
1. INTRODUCTION

A sandwich structure consists of three elements: the face
sheets, the core, and the adhesive interface layers. The great
advantage of sandwich structures is that optimal designs can
be obtained for different applications by choosing different
materials and geometric configurations of the face sheets and
cores. By inserting a lightweight core between the two face
sheets, the bending stiffness and strength are substantially in-
creased compared to a single layer homogenous structure,
without the addition of much weight. The viscoelastic core
has a high inherent damping capacity. When the beam or
plate undergoes flexural vibration, the damped core is con-
strained to shear. This shearing causes the flexural motion to
be damped and the vibrational energy to be dissipated. Addi-
tionally, the normal-to-shear coupling between the core and
face sheets reduces the sound transmission. So in recent years,
such structures have become used increasingly in transporta-
tion vehicles and other applications. Rao has described the
applications of viscoelastic damping in automotive and air-
craft structures.1 Besides damping treatments used in struc-
tures, sandwich glass has been used in automotive side and
rear windows to reduce noise. Composite materials are also
used in pipes and ducts.110 Nakra has published a series of re-
views on vibration control with viscoelastic materials.2-4 Tro-
vik has summarised the major uses of constrained layer
damping treatments up to 1980.5 A thorough review of work
in fibre-reinforced composite material damping research has
been given by Chandra et al.6 Some classical books and book
chapters give more details on viscoelastic damping and sand-
wich structures.7-17

2. ANALYTICAL THEORIES

When a damping layer is attached to a vibrating structure,
it dissipates energy by direct and shear strains. When a solid
beam or plate is bending, the direct strain increases linearly
with distance from the neutral axis. So, unconstrained damp-
ing layers, which dissipate energy mainly by direct strain, are
attached to the remote surfaces. On the other hand, the shear
stress is the largest at the neutral axis and zero on the free
surfaces. Therefore, constrained layers dissipate energy by
the action of shear stresses. It has been shown that shear
damping in viscoelastic materials is higher than in typical
structural materials. The constrained treatment has higher
stiffness than the unconstrained damping treatment. For these
reasons, sandwich composite structures are widely used.

2.1. Damping in Sandwich Beams and Plates
Since the late 1950’s, many papers have been published

on the vibration of sandwich structures. The Ross-Ungar-
Kerwin model is one of the first theories which was devel-
oped for the damping in sandwich structures.18-21 In Kerwin’s
initial study, an analysis was presented for the bending wave
propagation and the damping in a simply supported three-
layer beam.18 One of the limitations of this analysis is that the
bending stiffness of the top layer must be much smaller than
that of the bottom layer. Ungar generalised the earlier study
and derived an expression for the total loss factor of sand-
wich beams in terms of the shear and structural parameters.20

Based on such an expression, two important conclusions can
be drawn. First, if the constraining layer is thinner than the
viscoelastic damping layer, then the system damping has a
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maximum value when the shear parameter of the core has an
optimal value in the intermediate range, as shown in Fig. 1,
where X and Y are the shear and structural parameters and
 is the damping in the viscoelastic layer. Second, the loss

factor has a maximum value when a three-layer sandwich
structure is symmetric about the neutral axis.

Figure 1. The effect of the shear modulus on the total damping in a
sandwich structure.

Ruzicka summarised earlier research on viscoelastic shear
damping mechanisms and presented several structural damp-
ing design configurations, especially the so-called “cell-insert”
idea.22,23 He stated that the loss factor is independent of the
stress level for pure viscoelastic materials. He also analysed
the dynamic properties of viscoelastic-damped structures us-
ing a lumped-parameter model which resulted in a number of
conclusions that agree with those obtained from the flexural
wave analysis discussed in reference 18.

The limitations of Kerwin’s model have been avoided in
Yu’s theory by using a variational approach.24 Yu took into
account inertia effects due to transverse, longitudinal and ro-
tary motions and then considered the combined effects of the
three loss factors associated with the shear and direct stresses
of the core and with the direct stress in the face sheets. How-
ever, Yu only studied the flexural vibration of symmetric
sandwich plates. Sadasivia Rao and Nakra analysed the
damping in unsymmetric sandwich beams and plates and also
included the inertia effects of transverse, longitudinal and ro-
tary motion.36 Inclusion of all the inertia effects in the flex-
ural vibration analysis gives three families of modes in bend-
ing, extension and thickness-shear.

In extending the work of Kerwin, DiTaranto derived a
sixth-order linear homogeneous differential equation for freely
vibrating beams having arbitrary boundary conditions.25-27 In
this model, the modes are completely uncoupled, which
greatly simplifies the general forced vibration problem. How-
ever, the loss factor calculated by using this equation does
not depend on the boundary conditions. This conclusion ob-
viously cannot be correct. Mead and Markus modified the
theory and studied different boundary conditions in terms of
the transverse displacement.28,29 Using the separation of vari-
ables method, they derived the natural frequencies of sand-
wich beams and studied the effects of the shear and structural

parameters on damping. The relationship is similar to the
equation derived in reference 20. Mead and Markus proved
that the loss factor  is much less sensitive to the change of
the shear parameter when the structural parameter Y is large,
as shown in Fig. 2. They also showed that the maximum val-
ues of the damping are not very sensitive to the boundary
condition, while different boundary conditions shift the fre-
quency at which the maximum damping occurs.

Figure 2. The effects of the shear and structural parameters on the
system loss factor.

In another study, Yan and Dowell initially included the
effects of face sheet shear deformation and of longitudinal
and rotary inertia.34 However, from the set of equations ob-
tained, the longitudinal and rotary terms were neglected by
assuming the face sheets to be very stiff in shear. This proce-
dure results in a fourth-order partial differential equation.
Mead analysed the damping in symmetric sandwich plates
with one pair of opposite edges simply-supported.30 He also
studied the effect of different boundary conditions for the
other edges and derived a sixth-order equation. Mead com-
pared the difference between the fourth-order model derived
by Yan and Dowell and the sixth-order model.31,33 Based on
Mead’s sandwich plate model, Cupial and Niziol included
the shear deformation of the face layers and rotary inertia and
then studied the simply supported sandwich plates.47 The
damping calculated by using the shear deformation model is
somewhat lower than that obtained from Mead’s model.
Wang and Chen studied damping in annular sandwich plates
using a similar method.48

Since high damping is usually associated with relatively
low stiffness and strength, it is a good idea to increase the
stiffness using multi-span sandwich structures. Mead ex-
tended his previous work to periodically supported sandwich
plates.32 The basic idea is that at a particular frequency, all
the displacement and forces at a point in one periodic ele-
ment are identical to those at the corresponding point in the
adjacent element, apart from a phase difference which is de-
termined using an iterative technique. The dependence on
frequency and the effects of support spacing and shear pa-
rameters on damping were also studied. Rao and He also ana-
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lysed damping in multi-span sandwich beams.46 Rao and He
derived two sixth-order differential equations to govern the
transverse and longitudinal motions for each span using
Hamilton’s principle. The effects of the thickness of the face
sheets and core and of the location of the intermediate sup-
port on the damping were studied for a two-span sandwich
beam.

Rao derived a similar equation of motion using Hamil-
ton’s principle.38 He presented an extensive study using com-
puter programs to predict the loss factor and natural frequen-
cies for different boundary conditions in terms of the shear
parameter. Rao also analysed the flexural vibration of short
unsymmetric sandwich beams including all the higher order
effects, such as rotary inertia, bending, extensional and shear
effects, in all the layers.37 He compared the loss factor and
natural frequencies obtained by using this new model and
earlier models. For a beam where the core is thicker than the
face sheets, all the models predict identical results, although
Rao’s model includes the higher order effects. This means
that for thick core beams, the effects of rotary inertia, exten-
sion and shear are insignificant in all the layers.

All the researchers introduced above, except Yu, have
only considered the contribution of the damping in the visco-
elastic core to the total damping in the entire structure by us-
ing the complex form of the shear modulus for the core. An
advantage of using the complex shear modulus is that the dif-
ferential equations only contain the even order terms. So they
are easy to solve. These models are all based on the follow-
ing assumptions: (a) the viscoelastic layer undergoes only
shear deformation and, hence, the extensional energy of the
core is neglected; (b) the face sheets are elastic and isotropic,
and the shear energy contributed in them is neglected; and
(c) in the facings, the plane sections remain plane and normal
to the deformed centrelines of the facings. Mead conducted a
comprehensive study on a comparison of these models in ref-
erence 33.

Instead of only considering the damping in the core, Un-
gar and Kerwin also proposed the so-called modal strain en-
ergy (MSE) model in order to include the damping capacities
of all the elements. In this model, the damping of the material
can be characterised by the ratio of the energy dissipated in
each element to the energy stored in the material.21 Based on
the MSE method, Johnson and Kienholz produced a method
to predict damping in structures with constrained viscoelastic
layers by using finite element analysis.75 Hwang and Gibson
studied damping in composite materials and structures at
both macromechanical and micromechanical levels using the
MSE method.39-42 They studied the contribution of interlami-
nar stresses to damping as well.43

The frequency dependence property of viscoelastic damp-
ing was first presented by Lazan.49 Ruzicka and Mead came
to similar conclusions using lumped-parameter models.16,22

Mead also studied the influence of the boundary conditions
on the frequency dependence of the loss factor.29 Nilsson
used Hamilton’s principle to derive two sixth-order differen-
tial equations which govern the bending of sandwich beams.50,51

The behaviour of a sandwich structure in the low frequency
region is determined by pure bending of the entire structure.
In the middle frequency region, the rotation and shear defor-
mation of the core become important. At high frequencies,
the bending of the face sheets is dominant. Therefore, if the
damping in the core is higher than that in the face sheets,

then the overall damping has a maximum value in the middle
frequency range. On the other hand, if the damping in the
core is less than that in the face sheets, then the total damping
has a minimum value in the middle frequency range. Figure 3
shows the calculated total loss factors for three different
cases, where the loss factor in the core  is set to be 2% and2
the loss factor in the face sheets  varies.1

Figure 3. The frequency dependence of the damping in sandwich
structures.

A. Nilsson and C. Nilsson also studied the dynamic prop-
erties of sandwich structures.51 Based on the sixth-order dif-
ferential equations, the wavenumber of a sandwich beam can
be solved by assuming simple harmonic solutions. In addi-
tion, the apparent bending stiffness, D, can be calculated from

, where  is the angular frequency, m is the massD = 2m /kb
4

per unit length, and  is the bending wavenumber. Since thekb
motion of a sandwich beam is dominated by the face sheets,
which are limp in the high frequency range, the apparent
bending stiffness approximates to the bending stiffness of the
face sheets when the frequency increases. Figure 4 demon-
strates the measured and predicted apparent bending stiffness
of two beams cut from the same Nomex honeycomb sand-
wich panel in two perpendicular directions. Note that the
bending stiffness presented by Nilsson is for beams with unit
width, so the unit is Nm, rather than Nm2.

Nilsson also presented the sound reduction index (sound
transmission loss) of sandwich panels.50 Figure 5 shows the
measured and predicted sound reduction indices of a sand-
wich panel and face sheet.

In Nilsson’s research, the cores are either honeycomb or
solid viscoelastic materials.50 Li and Crocker studied the fre-
quency dependence of damping in sandwich beams with
combined honeycomb-foam cores.52 Because of the visco-
elastic property of the foam, the damping in the core is greater
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than that in the face sheets. The honeycomb material is ex-
pected to enhance the stiffness of the entire structure. So the
normal-to-shear coupling is still effective in the high fre-
quency range and, thus, the damping is increased substan-
tially. The effects of thickness and delamination on damping
have also been analysed. Figure 6 illustrates the frequency
dependence of symmetric sandwich beams with different
configurations, where the thickness of a single-layer face
sheet is 0.33 mm. If the face sheet thickness increases, the
damping in the low and high frequency ranges is lower, but it
is still high in the middle frequency range. If the thickness of
the core increases, the damping is increased in both the mid-
dle and high frequency ranges.

Figure 4. Bending stiffness for two beams cut from the same hon-
eycomb sandwich panel.

Figure 5. Measured and predicted sound reduction indices.

The theoretical models discussed so far can be catego-
rised into two classes, fourth-order models and sixth-order
models. Models derived by Mindlin’s theory and Timoshen-
ko’s theory both lead to a fourth-order differential equation.
Mead31,33, Rao37, and Nilsson51 all show that sixth-order mod-
els lead to more accurate results for the dynamics and damp-
ing of sandwich panels than fourth-order models. Nilsson
states that due to the frequency dependence of sandwich
structure properties, solutions of the fourth-order differential

equation agree well with measurements obtained at low fre-
quency. However, as the frequency increases, the calculated
results disagree strongly with the measurements.

Figure 6. The effects of thickness on the total damping in sandwich
beams with a foam-filled honeycomb core.

Figure 7. The shear parameter effect on the total damping in multi-
layer sandwich beams.

Besides the three-layer sandwich structures, multi-layer
sandwich structures are also widely studied.53-60 Grootenhuis
showed that the four-layer and five-layer beams have a wider
high damping range in terms of the damping layer shear
modulus than the three-layer sandwich beams, as shown in
Fig. 7, where E and G denote the Young’s modulus and the
shear modulus, respectively, and h is the thickness.55 Asnani
and Nakra studied the damping characteristics of symmetric
multi-layer beams with identical viscoelastic and elastic lay-
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ers alternatively arranged.57 They provided three design crite-
ria and analysed the effects of the shear parameter and layer
thicknesses on the total damping. Alam and Asnani extended
the previous work to multi-layer structures with orthotropic
damping layers where each damping layer is constrained be-
tween two elastic layers.58-60 They considered shear strain in
all the layers, but their result does not satisfy continuity of
the shear stress across the interfaces. Bhimaraddi proposed a
refined shear deformation theory in which the shear stresses
are continuous across the interfaces.61 Rao and He studied
several different multi-layer configurations using numerical
analysis.45 Two more fibre-reinforced layers are added on the
two free surfaces. The total damping can be improved by
changing the fibre orientation.

Among multi-layer sandwich structures, special attention
has been given to spaced sandwich structures. A spacer is in-
serted between the base plate and the viscoelastic damping
layer to magnify the shear strain and to enhance the damping.
Since the viscoelastic damping layer is separated from the
neutral axis of the entire structure due to the spacer, the di-
rect stress is increased. To make this configuration effective,
the shear stiffness of the spacer must be much greater than
that of the damping layer so that the shear stress in the damp-
ing layer also increases. Ross, Ungar and Kerwin presented
this idea first in reference 19, as shown in Fig. 8. Nakra and
Grootenhuis derived the equations of motion using Hamil-
ton’s principle.56 The Two face sheets are assumed to be per-
fectly elastic, and the damping layer and spacer are viscoelas-
tic. Compared with three layer sandwich beams and plates,
multi-layer structures have a wider high damping range in
terms of the core shear modulus.55,56 Van Vuure et al. applied
the modal strain energy method to model such structures and
the finite element method to calculate the loss factor in each
layer.53 They also studied the effects of the spacer position.

Figure 8. A sandwich beam with a spacer beneath the viscoelastic
damping layer. (a) Undeformed beam; (b) deformed beam.

Since many complex structures are jointed, joint damping
is also an interesting phenomenon. Joint fasteners for sand-
wich composite structures can be bolts, rivets, or adhesive
layers. He and Rao analysed the damping in adhesively
bonded double-strap joints.44 The effects of the shear modu-
lus of the damping layer and structural parameters on the mo-
dal loss factor, such as the damping and constraining layer
thicknesses, are studied. Figure 9 shows that if the viscoelas-
tic damping layer is much softer than the constraining layer,

the total loss factor varies little with the shear modulus of the
damping layer. In Fig. 9, the normalised shear modulus is de-
fined as the ratio of the core shear modulus to the face sheet
Young’s modulus.

Figure 9. Variation of the modal loss factor with the normalised
shear modulus.

In general, the damping of bonded structures tends to be
lower than that of structures with bolted and riveted joints.16

Nanda and Behera conducted a theoretical analysis and ex-
periments for the damping in bolted laminated structures.62

The damping in such structures depends on many factors,
such as the diameter of the bolts, the tightening torque on the
bolts, the number of layers, and so on.

Marsh and Hale presented a different damping configura-
tion, which consists of an internal shear damping treatment.63

Such structures are hollow with viscoelastic damping materi-
als bonded inside the structures. This is very similar to the
“cell-insert” concept presented by Ruzicka.22,23 Marsh and Hale
analysed the effects of geometry and mechanical parameters
on the damping in such structures. Figure 10 illustrates the
internal damping treatment idea.

Figure 10. Internal damping treatment.

2.2. Damping and Damage
Damage is another mechanism that causes increased

damping. Prasad and Carlsson analysed debonding and crack
growth in foam core sandwich beams using the finite ele-
ment method.64 Crack effects on the dynamic characteristics
of conventional and composite beams have been studied by
many authors, including those in this issue of the journal.111
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Experiments were carried out with cantilever beams and shear
specimens.65 Luo and Hanagus studied the dynamics of dela-
minated beams by using a piecewise-linear spring model to
simulate the behaviour of delaminated layers.66 Delamination
introduces friction in the unbounded region of the interface,
and the damping increases with the size of the delamination.
Meanwhile, increased damping leads to lower natural fre-
quencies. This effect is significant in the high frequency
range.67 Experimental results presented by Li and Crocker are
found to be consistent with this prediction.52 Figure 11 com-
pares the experimental results that were obtained from two
double cantilever beams with and without delamination. The
delamination is 5% of the total length on one side of the beam.

Figure 11. Effect of delamination on damping in a sandwich beam.

Delamination affects the stiffness of sandwich beams as
well. For sandwich beams with delamination, the bending
stiffness is reduced substantially. If there is delamination on
both sides of the beam, the bending stiffness is reduced more
than if there is delamination on only one side. This conclu-
sion is the same as that resulting from Frostig’s model which
is based on high-order elastic theory.68

It is worth noting that high damping is not the only bene-
ficial property for good noise and vibration control. The ad-
ditional effects of many other factors, such as mass, stiffness,
damage tolerance, and so on, have to be considered as well.
High damping is usually associated with a relatively low
stiffness. So the trade-off between the requirement for low
vibration levels and strength and stiffness must be analysed
during the design stage. Some criteria for assessing the dam-
ping effectiveness can be found in reference 69.

3. FINITE ELEMENT MODELS

The complex eigenvalue and the direct frequency re-
sponse methods are two kinds of conventional approaches
that can be used to evaluate damping. Lu et al. conducted a
series of research studies on the vibration of damped sandwich
structures using the direct frequency response method.70-74

However, these two conventional methods are both computa-
tionally expensive. In recent years the modal strain energy
method and the Golla-Hughes-McTavish (GHM) method
have come into more common use.

As discussed in the first section, the modal strain energy
method was proposed by Ungar and Kerwin and was realised
by Johnson by using finite element analysis. Although this is
an approximate technique for the prediction of damping, the
advantage of this method is that only the response of un-
damped normal modes needs to be calculated. As a result, the
energy distributions are of direct use to the designer when
deciding where to locate damping layers.75 Veley and Rao
studied the effect of the thicknesses of all the layers and the
amount and location of the damping treatment.76 They claim

that an increase in the constrained layer thickness increases
the loss factor. Although an increase in the viscoelastic layer
thickness increases the loss factor of the first mode, it de-
creases the loss factor of higher modes. Zambrano et al. stud-
ied the accuracy of this method for the estimation of the re-
sponse of structures using viscoelastic dampers.77 Plagiana-
kos and Saravanos presented a new finite element model for
sandwich beams involving quadratic and cubic terms for ap-
proximation of the in-plane displacement in each layer.78 The
damping is calculated using the modal strain energy method.
The effects of ply orientation, thickness, and boundary condi-
tions on the damping are analysed. Shorter used a one-di-
mensional finite-element mesh to describe the low order
cross-sectional deformation of laminates and used the modal
strain energy method to calculate the damping.79 This finite
element model showed that below a particular frequency only
longitudinal, shear, and bending waves are observed. At high
frequencies additional propagating waves cut on in the beam
which involve the out-of-phase flexural motion of the face
sheets. This is called symmetric motion or dilatational motion
by other researchers.80-82

The GHM method is a technique for deriving a viscoelas-
tic finite element from the commonly-used elastic finite ele-
ment and for measurements of both frequency and time do-
main material behaviour.83 Based on this model, Wang et al.
analysed the vibration characteristics of sandwich plates in-
corporated with the Galerkin method and conducted experi-
ments with simply supported and clamped plates.84 The GHM
method can successfully predict the frequency dependence of
the complex shear modulus in the core.

Chen et al. presented an order-reduction-iteration approach
to predict the damping in sandwich structures.85 Such a method
consists of two steps, the first-order asymptotic solution of
the non-linear real eigenequation and the order-reduction-
iteration of the complex eigenequation.

Nayfeh analysed five-layered sandwich beams using fi-
nite element implementation of the modal strain energy
model.86 He studied different boundary conditions and par-
tially covered sandwich beams, the effects of the coupling
factor, and the ratio between the stiffnesses of the face sheets
and the core.

4. STATISTICAL ENERGY ANALYSIS METHOD

Finite element models are generally only efficient for
problems at low and middle frequencies. Since the size of the
elements must be considerably smaller than the minimum
wavelength, the required number of elements increases dra-
matically with the frequency range of interest, as well as the
geometry and complexity of the structure. The statistical en-
ergy analysis (SEA) or power balance method is attractive at
high frequencies where a deterministic analysis of all reso-
nant modes of vibration is not practical. In the SEA model, a
complex structure is virtually divided into coupled subsys-
tems. Energy flows from one subsystem to others. Based on
the assumption of power balance for these subsystems, the
averaged behaviour of the whole structure can be predicted.
Because SEA calculates the spatial and frequency averaged
response, the SEA model for a complex structure is quite
simple. The modal density, the internal loss factor for each
subsystem, and the coupling loss factors between the subsys-
tems are the basic SEA parameters.
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Since the SEA model is widely used in sound transmis-
sion research and damping is related to the sound transmis-
sion properties, especially at the critical frequency, the SEA
is also used in damping estimations. Although this method
cannot be applied for measurement of damping in an individ-
ual mode of vibration, it is very practical for the estimation of
damping in a particular frequency band. Actually, this feature
of SEA is experimentally very useful because the uncertainty
and severe modal overlap of the frequency response func-
tions of sandwich structures at high frequencies make it diffi-
cult to determine the loss factor for an individual mode.

Lyon has presented the concept of SEA and used this ap-
proach to formulate a model for the prediction of damping.87

Bloss and Rao measured the damping in laminated glass for
vehicle side windows using the SEA method.88

As mentioned before, modal density is one of the basic
SEA parameters. The first theoretical study of the modal den-
sity of a sandwich shell with an isotropic core was conducted
by Wilkinson based on a fourth-order equation of motion.89

Erickson showed that for typical honeycomb structures, the
effect of rotary inertia and bending stiffness of the face sheet
can be neglected, but the shear flexibility of the core is im-
portant.90 So he modified the theoretical expression for the
modal density of the honeycomb plates. Clarkson and Ranky
derived a new theoretical expression based on the sixth-order
equation of motion.94 This new expression gives a good esti-
mation of the modal density of plain honeycomb plates and is
independent of the shape of the structure. Renji et al. derived
an expression to evaluate the modal density of a honeycomb
sandwich panel with orthotropic face sheets based on a fourth-
order governing differential equation.101

As for the experimental methods used to determine the
modal density of panels and beams, Lyon and DeJong have
described some basic approaches.87 The mode count is a stra-
ightforward method, which identifies and counts the number
of resonance peaks from the frequency response function. At
high frequencies, severe modal overlap makes the modes in-
distinct. Clarkson and Pope developed an experimental tech-
nique to determine the modal density of a lightly damped
structure by measuring the spatial average of the driving
point mobility , where V and F are theY(i ) = V(i ) /F(i )
Fourier transforms of the velocity and force signals.91,92 Theo-
retically, the real part of the driving point mobility must be
positive. Several papers were published later on to improve
this technique. Ranky and Clarkson demonstrated that the
one-third octave bands are too wide. A more suitable band-
width is 100 Hz for metal plates, but 500 Hz for honeycomb
plates because the modal density of the sandwich structures
is relatively low.93 Because the measured velocity at the driv-
ing point includes a non-propagating (near field) component,
which is not related to the energy input, the velocity of the
driving point should not be included in the calculation of the
spatial average velocity. Clarkson and Ranky also studied the
effect of discontinuities in honeycomb plates, such as circu-
lar cut-outs, added mass, and added stiffeners.94 In order to
solve the presence of negative values in the real part of driv-
ing point mobility, Brown presented a three-channel tech-
nique by measuring one more signal , which is the origi-s(t)
nal signal to drive the power amplifier.95 The driving point
mobility is then calculated as ,Y (i ) =Gsv(i ) /Gsf (i )
where G denotes the cross-spectrum. Brown and Norton sug-
gested a method to correct the mobility calculation error,

which is introduced by the added mass between the trans-
ducer and the structure.96 Keswick and Norton studied three
different excitation arrangements for impedance head meas-
urements and used the spectral mass method to correct the
measured mobility.98 Hakansson and Carlsson presented a
similar correction method using a dual-channel FFT analyser
with an unloaded impedance head.99 Applying Brown and
Norton’s correction method, Renji measured the modal den-
sity of foam-filled honeycomb sandwich panels using an im-
proved input mobility method by including both the real and
imaginary parts.102 Beyond a particular frequency, the meas-
ured modal density decreases with frequency, although the
theoretical results still increase. Renji explains that this is be-
cause of the vibration of the honeycomb cells which occurs
at high frequencies.

Based on the experimental techniques introduced above, the
loss factors of sandwich structures are then also measured.91,93,103

It is important to notice that the frequency average loss factor
in a frequency band is not the arithmetic average of the indi-
vidual modal loss factors.

If measurements are made in air, the measured loss factor
is basically the total effect of the internal and acoustic radia-
tion loss factors. Since the coincidence frequency of a sand-
wich structure is generally lower than thin metal plates due to
both the bending and shear waves propagating in it, the ra-
diation loss factor could be very significant in the frequency
bands of interest. Clarkson and Brown, and Norton have shown
that the use of the loss factor measured in air in the SEA
model can lead to large errors in the estimated response be-
cause for honeycomb sandwich plates, the acoustic damping
is the major component of the total damping.97,100

The acoustic radiation damping is effective near and above
the coincidence frequency of a structure. Compared with a
solid homogeneous plate of equal weight, the sandwich plate
generally has a lower critical frequency due to the high stiff-
ness-to-mass ratio. So the acoustic radiation damping in a
sandwich plate is higher than that in a solid plate. However,
it should be noticed that an increase in the acoustic radiation
damping may be an advantage in some vibration problems,
but a disadvantage in others.16 For example, since the radia-
tion loss factor of a sandwich structure is normally much
higher than its internal loss factor, if it is excited in a diffuse
sound field, then the time-averaged structural vibration lev-
els are almost independent of the acoustic damping.16 In addi-
tion, since the radiation loss factor is proportional to the ra-
diation efficiency, which affects the sound transmission loss,
an increase in the acoustic radiation damping leads to a re-
duction in the sound transmission loss.104,105

5. DAMPING MEASUREMENT TECHNIQUES

Basically, there are four measures of damping: the loss
factor , the quality factor Q, the damping ratio , and the
imaginary part of the complex modulus. However, they are
related to each other. The loss factor or damping ratio is used
in measurements:

        (1)= D
2 W = 1

Q = 2 = 2C
Cc

= E ∏∏

E ∏ = tan ,

where D and W are the dissipated and total powers in one cy-
cle of vibration, C and  are the damping coefficient and theCc
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critical damping, and  and  are the real and imaginaryE∏ E∏∏

parts of the complex modulus, respectively.
Many references present reviews of damping measure-

ments.10,11,17,87,109 Generally, there are three sorts of experi-
mental methods:

Decay rate method. This method can be used to measure
the damping of a single resonance mode from a free vibration
signal. The structure is given an excitation by a force in a
given frequency band, then the excitation is cut off, followed
by an observation of the free vibration signal. A commonly
used damping calculation method for free vibration signals
uses the logarithmic decrement :

                             (2)= 1
m ln An

An+m
,

where  and  are the amplitudes of the n-th and theAn An+m
-th cycle in the free vibration signal. The damping ration+m

is then given by

                            (3)=
(2 )2 + 2

.

However, the logarithmic decrement method is very sen-
sitive to noise.

An improved approach is to obtain the envelope of the
free vibration signal by constructing its analytic signal using
the Hilbert transform.106 For a given real signal , its ana-x(t)
lytic signal  isxa(t)

                       (4)xa(t) = x(t) + jH x(t) ,

where the subscript a stands for analytic and the Hilbert
transform of  is defined asx(t)

                      (5)H x(t) = − 1 ¶ x( )
t − d .

The magnitude of the vector  is the envelope of thexa(t)
signal . The damping ratio  can be evaluated by expo-x(t)
nential curve fitting

                                 (6)= − e
2 f ,

where  is the power of the best exponential fit and f is thee
frequency of the free vibration.

Another problem associated with the decay rate method is
that this method only works for a single mode at resonance.
Li and Crocker have presented a method using the Gabor
analysis to decouple the modes existing in a free vibration
decay signal.106 Although the modes can be decoupled using
bandpass filters, Li and Crocker proved that the reconstructed
signals obtained using the Gabor analysis result in signals
with higher signal-to-noise ratios than those obtained when
using bandpass filters.

Modal bandwidth method. The half-power point method
is the most common form used to determine the damping by
using either impact excitation or white noise excitation and
by calculating the frequency response function (FRF). The

loss factor is given by the ratio of the half-power frequency
band to the natural frequency:

                                  (7)= f2 − f1
fn

,

where  is a natural frequency and  and  are the upperfn f1 f2
and lower frequency limits of the 3 dB frequency band of this
mode, respectively.

A considerable amount of attention has been devoted to
the modal parameter extraction method using the FRF analy-
sis.107-109 This method applies only to the determination of the
damping of a single mode. However, if severe modal overlap
occurs in the frequency response functions, the power bal-
ance method is more practical.

Power balance method. The SEA method, or power bal-
ance method, has been discussed in the previous section. The
damping in a particular frequency band, predicted by SEA, is
based on the ratio of the dissipated energy to the total energy
measured in this frequency band. Under steady state condi-
tions, the dissipated energy is equal to the input energy. So,
the loss factor in a frequency band can be determined by
measuring the input power and the total energy of a modal
subsystem:

                             (8)= W in
2 f W total

,

where  is the input power, and  is the total powerWin Wtotal
measured in a frequency band with the centre frequency of f.
The input power can be calculated using the input force and
modal density. The total energy of a subsystem is the product
of the mass and the spatial average of the mean square value
of the velocity.87,88,103

Damping can also be modelled using hysteresis loops.
Hornig and Flowers discuss such modelling and measure-
ments and the use of genetic algorithms in reference 112.

6. CONCLUSIONS

Vibration damping is a complex phenomenon. It depends
on many factors, such as material internal damping, boundary
conditions, temperature, frequency, level of strain/stress, and
so on. Based on our literature review of damping in sandwich
structures, the following conclusions can be drawn:

1) Sixth-order models lead to more accurate results on the
dynamics and damping of sandwich structures than fourth-
order models.

2) From a theoretical point of view, the MSE method is
better than the Ross-Ungar-Kerwin model since it includes
the damping in all of the elements. However, this method re-
quires preliminary information on the damping in all the lay-
ers, which may be difficult to obtain, especially for very thin
composite face sheets.

3) Finite element methods are very efficient nowadays.
Some approximations, however, have to be made because
some materials (for example, adhesive layers) are difficult to
model.

4) The Ross-Ungar-Kerwin model indicates that the loss
factor has a maximum value when a three-layer sandwich
structure is symmetric about the neutral axis.
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5) If the constraining layer is thinner than the damping
layer, then the system damping has a maximum value when
the shear modulus of the core has an optimal value in the in-
termediate range.

6) The significance of higher order effects varies for dif-
ferent configurations of sandwich structures.

7) Damping in different joints varies. For bonded joints,
if the viscoelastic damping layer is much softer than the con-
straining layer, the total loss factor varies little with the shear
modulus of the damping layer. For bolted joints, as the bolt
diameter decreases, the damping increases.

8) Most multi-layer structures, such as four-layer and
five-layer sandwiches, normally possess more damping than
the three-layer sandwich structures. Multi-layer structures
also have a wider high damping range in terms of the core
shear modulus.

9) A spacer with a higher shear modulus than the damp-
ing layer can be inserted beneath the damping layer to in-
crease the shear stress in the damping layer and, thus, to in-
crease the energy dissipation in the whole structure.
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