plot.

fixed at 0.125 for single crack analysis. For the two-crack beam
vibration analysis, different combinations of relative crack
depths were considered. Figures 7-10 show the transverse mode
shapes for an aluminium beam with relative crack depths
0.1667, 0.334, and 0.5 respectively. For the same beam, the
relative crack locations were chosen at 0.125 and 0.25.

The longitudinal mode shapes for a single deep crack
 are shown in Fig 11. For deep two cracks (a1/W = 0.5) (a1/W =

, the results are shown in Fig. 12. For minutea2/W = 0.5)
 and moderate cracks ,(a1/W = 0.001) (a1/W = a2/W = 0.1667)

the magnified views of transverse mode shapes at the crack
locations are depicted in Figs. 13 and 14.

Similar results, as discussed above, were obtained for the
mild steel beam. The results are shown in Figs. 15-26. It is
observed that there are no significant changes in transverse
mode shapes for a minute crack  when(a1/W = a2/W = 0.001)
compared with the same uncracked cantilever beam. For a
moderate crack , appreciable changes in mode(a1/W = 0.1667)
shapes are noticed. For deep cracks , the(a1/W = a2/W = 0.5)
change in mode shapes are quite substantial. However, re-
markable changes are observed in longitudinal mode shapes
at the crack positions even for a very small crack. Further-
more, the numerical results indicate that the deviation be-
tween the fundamental mode shapes of the cracked and un-
cracked beam is always sharply changed at the crack
location. Such behaviours are noticed in the magnified views
of the mode shapes.

Figure 32. First fundamental frequencies of a cracked mild steel
beam for various crack positions and depths. (a) Contours; (b) 3-D plot.

Figure 33. Schematic block diagram of experimental set-up. 1 - vi-
bration pickup, 2 - vibration indicator, 3 - distribution box, 4 - power
supply, 5 - power amplifier, 6 - vibration generator, 7 - cantilever
beam specimen.

Table 1. Experimental results for aluminium beam (  cm,L = 80
 cm,  cm).B = 5 W = 0.6

834.0296.543.60.30.420.010.0
835.2296.844.00.20.420.010.0
834.6300.046.00.30.320.010.0
842.4300.046.50.20.320.010.0
842.5300.046.70.10.320.010.0
842.5301.647.40.20.220.010.0
842.5301.747.60.10.220.010.0
842.5302.247.80.20.120.010.0
845.9302.348.00.10.120.010.0
812.0295.042.20.40.410.05.0
834.5300.046.00.30.310.05.0
842.5301.647.40.20.210.05.0
845.9301.747.60.10.210.05.0
846.0302.348.00.10.110.05.0

third
mode

second
mode

first
mode
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depth
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The changes of dimensionless frequencies for the eigen
values as a function of crack depth are shown in Figs. 27-30.
It can be seen that measurable changes in natural frequencies
can be observed for relatively deep cracks. 3-D and contour
plots are drawn (Figs. 31 and 32) which show the variation of
crack depth and crack position with respect to the natural fre-
quency.

Aluminium beams (  mm) with desired trans-900% 36% 6
verse cracks were used for determining natural frequencies
and mode shapes. The experimental results for relative am-
plitude at different relative distances for the aluminium beam
specimen having relative crack depths 0.334 and 0.334 and
relative crack positions 0.125 and 0.5 are plotted in Figs. 34-36
for the first three modes. The corresponding numerical re-
sults are also presented for comparison.

Similarly, for the mild steel beam specimen (900% 40% 6
mm), for a similar crack geometry, the mode shapes from nu-
merical and experimental analysis are plotted and compared
(Figs. 37-39). The graph shows good agreement between the
numerical and experimental results.

The current results were compared with the numerical re-
sults obtained by Fernandez et al.20 (Fig. 40). It is observed
that the current results agree well with the numerical ones.
The numerical results for the frequency ratio with respect to
relative crack position and depth are shown in Tables 2 and 3
for aluminium and mild steel beams respectively. From the
given numerical results (Tables 2 and 3), the relative crack
location or depth can be found out from the frequency ratio,
and vice versa.

7. CONCLUSION

An analytical-computational method has been used for
solving the frequency equation of an elastic cantilever beam
with a single/multiple cracks. The position of the crack can
be predicted from the deviations of the fundamental modes
between the cracked and uncracked beams. Furthermore, the
crack sizes can be identified by the variation of the corre-
sponding natural frequencies. Thus, it is possible to monitor
the growth of a crack in a beam, with the initially uncracked
beam considered as the baseline for future measurement.

One can also construct a contour or 3-D plot of natural
frequencies for each crack position and depth, as shown in
Figs. 31 and 32. From these diagrams, the depth of the cracks
can be determined from their cracked natural frequencies, if
the position of the crack is known from the sharply changed
curves of deviation of fundamental mode shapes.

The conclusions of the present study can be summarised
as follows:

1) The presence of a crack in structural members intro-
duces local flexibility, which can be computed and used in
structural analysis.

2) The identification method is based on the assumption
of transverse surface cracks extending uniformly along the
width of structure.

3) This method is applicable to structural systems which
have analytical description or can be modelled by means of
FEM or some other convenient discretisation method. Fur-
thermore, any complex structure can be broken into simple
local structural members for vibration analysis by making
proper assumptions. Suitable boundary conditions can be im-
posed on the local structural elements for vibration analysis.

Table 2. Variation of frequency ratio with respect to relative crack
position and depth. Cracked aluminium beam (  cm,  cm,L = 80 B = 5

 cm).W = 0.6

0.9808380.90.990.9794390.20.5
0.9808190.80.990.9814710.10.5
0.9808110.70.990.9814720.010.5
0.9794370.60.990.741690.90.4
0.979440.50.990.9042160.80.4
0.979440.40.990.9473150.70.4
0.979440.30.990.9631840.60.4
0.979440.20.990.9713110.50.4
0.979440.10.990.9753760.40.4
0.979440.010.990.9774080.30.4
0.9804050.90.90.9794390.20.4
0.9808110.80.90.9814710.10.4
0.9811910.70.90.9814710.010.4
0.979440.60.90.6592030.90.3
0.9794370.50.90.8639930.80.3
0.979440.40.90.9275850.70.3
0.979440.30.90.9530230.60.3
0.979440.20.90.9652150.50.3
0.979440.10.90.9713120.40.3
0.979440.010.90.9751760.30.3
0.9741070.90.80.9774070.20.3
0.9791860.80.80.9794390.10.3
0.9802020.70.80.9794390.010.3
0.9794390.60.80.5840170.90.2
0.979440.50.80.818890.80.2
0.979440.40.80.903810.70.2
0.979440.30.80.9387980.60.2
0.979440.20.80.9570870.50.2
0.979440.10.80.9672470.40.2
0.979440.010.80.9753590.30.2
0.949930.90.70.9774070.20.2
0.9732860.80.70.9794390.10.2
0.977790.70.70.9814710.010.2
0.9794390.60.70.5179740.90.1
0.9794390.50.70.7715510.80.1
0.979440.40.70.8765850.70.1
0.979440.30.70.9245740.60.1
0.979440.20.70.9489590.50.1
0.979440.10.70.9631830.40.1
0.979440.010.70.9713110.30.1
0.8991420.90.60.9774070.20.1
0.9600880.80.60.9794390.10.1
0.9721010.70.60.9814690.010.1
0.9753750.60.60.4954180.90.0625
0.9794390.50.60.7534690.80.0625
0.979440.40.60.8658260.70.0625
0.979440.30.60.9184780.60.0625
0.979440.20.60.9448950.50.0625
0.979440.10.60.9611530.40.0625
0.9814720.010.60.9672470.350.0625
0.8253960.90.50.9713110.30.0625
0.9369270.80.50.9733430.250.0625
0.962120.70.50.9753390.20.0625
0.9713130.60.50.9781840.150.0625
0.9753750.50.50.9797950.10.0625
0.979440.40.50.9794370.050.0625
0.9794390.30.50.9794390.020.0625
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Figure 34. First mode of transverse vibration, aluminium beam
( ).1 = 0.334, 2 = 0.334, 1 = 0.125, 2 = 0.25

Figure 35. Second mode of transverse vibration, aluminium beam
( ).1 = 0.334, 2 = 0.334, 1 = 0.125, 2 = 0.25

Figure 36. Third mode of transverse vibration, aluminium beam
( ).1 = 0.334, 2 = 0.334, 1 = 0.125, 2 = 0.25

Figure 37. First mode of transverse vibration, mild steel beam
( ).1 = 0.334, 2 = 0.334, 1 = 0.125, 2 = 0.25

Figure 38. Second mode of transverse vibration, mild steel beam
( ).1 = 0.334, 2 = 0.334, 1 = 0.125, 2 = 0.25

Figure 39. Third mode of transverse vibration, mild steel beam
( ).1 = 0.334, 2 = 0.334, 1 = 0.125, 2 = 0.25
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Figure 40. Comparison of numerical result (Fernandez et al.) with
current analysis for variation of fundamental frequency with crack
ratio of a cantilever beam, , .L1/L = 0.75 uncrack = 1280.796923

Table 3. Variation of frequency ratio with respect to relative crack
position and depth. Cracked mild steel beam (  cm,  cm,L = 80 B = 5

 cm).W = 0.6

0.9973290.60.90.9959120.30.5
0.9973220.50.90.9966950.20.5
0.9973290.40.90.9971430.10.5
0.9973290.30.90.9799260.60.4
0.9973290.20.90.9878180.50.4
0.9973290.10.90.9920680.40.4
0.9969240.60.80.9946980.30.4
0.9971260.50.80.9961140.20.4
0.9973290.40.80.9969440.10.4
0.9973290.30.80.9692020.60.3
0.9973290.20.80.981950.50.3
0.9973290.10.80.988830.40.3
0.995710.60.70.9930790.30.3

0.9965190.50.70.9955250.20.3
0.9969240.40.70.8550680.10.3
0.9971260.30.70.9558460.60.2
0.9973280.20.70.9744630.50.2
0.9973290.10.70.9847830.40.2
0.9928770.60.60.9908530.30.2
0.99490.50.60.9944960.20.2

0.9961140.40.60.9965360.10.2
0.9967220.30.60.9400630.60.1
0.9971090.20.60.9653570.50.1
0.9971430.10.60.9795220.40.1
0.9878180.60.50.9881970.30.1
0.9920680.50.50.9932820.20.1
0.9944960.40.50.9961140.10.1
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4) However, a database can be prepared for the different
geometry of beams with cracks. The experimental results of
beam-like structures used in a practical application can be
compared with the results of the database. Hence, the loca-
tion and size of a crack can be determined.

5) The analytical-computational method described in the
paper provides accuracy for minute cracks.

6) The results obtained from the experimental analysis
show excellent agreement with the corresponding numerical
results.

The proposed method can be used as a technique and as a
tool for preventive maintenance and the non-destructive test-

ing of structures. The results from the current analysis can be
utilised for the fault diagnosis of structures and for condition
monitoring.
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